1
|
Barroeta-Echegaray E, Fonseca-Liñán R, Argüello-García R, Rodríguez-Muñoz R, Bermúdez-Cruz RM, Nava P, Ortega-Pierres MG. Giardia duodenalis enolase is secreted as monomer during trophozoite-epithelial cell interactions, activates plasminogen and induces necroptotic damage. Front Cell Infect Microbiol 2022; 12:928687. [PMID: 36093180 PMCID: PMC9452966 DOI: 10.3389/fcimb.2022.928687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022] Open
Abstract
Enolase, a multifunctional protein expressed by multiple pathogens activates plasminogen to promote proteolysis on components of the extracellular matrix, an important event in early host-pathogen interactions. A secreted form of enolase that is released upon the interaction of trophozoites with epithelial cells has been detected in the secretome of G. duodenalis. However, the role of enolase in the host-pathogen interactions remains largely unknown. In this work, the effects of G. duodenalis enolase (Gd-eno) on the epithelial cell model (IEC-6) were analyzed. Firstly, the coding sequence of Giardia enolase was cloned and the recombinant protein used to raise antibodies that were then used to define the localization and role of enolase in epithelial cell-trophozoite interactions. Gd-eno was detected in small cytoplasmic vesicles as well as at the surface and is enriched in the region of the ventral disk of Giardia trophozoites. Moreover, the blocking of the soluble monomeric form of the enzyme, which is secreted upon interaction with IEC-6 cells by the anti-rGd-eno antibodies, significantly inhibited trophozoite attachment to intestinal IEC-6 cell monolayers. Further, rGd-eno was able to bind human plasminogen (HsPlg) and enhanced plasmin activity in vitro when the trophozoites were incubated with the intrinsic plasminogen activators of epithelial cells. In IEC-6 cells, rGd-eno treatment induced a profuse cell damage characterized by copious vacuolization, intercellular separation and detachment from the substrate; this effect was inhibited by either anti-Gd-eno Abs or the plasmin inhibitor ϵ- aminocaproic acid. Lastly, we established that in epithelial cells rGd-eno treatment induced a necroptotic-like process mediated by tumor necrosis factor α (TNF-α) and the apoptosis inducing factor (AIF), but independent of caspase-3. All together, these results suggest that Giardia enolase is a secreted moonlighting protein that stimulates a necroptotic-like process in IEC-6 epithelial cells via plasminogen activation along to TNFα and AIF activities and must be considered as a virulence factor.
Collapse
Affiliation(s)
- Elisa Barroeta-Echegaray
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Fonseca-Liñán
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Raúl Argüello-García
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Guadalupe Ortega-Pierres
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: M. Guadalupe Ortega-Pierres,
| |
Collapse
|
2
|
Abubakar AA, Ali AK, Ibrahim SM, Handool KO, Khan MS, Mustapha NM, Ibrahim TAT, Kaka U, Yusof LM. Roles of Sodium Hydrogen Exchanger (NHE1) and Anion Exchanger (AE2) across Chondrocytes Plasma Membrane during Longitudinal Bone Growth. MEMBRANES 2022; 12:membranes12070707. [PMID: 35877910 PMCID: PMC9321928 DOI: 10.3390/membranes12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022]
Abstract
Mammalian long bone growth occurs through endochondral ossification, majorly regulated by the controlled enlargement of chondrocytes at the growth plate (GP). This study aimed to investigate the roles of Na+/H+ (sodium hydrogen exchanger (NHE1)) and HCO3− (anion exchanger [AE2]) during longitudinal bone growth in mammals. Bones from P10 SpragueDawley rat pups were cultured exvivo in the presence or absence of NHE1 and AE2 inhibitors to determine their effect on long bone growth. Gross morphometry, histomorphometry, and immunohistochemistry were used to assess the bone growth. The results revealed that the culture of the bones in the presence of NHE1 and AE2 inhibitors reduces bone growth significantly (p < 0.05) by approximately 11%. The inhibitor significantly (p < 0.05) reduces bone growth velocity and the length of the hypertrophic chondrocyte zone without any effect on the total GP length. The total GP chondrocyte density was significantly (p < 0.05) reduced, but hypertrophic chondrocyte densities remained constant. NHE1 fluorescence signaling across the GP length was higher than AE2, and their localization was significantly (p < 0.05) inhibited at the hypertrophic chondrocytes zone. The GP lengthening was majorly driven by an increase in the overall GP chondrocyte and hypertrophic chondrocyte densities apart from the regulatory volume phenomenon. This may suggest that NHE1 and AE2 could have a regulatory role in long bone growth.
