1
|
Dong Z, Shi R, Li P, Song X, Dong F, Zhu J, Wu R, Liang Z, Du M, Wang J, Yang Z. Does postcholecystectomy increase the risk of colorectal cancer? Front Microbiol 2023; 14:1194419. [PMID: 37426004 PMCID: PMC10324655 DOI: 10.3389/fmicb.2023.1194419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
With the increasing number of cholecystectomy and the high proportion of colorectal cancer in malignant tumors, the question of whether cholecystectomy is a risk factor for colorectal disease has been widely concerned. After reviewing the literature at home and abroad, the authors will summarize the research progress of the correlation between the occurrence of colorectal tumors after cholecystectomy, in order to provide help for the prevention and treatment of colorectal tumors.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Ruixian Shi
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Pengda Li
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaobiao Song
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Fan Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Jianmin Zhu
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Riga Wu
- Department of General Surgery, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhi Liang
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Mingyue Du
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Jijun Wang
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Zhigang Yang
- Department of Urology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
2
|
Sahu U, Mullarkey MP, Pei G, Zhao Z, Hong B, Kaur B. oHSV-P10 reduces glioma stem cell enrichment after oncolytic HSV therapy. Mol Ther Oncolytics 2023; 29:30-41. [PMID: 37114074 PMCID: PMC10126842 DOI: 10.1016/j.omto.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Longstanding evidence implicate glioma stem-like cells as the main drivers contributing toward glioblastoma (GBM) therapy resistance and tumor recurrence. Although oncolytic herpes simplex virus (oHSV) viral therapy is a promising biological therapy recently approved for melanoma (in the United States and Europe) and GBM (in Japan); however, the impact of this therapy on GBM stem-like cells (GSCs) is understudied. Here we show that post-oHSV virotherapy activated AKT signaling results in an enrichment of GSC signatures in glioma, which mimics the enrichment in GSC observed after radiation treatment. We also uncovered that a second-generation oncolytic virus armed with PTEN-L (oHSV-P10) decreases this by moderating IL6/JAK/STAT3 signaling. This ability was retained in the presence of radiation treatment and oHSV-P10-sensitized intracranial GBM to radiotherapy. Collectively, our findings uncover potential mechanisms to overcome GSC-mediated radiation resistance via oHSV-P10.
Collapse
Affiliation(s)
- Upasana Sahu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Matthew P. Mullarkey
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bangxing Hong
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Metformin abrogates Fusobacterium nucleatum-induced chemoresistance in colorectal cancer by inhibiting miR-361-5p/sonic hedgehog signaling-regulated stemness. Br J Cancer 2023; 128:363-374. [PMID: 36396820 PMCID: PMC9902563 DOI: 10.1038/s41416-022-02044-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chemotherapy resistance is the major cause of recurrence in patients with colorectal cancer (CRC). A previous study found that Fusobacterium (F.) nucleatum promoted CRC chemoresistance. Additionally, metformin rescued F. nucleatum-induced tumorigenicity of CRC. Here, we aimed to investigate whether metformin could revert F. nucleatum-induced chemoresistance and explore the mechanism. METHODS The role of metformin in F. nucleatum-infected CRC cells was confirmed using cell counting kit 8 assays and CRC xenograft mice. Stemness was identified by tumorsphere formation. Bioinformatic analyses were used to explore the regulatory molecules involved in metformin and F. nucleatum-mediated regulation of the sonic hedgehog pathway. RESULTS We found that metformin abrogated F. nucleatum-promoted CRC resistance to chemotherapy. Furthermore, metformin attenuated F. nucleatum-stimulated stemness by inhibiting sonic hedgehog signaling. Mechanistically, metformin diminished sonic hedgehog signaling proteins by targeting the MYC/miR-361-5p cascade to reverse F. nucleatum-induced stemness, thereby rescuing F. nucleatum-triggered chemoresistance in CRC. CONCLUSIONS Metformin acts on F. nucleatum-infected CRC via the MYC/miR-361-5p/sonic hedgehog pathway cascade, subsequently reversing stemness and abolishing F. nucleatum-triggered chemoresistance. Our results identified metformin intervention as a potential clinical treatment for patients with chemoresistant CRC with high amounts of F. nucleatum.
