1
|
Park J, Lee DH, Ham S, Oh J, Noh JR, Lee YK, Park YJ, Lee G, Han SM, Han JS, Kim YY, Jeon YG, Nahmgoong H, Shin KC, Kim SM, Choi SH, Lee CH, Park J, Roh TY, Kim S, Kim JB. Targeted erasure of DNA methylation by TET3 drives adipogenic reprogramming and differentiation. Nat Metab 2022; 4:918-931. [PMID: 35788760 DOI: 10.1038/s42255-022-00597-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
DNA methylation is a crucial epigenetic modification in the establishment of cell-type-specific characteristics. However, how DNA methylation is selectively reprogrammed at adipocyte-specific loci during adipogenesis remains unclear. Here, we show that the transcription factor, C/EBPδ, and the DNA methylation eraser, TET3, cooperatively control adipocyte differentiation. We perform whole-genome bisulfite sequencing to explore the dynamics and regulatory mechanisms of DNA methylation in adipocyte differentiation. During adipogenesis, DNA methylation selectively decreases at adipocyte-specific loci carrying the C/EBP binding motif, which correlates with the activity of adipogenic promoters and enhancers. Mechanistically, we find that C/EBPδ recruits a DNA methylation eraser, TET3, to catalyse DNA demethylation at the C/EBP binding motif and stimulate the expression of key adipogenic genes. Ectopic expression of TET3 potentiates in vitro and in vivo adipocyte differentiation and recovers downregulated adipogenic potential, which is observed in aged mice and humans. Taken together, our study highlights how targeted reprogramming of DNA methylation through cooperative action of the transcription factor C/EBPδ, and the DNA methylation eraser TET3, controls adipocyte differentiation.
Collapse
Affiliation(s)
- Jeu Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Do Hoon Lee
- Bioinformatics Institute, Seoul National University, Seoul, South Korea
| | - Seokjin Ham
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yoon Jeong Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Han Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Cheul Shin
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Min Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Tae Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Kohela A, van Kampen SJ, Moens T, Wehrens M, Molenaar B, Boogerd CJ, Monshouwer-Kloots J, Perini I, Goumans MJ, Smits AM, van Tintelen JP, van Rooij E. Epicardial differentiation drives fibro-fatty remodeling in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:eabf2750. [PMID: 34550725 DOI: 10.1126/scitranslmed.abf2750] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder often caused by pathogenic variants in desmosomal genes and characterized by progressive fibrotic and fat tissue accumulation in the heart. The cellular origin and responsible molecular mechanisms of fibro-fatty deposits have been a matter of debate, due to limitations in animal models recapitulating this phenotype. Here, we used human-induced pluripotent stem cell (hiPSC)–derived cardiac cultures, single-cell RNA sequencing (scRNA-seq), and explanted human ACM hearts to study the epicardial contribution to fibro-fatty remodeling in ACM. hiPSC-epicardial cells generated from patients with ACM showed spontaneous fibro-fatty cellular differentiation that was absent in isogenic controls. This was further corroborated upon siRNA-mediated targeting of desmosomal genes in hiPSC-epicardial cells generated from healthy donors. scRNA-seq analysis identified the transcription factor TFAP2A (activating enhancer-binding protein 2 alpha) as a key trigger promoting this process. Gain- and loss-of-function studies on hiPSC-epicardial cells and primary adult epicardial-derived cells demonstrated that TFAP2A mediated epicardial differentiation through enhancing epithelial-to-mesenchymal transition (EMT). Furthermore, examination of explanted hearts from patients with ACM revealed epicardial activation and expression of TFAP2A in the subepicardial mesenchyme. These data suggest that TFAP2A-mediated epicardial EMT underlies fibro-fatty remodeling in ACM, a process amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Arwa Kohela
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Sebastiaan J van Kampen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Tara Moens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Martijn Wehrens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Bas Molenaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, Netherlands.,Department of Cardiology, University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| |
Collapse
|
3
|
Parrillo L, Spinelli R, Longo M, Desiderio A, Mirra P, Nigro C, Fiory F, Hedjazifar S, Mutarelli M, Carissimo A, Formisano P, Miele C, Smith U, Raciti GA, Beguinot F. Altered PTPRD DNA methylation associates with restricted adipogenesis in healthy first-degree relatives of Type 2 diabetes subjects. Epigenomics 2020; 12:873-888. [PMID: 32483983 DOI: 10.2217/epi-2019-0267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: First-degree relatives (FDR) of individuals with Type 2 diabetes (T2D) feature restricted adipogenesis, which render them more vulnerable to T2D. Epigenetics may contribute to these abnormalities. Methods: FDR pre-adipocyte Methylome and Transcriptome were investigated by MeDIP- and RNA-Seq, respectively. Results: Methylome analysis revealed 2841 differentially methylated regions (DMR) in FDR. Most DMR localized into gene-body and were hypomethylated. The strongest hypomethylation signal was identified in an intronic-DMR at the PTPRD gene. PTPRD hypomethylation in FDR was confirmed by bisulphite sequencing and was responsible for its upregulation. Interestingly, Ptprd-overexpression in 3T3-L1 pre-adipocytes inhibited adipogenesis. Notably, the validated PTPRD-associated DMR was significantly hypomethylated in peripheral blood leukocytes from the same FDR individuals. Finally, PTPRD methylation pattern was also replicated in obese individuals. Conclusion: Our findings indicated a previously unrecognized role of PTPRD in restraining adipogenesis. This abnormality may contribute to increase FDR proclivity toward T2D.