Collapse
Affiliation(s)
- Adamu Abdul Abubakar
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Veterinary Surgery and Radiology, Usmanu Danfodiyo University, Sokoto PMB 2346, Nigeria
| | - Ahmed Khalaf Ali
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Sahar Mohammed Ibrahim
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul 00964, Iraq
| | - Kareem Obayes Handool
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Mohammad Shuaib Khan
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Faculty of Veterinary and Animal Science, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Noordin Mohamed Mustapha
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | | | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and Surgery, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.A.A.); (A.K.A.); (S.M.I.); (K.O.H.); (M.S.K.); (U.K.)
- Correspondence: ; Tel.: +60-192-590-571; Fax: +60-386-093-959
| |
Collapse
|
3
|
Gross C, Ramirez DA, McGrath S, Gustafson DL. Cannabidiol Induces Apoptosis and Perturbs Mitochondrial Function in Human and Canine Glioma Cells. Front Pharmacol 2021; 12:725136. [PMID: 34456736 PMCID: PMC8385407 DOI: 10.3389/fphar.2021.725136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive compound found in cannabis, is frequently used both as a nutraceutical and therapeutic. Despite anecdotal evidence as an anticancer agent, little is known about the effect CBD has on cancer cells. Given the intractability and poor prognoses of brain cancers in human and veterinary medicine, we sought to characterize the in vitro cytotoxicity of CBD on human and canine gliomas. Glioma cells treated with CBD showed a range of cytotoxicity from 4.9 to 8.2 μg/ml; canine cells appeared to be more sensitive than human. Treatment with >5 μg/ml CBD invariably produced large cytosolic vesicles. The mode of cell death was then interrogated using pharmacologic inhibitors. Inhibition of apoptosis was sufficient to rescue CBD-mediated cytotoxicity. Inhibition of RIPK3, a classical necroptosis kinase, also rescued cells from death and prevented the formation of the large cytosolic vesicles. Next, cellular mitochondrial activity in the presence of CBD was assessed and within 2 hours of treatment CBD reduced oxygen consumption in a dose dependent manner with almost complete ablation of activity at 10 μg/ml CBD. Fluorescent imaging with a mitochondrial-specific dye revealed that the large cytosolic vesicles were, in fact, swollen mitochondria. Lastly, calcium channels were pharmacologically inhibited and the effect on cell death was determined. Inhibition of mitochondrial channel VDAC1, but not the TRPV1 channel, rescued cells from CBD-mediated cytotoxicity. These results demonstrate the cytotoxic nature of CBD in human and canine glioma cells and suggest a mechanism of action involving dysregulation of calcium homeostasis and mitochondrial activity.
Collapse
Affiliation(s)
- Chase Gross
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Dominique A Ramirez
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stephanie McGrath
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Daniel L Gustafson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States.,University of Colorado Cancer Center, Aurora, CO, United States
| |
Collapse
|
4
|
Heinrich T, Sala-Hojman A, Ferretti R, Petersson C, Minguzzi S, Gondela A, Ramaswamy S, Bartosik A, Czauderna F, Crowley L, Wahra P, Schilke H, Böpple P, Dudek Ł, Leś M, Niedziejko P, Olech K, Pawlik H, Włoszczak Ł, Zuchowicz K, Suarez Alvarez JR, Martyka J, Sitek E, Mikulski M, Szczęśniak J, Jäckel S, Krier M, Król M, Wegener A, Gałęzowski M, Nowak M, Becker F, Herhaus C. Discovery of 5-{2-[5-Chloro-2-(5-ethoxyquinoline-8-sulfonamido)phenyl]ethynyl}-4-methoxypyridine-2-carboxylic Acid, a Highly Selective in Vivo Useable Chemical Probe to Dissect MCT4 Biology. J Med Chem 2021; 64:11904-11933. [PMID: 34382802 DOI: 10.1021/acs.jmedchem.1c00448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.