Collapse
|
4
|
Yinhang W, Wei W, Jing Z, Qing Z, Yani Z, Yangyanqiu W, Shuwen H. Biological roles of toll-like receptors and gut microbiota in colorectal cancer. Future Microbiol 2022; 17:1071-1089. [PMID: 35916158 DOI: 10.2217/fmb-2021-0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most considerably common malignancies of the alimentary system, with high mortality and incidence rates. The present study suggested that the occurrence of CRC is closely related to bacteria, as the large intestine is a gathering place for human micro-organisms. However, the nosogenesis of bacteria leading to tumorigenesis is still obscure. Recently, many studies have reported that toll-like receptors and their related molecular pathways are involved in the process of gut micro-organisms generating CRC. Gut micro-organisms can promote or inhibit the development of CRC via binding to special toll-like receptors. In this paper, the authors review the relationship among toll-like receptors, gut micro-organisms and CRC in order to provide a reference for future tumor immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, 310053, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Wu Wei
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Qing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Yani
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| |
Collapse
|
5
|
Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z, Fu W. Progress in the Study of Colorectal Cancer Caused by Altered Gut Microbiota After Cholecystectomy. Front Endocrinol (Lausanne) 2022; 13:815999. [PMID: 35282463 PMCID: PMC8907136 DOI: 10.3389/fendo.2022.815999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies have found an increased incidence of colorectal cancer (CRC) in people who undergo cholecystectomy compared to healthy individuals. After cholecystectomy, bile enters the duodenum directly, unregulated by the timing of meals. Disruption of the balance of bile acid metabolism and increased production of primary bile acids, which in turn affects the composition and abundance of intestinal microorganisms. The link among cholecystectomy, the gut microbiota, and the occurrence and development of CRC is becoming clearer. However, due to the complexity of the microbial community, the mechanistic connections are less well understood. In this review, we summarize the changes of gut microbiota after cholecystectomy and illuminate the potential mechanisms on CRC, such as inflammation and immune regulation, production of genotoxins, metabolism of dietary ingredients, activation of signaling pathways, and so on. By reviewing these, we aimed to unravel the interactions between the gut microbiota and its host and be better positioned to develop treatments for CRC after cholecystectomy.
Collapse
Affiliation(s)
- Yanpeng Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ruize Qu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Yi Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhipeng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| |
Collapse
|
6
|
Li L, Zhou Z, Mai K, Li P, Wang Z, Wang Y, Cao Y, Ma X, Zhang T, Wang D. Protein overexpression of toll-like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance. Oncol Lett 2021; 22:786. [PMID: 34594427 PMCID: PMC8456488 DOI: 10.3892/ol.2021.13047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of malignancy of the head and neck. In the present study, the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) was evaluated in 55 OSCC tissues and their corresponding adjacent tissues using immunohistochemistry and reverse-transcription quantitative PCR. The results indicated that TLR4 and MyD88 were overexpressed in OSCC. Furthermore, high expression of MyD88 was negatively associated with a poor degree of differentiation, recurrence and metastasis of the tumor and was positively associated with underlying disease, including hypertension, heart disease and diabetes mellitus. Furthermore, high expression of TLR4 was positively associated with a long growth time of the tumor. In conclusion, the present study evaluated the expression levels of TLR4 and MyD88 in OSCC, as well as the association between them and clinicopathological factors, to provide markers for the prognosis and treatment of OSCC. These two genes may serve as biomarkers to optimize OSCC treatment, setting a new direction for stratifying patients and developing precise and personalized treatment regimens; the TLR4/MyD88 pathway may serve as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Lili Li
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Stomatology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530028, P.R. China
| | - Zhuoqian Zhou
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Khangvu Mai
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ping Li