Collapse
Affiliation(s)
- Luca Parrillo
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Rosa Spinelli
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Michele Longo
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Antonella Desiderio
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Paola Mirra
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Cecilia Nigro
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Francesca Fiory
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Shahram Hedjazifar
- Lundberg Laboratory for Diabetes Research, Department of Molecular & Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | | | | | - Pietro Formisano
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Claudia Miele
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular & Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Gregory Alexander Raciti
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Francesco Beguinot
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| |
Collapse
|
4
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Abstract
The two types of thermogenic fat cells, beige and brown adipocytes, play a significant role in regulating energy homeostasis. Their development and thermogenesis are tightly regulated by dynamic epigenetic mechanisms, which could potentially be targeted to treat metabolic disorders such as obesity. However, we are just beginning to catalog and understand these dynamic changes. In this review, we will discuss the current understanding of the role of DNA (de)methylation events in beige and brown adipose biology in order to highlight the holes in our knowledge and to point the way forward for future studies.
Collapse
Affiliation(s)
- Han Xiao
- a Department of Nutritional Sciences and Toxicology, UC Berkeley , Berkeley , CA , USA
| | - Sona Kang
- a Department of Nutritional Sciences and Toxicology, UC Berkeley , Berkeley , CA , USA
| |
Collapse
|
6
|
Flores EM, Woeller CF, Falsetta ML, Susiarjo M, Phipps RP. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis. FASEB J 2019; 33:3353-3363. [PMID: 30376360 PMCID: PMC6404567 DOI: 10.1096/fj.201801481r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
The obesity epidemic is developing into the most costly health problem facing the world. Obesity, characterized by excessive adipogenesis and enlarged adipocytes, promotes morbidities, such as diabetes, cardiovascular disease, and cancer. Regulation of adipogenesis is critical to our understanding of how fat cell formation causes obesity and associated health problems. Thy1 (also called CD90), a widely used stem cell marker, blocks adipogenesis and reduces lipid accumulation. Thy1-knockout mice are prone to diet-induced obesity. Although the importance of Thy1 in adipogenesis and obesity is now evident, how its expression is regulated is not. We hypothesized that DNA methylation has a role in promoting adipogenesis and affects Thy1 expression. Using the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we investigated whether DNA methylation alters Thy1 expression during adipogenesis in both mouse 3T3-L1 preadipocytes and mouse mesenchymal stem cells. Thy1 protein and mRNA levels were decreased dramatically during adipogenesis. However, 5-aza-dC treatment prevented that phenomenon. Methylation-sensitive pyrosequencing analysis showed that CpG sites at the Thy1 locus have increased methylation during adipogenesis, as well as increased methylation in adipose tissue from diet-induced obese mice. These new findings highlight the potential role of Thy1 and DNA methylation in adipogenesis and obesity.-Flores, E. M., Woeller, C. F., Falsetta, M. L., Susiarjo, M., Phipps, R. P. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis.
Collapse
Affiliation(s)
- E’Lissa M. Flores
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Megan L. Falsetta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Richard P. Phipps
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|