Collapse
Affiliation(s)
- Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ada Sala-Hojman
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Roberta Ferretti
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Carl Petersson
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stefano Minguzzi
- Intana, Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Martinsried, Germany
| | | | - Shivapriya Ramaswamy
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Anna Bartosik
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Frank Czauderna
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Lindsey Crowley
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Pamela Wahra
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Heike Schilke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Pia Böpple
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Łukasz Dudek
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Marcin Leś
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | - Kamila Olech
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Henryk Pawlik
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | | | | | | | - Ewa Sitek
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | | | - Sven Jäckel
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Mireille Krier
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Marcin Król
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Ansgar Wegener
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Mateusz Nowak
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Frank Becker
- Intana, Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Martinsried, Germany
| | - Christian Herhaus
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
5
|
Wu AJ, Tong BCK, Huang AS, Li M, Cheung KH. Mitochondrial Calcium Signaling as a Therapeutic Target for Alzheimer's Disease. Curr Alzheimer Res 2021; 17:329-343. [PMID: 31820698 DOI: 10.2174/1567205016666191210091302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/17/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Mitochondria absorb calcium (Ca2+) at the expense of the electrochemical gradient generated during respiration. The influx of Ca2+ into the mitochondrial matrix helps maintain metabolic function and results in increased cytosolic Ca2+ during intracellular Ca2+ signaling. Mitochondrial Ca2+ homeostasis is tightly regulated by proteins located in the inner and outer mitochondrial membranes and by the cross-talk with endoplasmic reticulum Ca2+ signals. Increasing evidence indicates that mitochondrial Ca2+ overload is a pathological phenotype associated with Alzheimer's Disease (AD). As intracellular Ca2+ dysregulation can be observed before the appearance of typical pathological hallmarks of AD, it is believed that mitochondrial Ca2+ overload may also play an important role in AD etiology. The high mitochondrial Ca2+ uptake can easily compromise neuronal functions and exacerbate AD progression by impairing mitochondrial respiration, increasing reactive oxygen species formation and inducing apoptosis. Additionally, mitochondrial Ca2+ overload can damage mitochondrial recycling via mitophagy. This review will discuss the molecular players involved in mitochondrial Ca2+ dysregulation and the pharmacotherapies that target this dysregulation. As most of the current AD therapeutics are based on amyloidopathy, tauopathy, and the cholinergic hypothesis, they achieve only symptomatic relief. Thus, determining how to reestablish mitochondrial Ca2+ homeostasis may aid in the development of novel AD therapeutic interventions.
Collapse
Affiliation(s)
- Aston J Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Benjamin C-K Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Alexis S Huang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis 2020; 11:714. [PMID: 32873774 PMCID: PMC7463000 DOI: 10.1038/s41419-020-02892-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating phytocannabinoid from cannabis sativa that has demonstrated anti-inflammatory effects in several inflammatory conditions including arthritis. However, CBD binds to several receptors and enzymes and, therefore, its mode of action remains elusive. In this study, we show that CBD increases intracellular calcium levels, reduces cell viability and IL-6/IL-8/MMP-3 production of rheumatoid arthritis synovial fibroblasts (RASF). These effects were pronounced under inflammatory conditions by activating transient receptor potential ankyrin (TRPA1), and by opening of the mitochondrial permeability transition pore. Changes in intracellular calcium and cell viability were determined by using the fluorescent dyes Cal-520/PoPo3 together with cell titer blue and the luminescent dye RealTime-glo. Cell-based impedance measurements were conducted with the XCELLigence system and TRPA1 protein was detected by flow cytometry. Cytokine production was evaluated by ELISA. CBD reduced cell viability, proliferation, and IL-6/IL-8 production of RASF. Moreover, CBD increased intracellular calcium and uptake of the cationic viability dye PoPo3 in RASF, which was enhanced by pre-treatment with TNF. Concomitant incubation of CBD with the TRPA1 antagonist A967079 but not the TRPV1 antagonist capsazepine reduced the effects of CBD on calcium and PoPo3 uptake. In addition, an inhibitor of the mitochondrial permeability transition pore, cyclosporin A, also blocked the effects of CBD on cell viability and IL-8 production. PoPo3 uptake was inhibited by the voltage-dependent anion-selective channel inhibitor DIDS and Decynium-22, an inhibitor for all organic cation transporter isoforms. CBD increases intracellular calcium levels, reduces cell viability, and IL-6/IL-8/MMP-3 production of RASF by activating TRPA1 and mitochondrial targets. This effect was enhanced by pre-treatment with TNF suggesting that CBD preferentially targets activated, pro-inflammatory RASF. Thus, CBD possesses anti-arthritic activity and might ameliorate arthritis via targeting synovial fibroblasts under inflammatory conditions.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany.