- Department of Pathology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zongqi Wang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yaxi Wang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yang Cao
- Department of Pathology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xuemeng Ma
- Department of Pathology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tingting Zhang
- Department of Disease Control and Prevention, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Daiyou Wang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
7
|
Kaushik P, Ali M, Salman M, Tabassum H, Parvez S. Harnessing the mitochondrial integrity for neuroprotection: Therapeutic role of piperine against experimental ischemic stroke. Neurochem Int 2021; 149:105138. [PMID: 34284077 DOI: 10.1016/j.neuint.2021.105138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Ischemic stroke (IS) is a rapidly increasing global burden and is associated with severe neurological decline and mortality. There is urgent requirement of the efforts, aimed to identify therapeutic strategies that are effective in clinic to promote significant recovery from IS. Studies have shown that mitochondria mediated neuroprotection can be a competent target against ischemic damage. Therefore, we examined whether mitochondrial impairment is regulated by Piperine (PIP), an alkaloid of Piper Longum, which has neuroprotective activity against ischemic brain injury. In this study, transient middle cerebral artery occlusion (tMCAO) surgery was performed on male Wistar rats for 90 min followed by 22.5 h of reperfusion for mimicking the IS condition. This study consisted of three groups: sham, tMCAO and tMCAO + PIP (10 mg/kg b.wt., p.o/day for 15 days), and studied for behavioral tests, infarct volume, brain pathological changes, mitochondrial dysfunction, inflammation alongwith cell survival status. PIP pre-treatment showed reduction in neurological alterations and infarct volume. In addition, PIP pre-treatment suppressed the mitochondrial dysfunction and might have anti-apoptotic potential by preventing Cytochrome c (Cyt c) release from mitochondria to cytoplasm and caspase 3 activation. It also regulates pro-apoptotic, Bax and anti-apoptotic, Bcl-2 proteins accompanied by glial fibrillary acidic protein (GFAP) positive cells in cortex region. Quantitative Reverse transcription-polymerase chain reaction (qRT-PCR) results also showed that PIP reduced the expression of pro-inflammatory protein, interleukin-1 β (IL-1β) and enhanced cell survival by restoring the activity of brain derived neurotrophic factor (BDNF) and its transcription protein, cAMP response element binding protein (CREB). Taken together, PIP reduced the mitochondrial dysfunction, neurological impairment, and enhanced neuronal survival. In conclusion, our findings reinforce PIP as an effective neuroprotective agent and provide important evidence about its role as a potential target to serve as a promising therapy for treatment of IS.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
8
|
Marzano M, Fosso B, Piancone E, Defazio G, Pesole G, De Robertis M. Stem Cell Impairment at the Host-Microbiota Interface in Colorectal Cancer. Cancers (Basel) 2021; 13:996. [PMID: 33673612 PMCID: PMC7957811 DOI: 10.3390/cancers13050996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) initiation is believed to result from the conversion of normal intestinal stem cells (ISCs) into cancer stem cells (CSCs), also known as tumor-initiating cells (TICs). Hence, CRC evolves through the multiple acquisition of well-established genetic and epigenetic alterations with an adenoma-carcinoma sequence progression. Unlike other stem cells elsewhere in the body, ISCs cohabit with the intestinal microbiota, which consists of a diverse community of microorganisms, including bacteria, fungi, and viruses. The gut microbiota communicates closely with ISCs and mounting evidence suggests that there is significant crosstalk between host and microbiota at the ISC niche level. Metagenomic analyses have demonstrated that the host-microbiota mutually beneficial symbiosis existing under physiologic conditions is lost during a state of pathological microbial imbalance due to the alteration of microbiota composition (dysbiosis) and/or the genetic susceptibility of the host. The complex interaction between CRC and microbiota is at the forefront of the current CRC research, and there is growing attention on a possible role of the gut microbiome in the pathogenesis of CRC through ISC niche impairment. Here we primarily review the most recent findings on the molecular mechanism underlying the complex interplay between gut microbiota and ISCs, revealing a possible key role of microbiota in the aberrant reprogramming of CSCs in the initiation of CRC. We also discuss recent advances in OMICS approaches and single-cell analyses to explore the relationship between gut microbiota and ISC/CSC niche biology leading to a desirable implementation of the current precision medicine approaches.
Collapse
Affiliation(s)
- Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (M.M.); (B.F.); (G.P.)
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (M.M.); (B.F.); (G.P.)
| | - Elisabetta Piancone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy; (E.P.); (G.D.)
| | - Giuseppe Defazio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy; (E.P.); (G.D.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (M.M.); (B.F.); (G.P.)
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy; (E.P.); (G.D.)
| | - Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy; (E.P.); (G.D.)
| |
Collapse
|
9
|
Heo G, Lee Y, Im E. Interplay between the Gut Microbiota and Inflammatory Mediators in the Development of Colorectal Cancer. Cancers (Basel) 2021; 13:734. [PMID: 33578830 PMCID: PMC7916585 DOI: 10.3390/cancers13040734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
Inflammatory mediators modulate inflammatory pathways during the development of colorectal cancer. Inflammatory mediators secreted by both immune and tumor cells can influence carcinogenesis, progression, and tumor metastasis. The gut microbiota, which colonize the entire intestinal tract, especially the colon, are closely linked to colorectal cancer through an association with inflammatory mediators such as tumor necrosis factor, nuclear factor kappa B, interleukins, and interferons. This association may be a potential therapeutic target, since therapeutic interventions targeting the gut microbiota have been actively investigated in both the laboratory and in clinics and include fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
| | | | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (G.H.); (Y.L.)
| |
Collapse
|
10
|
Liu QQ, Li CM, Fu LN, Wang HL, Tan J, Wang YQ, Sun DF, Gao QY, Chen YX, Fang JY. Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes 2020; 12:1788900. [PMID: 32684087 PMCID: PMC7524313 DOI: 10.1080/19490976.2020.1788900] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The enrichment of Enterotoxigenic Bacteroides fragilis (ETBF) has been identified in CRC patients and associated with worse prognosis. Cancer stem cells (CSCs) play essential roles in CRC development. However, whether ETBF is involved in CSCs regulation is unknown. To clarify the role of ETBF in CSCs properties, we performed extreme limited dilution assays (ELDA) in nude mice injected with ETBF-treated or untreated CRC cells subcutaneously, tumor organoids culture in azoxymethane (AOM) mouse model after gavaging with or without ETBF, and cell sphere formation assay after incubating CRC cell lines with or without ETBF. The results indicated that ETBF increased the stemness of CRC cells in vivo and in vitro. Furthermore, ETBF enhanced the expression of core stemness transcription factors Nanog homeobox (NANOG) and sex determining region Y-box 2 (SOX2). Histone H3 Lysine 9 trimethylation (H3K9me3) is critical in regulating CSCs properties. As an epigenetic and transcriptional regulator, JmjC-domain containing histone demethylase 2B (JMJD2B) is essential for embryonic stem cell (ESC) transformation and H3K9me3 demethylation. Mechanistically, ETBF infection significantly upregulated JMJD2B levels in CRC cell lines and nude mice xenograft model. JMJD2B epigenetically upregulated NANOG expression via demethylating its promoter H3K9me3, to mediate ETBF-induced stemness of CRC cells. Subsequently, we found that the Toll-like receptor 4 (TLR4) pathway, activated by ETBF, contributed to the enhanced expression of JMJD2B via nuclear transcription factor nuclear factor of activated T cells 5 (NFAT5). Finally, in human CRC samples, the amount of ETBF positively correlated with nuclear NFAT5, JMJD2B, and NANOG expression levels. In summary, ETBF upregulated JMJD2B levels in a TLR4-NFAT5-dependent pathway, and played an important role in stemness regulation, which promoted colorectal carcinogenesis.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Min Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Na Fu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Lian Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Tan
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Qian Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan-Feng Sun
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Yan Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Qin-Yan Gao Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,CONTACT Xuan Chen