| | - Ren Tingting
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Julia Zurmahr
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Tim Classen
- Klinik für Orthopädie/Orthopädische Rheumatologie, St. Elisabeth-Hospital Meerbusch-Lank, D-40668, Meerbusch, Germany
| | - Matthias Schneider
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Georg Pongratz
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| |
Collapse
|
7
|
Guo RH, Gong Y, Kim SY, Rhee JH, Kim YR. DIDS inhibits Vibrio vulnificus cytotoxicity by interfering with TolC-mediated RtxA1 toxin secretion. Eur J Pharmacol 2020; 884:173407. [PMID: 32735984 DOI: 10.1016/j.ejphar.2020.173407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Vibrio vulnificus (V. vulnificus) infection, frequently resulting in fatal septicemia, has become a growing health concern worldwide. The present study aimed to explore the potential agents that could protect against V. vulnificus cytotoxicity, and to analyze the possible underlying mechanisms. First, we observed that 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS) significantly suppressed V. vulnificus cytotoxicity to host cells by using a lactate dehydrogenase (LDH) assay. DIDS did not exhibit any effect on host cell viability, bacterial growth, microbial adhesion and swarming motility. DIDS effectively lowered V. vulnificus RtxA1 toxin-induced calcium influx into host mitochondria and RtxA1 binding to host cells. To further elucidate the underlying mechanism, the synthesis and secretion of RtxA1 toxin were investigated by Western blotting. Intriguingly, DIDS selectively inhibited the secretion of RtxA1 toxin, but did not influence its synthesis. Consequently, the outer membrane portal TolC, a key conduit for RtxA1 export coupled with tripartite efflux pumps, was examined by RT-PCR and Western blotting. We found that DIDS significantly reduced the expression of TolCV1 protein at the transcriptional level. Taken together, these results suggest that DIDS is a promising new paradigm as an antimicrobial drug that targets TolC-mediated toxin.
Collapse
Affiliation(s)
- Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea
| | - Yue Gong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea
| | - Soo Young Kim
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea.
| |
Collapse
|
8
|
Benítez-Rangel E, Olguín-Albuerne M, López-Méndez MC, Domínguez-Macouzet G, Guerrero-Hernández A, Morán J. Caspase-3 Activation Correlates With the Initial Mitochondrial Membrane Depolarization in Neonatal Cerebellar Granule Neurons. Front Cell Dev Biol 2020; 8:544. [PMID: 32714930 PMCID: PMC7343937 DOI: 10.3389/fcell.2020.00544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
In this study we evaluated the effect of the reduction in the endoplasmic reticulum calcium concentration ([Ca2+]ER), changes in the cytoplasmic calcium concentration ([Ca2+]i), alteration of the mitochondrial membrane potential, and the ER stress in the activation of caspase-3 in neonatal cerebellar granule cells (CGN). The cells were loaded with Fura-2 to detect changes in the [Ca2+]i and with Mag-fluo-4 to measure variations in the [Ca2+]ER or with TMRE to follow modifications in the mitochondrial membrane potential in response to five different inducers of CGN cell death. These inducers were staurosporine, thapsigargin, tunicamycin, nifedipine and plasma membrane repolarization by switching culture medium from 25 mM KCl (K25) to 5 mM KCl (K5). Additionally, different markers of ER stress were determined and all these parameters were correlated with the activation of caspase-3. The different inducers of cell death in CGN resulted in three different levels of activation of caspase-3. The highest caspase-3 activity occurred in response to K5. At the same time, staurosporine, nifedipine, and tunicamycin elicited an intermediate activation of caspase-3. Importantly, thapsigargin did not activate caspase-3 at any time. Both K5 and nifedipine rapidly decreased the [Ca2+]i, but only K5 immediately reduced the [Ca2+]ER and the mitochondrial membrane potential. Staurosporine and tunicamycin increased the [Ca2+]i and they decreased both the [Ca2+]ER and mitochondrial membrane potential, but at a much lower rate than K5. Thapsigargin strongly increased the [Ca2+]i, but it took 10 min to observe any decrease in the mitochondrial membrane potential. Three cell death inducers -K5, staurosporine, and thapsigargin- elicited ER stress, but they took 30 min to have any effect. Thapsigargin, as expected, displayed the highest efficacy activating PERK. Moreover, a specific PERK inhibitor did not have any impact on cell death triggered by these cell death inducers. Our data suggest that voltage-gated Ca2+ channels, that are not dihydropyridine-sensitive, load the ER with Ca2+ and this Ca2+ flux plays a critical role in keeping the mitochondrial membrane potential polarized. A rapid decrease in the [Ca2+]ER resulted in rapid mitochondrial membrane depolarization and strong activation of caspase-3 without the intervention of the ER stress in CGN.