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Peng C, Ouyang Y, Lu N, Li N. The NF-κB Signaling Pathway, the Microbiota, and Gastrointestinal Tumorigenesis: Recent Advances. Front Immunol 2020; 11:1387. [PMID: 32695120 PMCID: PMC7338561 DOI: 10.3389/fimmu.2020.01387] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) cancers, especially gastric cancer and colorectal cancer (CRC), represent a major global health burden. A large population of microorganisms residing in the GI tract regulate physiological processes, such as the immune response, metabolic balance, and homeostasis. Accumulating evidence has revealed the alteration of microbial communities in GI tumorigenesis. Experimental studies in cell lines and animal models showed the functional roles and molecular mechanisms of several bacteria in GI cancers, including Helicobacter pylori in gastric cancer as well as Fusobacterium nucleatum, Escherichia coli, Peptostreptococcus anaerobius, and Bacteroides fragilis in CRC. The transcriptional factor NF-κB plays a crucial role in the host response to microbial infection through orchestrating innate and adaptive immune functions. Moreover, NF-κB activity is linked to GI cancer initiation and development through its induction of chronic inflammation, cellular transformation and proliferation. Here, we provide an overview and discussion of modulation of the NF-κB signaling pathway by microbiota, especially infectious bacteria, in GI tumorigenesis, with a major focus on gastric cancer and CRC.
Collapse
Affiliation(s)
- Chao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaobin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Mekhemar M, Tölle J, Dörfer C, Fawzy El‐Sayed K. TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells. J Clin Periodontol 2020; 47:991-1005. [DOI: 10.1111/jcpe.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Universitätsklinikum SchleswigȐHolstein Ȑ Campus, Kiel
| | - Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Karim Fawzy El‐Sayed
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Oral Medicine and Periodontology Department Faculty of Oral and Dental Medicine Cairo University Cairo Egypt
| |
Collapse
|
13
|
Gao YL, Shao LH, Dong LH, Chang PY. Gut commensal bacteria, Paneth cells and their relations to radiation enteropathy. World J Stem Cells 2020; 12:188-202. [PMID: 32266051 PMCID: PMC7118286 DOI: 10.4252/wjsc.v12.i3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical "button" because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy.
Collapse
Affiliation(s)
- Yan-Li Gao
- Department of Pediatric Ultrasound, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hong Shao
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China.
| |
Collapse
|
14
|
Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine 2020; 87:31-36. [DOI: 10.1016/j.jbspin.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
|
15
|
Wang YY, Xiao LY, Wu PC, Chen YK, Lo S, Hu SCS, Chen YH, Chiu CCC, Yuan SSF. Orabase-formulated gentian violet effectively improved oral potentially malignant disorder in vitro and in vivo. Biochem Pharmacol 2019; 171:113713. [PMID: 31733192 DOI: 10.1016/j.bcp.2019.113713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral cancer is a prevalent cancer in male worldwide. Oral potentially malignant disorders (OMPDs) are the oral mucosa lesions that have high malignant transformation rate to oral cancer. The mainstay for OMPDs treatment includes carbon dioxide (CO2) laser and surgery, which may lead to the side effects of scarring and impaired function of oral cavity in the patients and reduced their willingness to receive curative therapy. Therefore, developing a non-invasive and function-preserving therapy is clinically important. Since development of a novel chemotherapeutic drug requires a lot of time and cost, we applied the high-throughput screening (HTS) approach to identify new bioactivities for FDA-approved drugs, known as drug repurposing. Through this drug repurposing approach, we discovered that gentian violet (GV), which is well known for its antibacterial, antifungal, antihelminthic, antitrypanosomal and antiviral activities, was able to induce significant cell death in DOK oral precancerous cells through ROS production. Moreover, decreased phosphorylation of p53(Ser15) and NFκB(Ser536) was required for GV-induced cell death. In vivo, 3% GV orabase effectively suppressed the progression of DMBA-induced oral precancerous lesions. In conclusion, this new formulation of GV through drug repurposing has the potential to be further developed as a therapeutic drug for OPMD clinically.