Collapse
Affiliation(s)
- Edaena Benítez-Rangel
- Departamento de Bioquímica, CINVESTAV-IPN, Mexico City, Mexico.,División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Guadalupe Domínguez-Macouzet
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Park J, Han JH, Myung SH, Kim TH. Isothiocyanate groups of 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) inhibit cell penetration of octa-arginine (R8)-fused peptides. J Pept Sci 2019; 26:e3237. [PMID: 31852026 DOI: 10.1002/psc.3237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 11/07/2022]
Abstract
Delivering biomolecules, such as antibodies, proteins, and peptides, to the cytosol is an important and challenging aspect of drug development and chemical biology. Polyarginine-a well-known cell-penetrating peptide (CPP)-is capable of exploiting its positive charge and guanidium groups to carry a fused cargo into the cytosol. However, the precise mechanism by which this occurs remains ambiguous. In the present study, we established a new method of quantitatively assessing cell penetration. The method involves inducing cell death by using a polyarginine (R8) to deliver a peptide-ie, mitochondrial targeting domain (MTD)-to the cytosol. We found that 4,4'-diisothiocyanatostilbene-2,2'-di-sulfonate (DIDS)-an anion channel blocker-inhibited the ability of octa-arginine (R8)-fused MTD to penetrate cells. Other anion channel blockers did not inhibit the penetration of peptides fused with R8. Comparison of DIDS with other structurally similar chemicals revealed that the isothiocyanate group of DIDS may be primarily responsible for the inhibitory effect than its stilbene di-sulfonate backbone. These results imply that the inhibitory effect of DIDS may not be derived from the interaction between stilbene di-sulfonate and the anion channels, but from the interaction between the isothiocyanate groups and the cell membrane. Our new MTD method enables the quantitative assessment of cell penetration. Moreover, further studies on the inhibition of CPPs by DIDS may help clarify the mechanism by which penetration occurs and facilitate the design of new penetrative biomolecules.
Collapse
Affiliation(s)
- Junghee Park
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, South Korea
| | - Ji-Hye Han
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, South Korea
| | - Seung-Hyun Myung
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, South Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, South Korea
| |
Collapse
|
10
|
Koma H, Yamamoto Y, Kumagai H, Yagami T. 4,4-Diisothiocyanatostilbene Disulfonic Acid Enhanced 15-Deoxy-Δ 12,14-prostaglandin J 2-Induced Neuronal Apoptosis. Biol Pharm Bull 2019; 42:1913-1920. [PMID: 31685774 DOI: 10.1248/bpb.b19-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
4,4-Diisothiocyanatostilbene disulfonic acid (DIDS), an antagonist of anion channel including voltage-dependent anion channel (VDAC), acts as both neurotoxicant and neuroprotectant, resulting in the controversy. VDAC contributes to neuronal apoptosis and is a candidate target protein of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). Caspase-3 is activated during neuronal apoptosis caused by 15d-PGJ2. In the present study, we ascertained whether DIDS was neuroprotective or neurotoxic in the primary culture of rat cortical neurons. Neuronal cell viabilities were primarily evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) reduction assay. Plasma membrane integrity and apoptosis were detected by the staining of propidium iodide (PI) and Hoechst33342, respectively. Alternatively, apoptosis was also measured by caspase-3 assay kit. DIDS did not prevent neurons from undergoing the 15d-PGJ2-induced apoptosis. In contrast, DIDS caused neuronal cell death in a concentration-dependent manner by itself, confirming its neurotoxicity. The sublethal application of DIDS did not decrease MTT-reducing activity, increase caspase-3 activity, condense chromatin, allow PI to enter neuron and degenerate neuronal morphology significantly. Interestingly, DIDS enhanced the 15d-PGJ2-induced neuronal apoptosis markedly under the sublethal condition. To our knowledge, this is the first report of synergistic effects of DIDS on the neurotoxicity of 15d-PGJ2.