Collapse
Affiliation(s)
- Yen Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ling Yi Xiao
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pao Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yuk Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung,Taiwan; Oral & Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Steven Lo
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stephen Chu Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi Hua Chen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Shyng Shiou F Yuan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Persistent peripheral presence of Staphylococcus aureus promotes histone H3 hypoacetylation and decreases tyrosine hydroxylase protein level in rat brain tissues. Neuroreport 2019; 30:1087-1094. [PMID: 31503205 DOI: 10.1097/wnr.0000000000001322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Growing evidences suggest systemic pathogen-induced neuroimmune interaction is a major risk factor for several neurological disorders. Our goal was to investigate whether asymptomatic peripheral carriage of Staphylococcus aureus, a widespread opportunistic pathogen, could modulate selective molecular features in brain tissues. METHODS To address this, a peripheral infection model was developed by challenging Wistar rats repeatedly with a clinical strain of S. aureus. Animals infected with S. aureus (10 CFU for three times in 10 days) showed significant changes in acetylation profile of selective lysine (K) residues K9 (H3K9), K14 (H3K14) and K27 (H3K27) of histone H3 in the hippocampus and prefrontal cortex (PFC). RESULTS Although S. aureus was restricted peripherally, the infection induced hypoacetylation of H3K9, H3K14 and H3K27 in the hippocampus and H3K27 in the PFC. Histone H3 hypoacetylation in the hippocampus and PFC was also detected when rats were challenged with an engineered invasive strain of E. coli K12, SK3842. This confirmed that modulation of epigenetic landscape in distal brain tissues may not be specific to S. aureus. Moreover, the tyrosine hydroxylase protein, the rate limiting enzyme in dopamine synthesis pathway whose gene-expression is regulated by H3 acetylation at the promoter, was remarkably reduced in the brain tissues of the infected hosts. CONCLUSION The results indicate that commensals like S. aureus, in spite of being largely restricted to the peripheral tissues, could modulate the homeostasis of molecular features in brain tissues whose maintenance is critical for preserving normal neurological functions.
Collapse
|
17
|
Xu H, Cheng M, Chi X, Liu X, Zhou J, Lin T, Yang W. High-Throughput Screening Identifies Mixed-Lineage Kinase 3 as a Key Host Regulatory Factor in Zika Virus Infection. J Virol 2019; 93:e00758-19. [PMID: 31270223 PMCID: PMC6714800 DOI: 10.1128/jvi.00758-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023] Open
Abstract
The Zika virus (ZIKV) life cycle involves multiple steps and requires interactions with host factors. However, the inability to systematically identify host regulatory factors for ZIKV has hampered antiviral development and our understanding of pathogenicity. Here, using a bioactive compound library with 2,659 small molecules, we applied a high-throughput and imaging-based screen to identify host factors that modulate ZIKV infection. The screen yielded hundreds of hits that markedly inhibited or potentiated ZIKV infection in SNB-19 glioblastoma cells. Among the hits, URMC-099, a mixed-lineage kinase 3 (MLK3) inhibitor, significantly facilitated ZIKV replication in both SNB-19 cells and the neonatal mouse brain. Using gene silencing and overexpression, we further confirmed that MLK3 was a host restriction factor against ZIKV. Mechanistically, MLK3 negatively regulated ZIKV replication through induction of the inflammatory cytokines interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein 1 (MCP-1) but did not modulate host interferon-related pathways. Importantly, ZIKV activated the MLK3/MKK7/Jun N-terminal protein kinase (JNK) pathway in both SNB-19 cells and neonatal mouse brain. Together, these findings reveal a critical role for MLK3 in regulating ZIKV infection and facilitate the development of anti-ZIKV therapeutics by providing a number of screening hits.IMPORTANCE Zika fever, an infectious disease caused by the Zika virus (ZIKV), normally results in mild symptoms. Severe infection can cause Guillain-Barré syndrome in adults and birth defects, including microcephaly, in newborns. Although ZIKV was first identified in Uganda in 1947 in rhesus monkeys, a widespread epidemic of ZIKV infection in South and Central America in 2015 and 2016 raised major concerns. To date, there is no vaccine or specific medicine for ZIKV. The significance of our research is the systematic discovery of small molecule candidates that modulate ZIKV infection, which will allow the development of antiviral therapeutics. In addition, we identified MLK3, a key mediator of host signaling pathways that can be activated during ZIKV infection and limits virus replication by inducing multiple inflammatory cytokines. These findings broaden our understanding of ZIKV pathogenesis.
Collapse
Affiliation(s)
- Hua Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Cheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tianli Lin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
PKM-ζ Expression Is Important in Consolidation of Memory in Prelimbic Cortex Formed by the Process of Behavioral Tagging. Neuroscience 2019; 410:305-315. [DOI: 10.1016/j.neuroscience.2019.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/18/2022]
|
19
|
Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother 2018; 107:177-184. [PMID: 30086464 DOI: 10.1016/j.biopha.2018.07.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The myeloid differentiation factor 88 (MyD88), an adaptor protein in regulation of the innate immunity, functions to regulate immune responses against viral and bacterial infections in the human body. Toll-like receptors (TLRs) and interleukin 1 receptors (IL-1R) can recognize microbes or endogenous ligands and then recruit MyD88 to activate the MyD88-dependent pathway, while MyD88 mutation associated with lymphoma development and altered MyD88 signaling also involved in cancer-associated cell intrinsic and extrinsic inflammation progression and carcinogenesis. Detection of MyD88 expression was to predict prognosis of various human cancers, e.g., lymphoid, liver, and colorectal cancers. In human cancers, MyD88 protein acts as a bridge between the inflammatory signaling from the TLR/IL-1R and Ras oncogenic signaling pathway. However, the MyD88 signaling played dual functional roles in colorectal cancer, i.e., the tumor-promoting role that enhances cancer inflammation and intestinal flora imbalance to induce tumor invasion and tumor cell self-renewal, and the anti-tumor role that helps to maintain the host-microbiota homeostasis to induce tumor cell cycle arrest and immune responses against cancer cells. This review precisely discusses the up to date literature for these contrasting effects of MyD88 signaling on colorectal cancer development and progression.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Kewei Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
20
|
Coleman OI, Haller D. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer. Front Immunol 2018; 8:1927. [PMID: 29354132 PMCID: PMC5760496 DOI: 10.3389/fimmu.2017.01927] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs) substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.
Collapse
Affiliation(s)
| | - Dirk Haller
- Technical University of Munich, Munich, Germany.,ZIEL-Institute for Food & Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
Gu J, Liu Y, Xie B, Ye P, Huang J, Lu Z. Roles of toll-like receptors: From inflammation to lung cancer progression. Biomed Rep 2017; 8:126-132. [PMID: 29435270 PMCID: PMC5778860 DOI: 10.3892/br.2017.1034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is among the most common malignant tumors worldwide, and is characterized by a low survival rate compared with other cancers. Toll-like receptors (TLRs) are highly conserved in evolution and widely expressed on immune cells, where they serve an important role in the innate immune system by evoking inflammatory responses. Evasion of immune destruction is an important hallmark in the development of cancer. There is an established association between chronic inflammation and cancer, with TLRs serving important roles in the immune response against tumor cells. Recently, TLRs have been identified on tumor cells, where their activation may orchestrate the downstream signaling pathways that serve crucial functions in tumorigenesis and tumor progression. The present review summarizes the roles of TLRs as sensors on lung cancer cells that regulate lung cancer progression with regard to cell growth and invasion, angiogenesis and cancer stem cell behavior. This aimed to provide theoretical support for the development of therapies that target TLR signaling pathways for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jinjing Gu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yi Liu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Bin Xie
- School of Science, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Pingping Ye
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jiefan Huang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhe Lu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|