Collapse
Affiliation(s)
- Hiromi Koma
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University (HDU)
| | - Yasuhiro Yamamoto
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University (HDU)
| | - Hiroaki Kumagai
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University (HDU)
| | - Tatsurou Yagami
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University (HDU)
| |
Collapse
|
11
|
Paschon V, Morena BC, Correia FF, Beltrame GR, Dos Santos GB, Cristante AF, Kihara AH. VDAC1 is essential for neurite maintenance and the inhibition of its oligomerization protects spinal cord from demyelination and facilitates locomotor function recovery after spinal cord injury. Sci Rep 2019; 9:14063. [PMID: 31575916 PMCID: PMC6773716 DOI: 10.1038/s41598-019-50506-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023] Open
Abstract
During the progression of the neurodegenerative process, mitochondria participates in several intercellular signaling pathways. Voltage-dependent anion-selective channel 1 (VDAC1) is a mitochondrial porin involved in the cellular metabolism and apoptosis intrinsic pathway in many neuropathological processes. In spinal cord injury (SCI), after the primary cell death, a secondary response that comprises the release of pro-inflammatory molecules triggers apoptosis, inflammation, and demyelination, often leading to the loss of motor functions. Here, we investigated the functional role of VDAC1 in the neurodegeneration triggered by SCI. We first determined that in vitro targeted ablation of VDAC1 by specific morpholino antisense nucleotides (MOs) clearly promotes neurite retraction, whereas a pharmacological blocker of VDAC1 oligomerization (4, 4′-diisothiocyanatostilbene-2, 2′-disulfonic acid, DIDS), does not cause this effect. We next determined that, after SCI, VDAC1 undergoes conformational changes, including oligomerization and N-terminal exposition, which are important steps in the triggering of apoptotic signaling. Considering this, we investigated the effects of DIDS in vivo application after SCI. Interestingly, blockade of VDAC1 oligomerization decreases the number of apoptotic cells without interfering in the neuroinflammatory response. DIDS attenuates the massive oligodendrocyte cell death, subserving undisputable motor function recovery. Taken together, our results suggest that the prevention of VDAC1 oligomerization might be beneficial for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Vera Paschon
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| | - Beatriz Cintra Morena
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Felipe Fernandes Correia
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Giovanna Rossi Beltrame
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Gustavo Bispo Dos Santos
- Instituto de Ortopedia e Traumatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Fogaça Cristante
- Instituto de Ortopedia e Traumatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Hiroaki Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
12
|
Park J, Han JH, Myung SH, Kang H, Cho JY, Kim TH. A peptide containing Noxa mitochondrial-targeting domain induces cell death via mitochondrial and endoplasmic reticulum disruption. Biochem Biophys Res Commun 2019; 518:80-86. [PMID: 31421829 DOI: 10.1016/j.bbrc.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023]
Abstract
Noxa is a weak apoptosis activator consisting of a BH3 domain and a mitochondrial-targeting domain (MTD). BH3 binds Mcl-1 and Bcl2A1 and inactivates their anti-apoptotic activities, while MTD delivers BH3 to mitochondria. Previously we revealed that MTD may also function as an inducer of necrosis via conjugation with octa-arginine, which induces cytosolic Ca2+ influx from mitochondria. However, the mechanism(s) underlying this process has not been elucidated yet. Here, we show that calcium influx induced by an MTD peptide fused with octa-arginine residue (R8:MTD) originates not only from mitochondria but also from the extracellular space. However, calcium spikes were not sufficient for necrosis. R8:MTD induced mitochondrial permeability transition pore opening, fragmentation, and swelling. These mitochondrial events induced by MTD appeared to be necessary for necrosis induction, since DIDS, a VDAC inhibitor, inhibited the mitochondrial swelling and cell death induced by MTD. We show that R8:MTD disrupted endoplasmic reticulum (ER) structures but not peroxisomes or Golgi, indicating that R8:MTD causes necrosis by inducing ER events as well.
Collapse
Affiliation(s)
- Junghee Park
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Ji-Hye Han
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Seung-Hyun Myung
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
| | - Hyuno Kang
- Gwangju Center, Korea Basic Science Institute, 77 Yongbong-ro, Buk-gu, Gwangju, 61168, Republic of Korea
| | - Ju-Yeon Cho
- Department of Medicine, Chosun University Hospital, 365 Pilmoon-Daero, Dong-Gu, Gwangju, 61453, Republic of Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, 309 Pilmoon-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
13
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
14
|
Model MA, Mudrak NJ, Rana PS, Clements RJ. Staurosporine-induced apoptotic water loss is cell- and attachment-specific. Apoptosis 2018; 23:449-455. [PMID: 29978434 DOI: 10.1007/s10495-018-1471-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Apoptotic volume decrease (AVD) is a characteristic cell shrinkage observed during apoptosis. There are at least two known processes that may result in the AVD: exit of intracellular water and splitting of cells into smaller fragments. Although AVD has traditionally been attributed to water loss, direct evidence for that is often lacking. In this study, we quantified intracellular water in staurosporine-treated cells using a previously described optical microscopic technique that combines volume measurements with quantitative phase analysis. Water loss was observed in detached HeLa and in adherent MDCK but not in adherent HeLa cells. At the same time, adherent HeLa and adherent MDCK cells exhibited visually similar apoptotic morphology, including fragmentation and activation of caspase-3. Morphological changes and caspase activation were prevented by chloride channel blockers DIDS and NPPB in both adherent and suspended HeLa cells, while potassium channel blocker TEA was ineffective. We conclude that staurosporine-induced dehydration is not a universal cell response but depends on the cell type and substrate attachment and can only be judged by direct water measurements. The effects of potassium or chloride channel blockers do not always correlate with the AVD.
Collapse
Affiliation(s)
- Michael A Model
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| | - Nathan J Mudrak
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Priyanka S Rana
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Robert J Clements
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
15
|
Magrì A, Reina S, De Pinto V. VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Front Chem 2018; 6:108. [PMID: 29682501 PMCID: PMC5897536 DOI: 10.3389/fchem.2018.00108] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides, and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.
Collapse
Affiliation(s)
- Andrea Magrì
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| |
Collapse
|
16
|
Lee W, Lee DG. Potential role of potassium and chloride channels in regulation of silymarin-induced apoptosis in Candida albicans. IUBMB Life 2018; 70:197-206. [PMID: 29356280 DOI: 10.1002/iub.1716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
Silymarin, which is derived from the seeds of Silybum marianum, has been widely used to prevent and treat liver diseases. In our previous study, we reported that at concentrations above the minimal inhibitory concentration (MIC), silymarin exhibited antifungal activity against Candida albicans by targeting its plasma membrane. However, the antifungal mechanism at concentration below the MIC remains unknown. Therefore, we aimed to determine the underlying mechanism of antifungal effects of silymarin at concentration below the MIC. To evaluate the inhibitory effects on the ion channels, C. albicans cells were separately pretreated with potassium and chloride channel blockers. The antifungal activity of silymarin at sub-MIC was affected by the ion channel blockers. Potassium channel blockade inhibited the antifungal effects, whereas chloride channel blockade slightly enhanced these effects. Subsequently, we found that silymarin induced disturbances in calcium homeostasis via the cytosolic and mitochondrial accumulation of calcium. Furthermore, apoptotic responses, such as phosphatidylserine exposure, loss of mitochondrial membrane potential (MMP), DNA damage, and caspase activation were induced in response to silymarin treatment. The increases in intracellular calcium level and pro-apoptotic changes were prevented when potassium ion channels were blocked. In contrast, these changes were enhanced upon chloride channels blockade; however, this did not affect the intracellular calcium levels and MMP loss. Thus, we showed that silymarin treatment at concentration below the MIC induced apoptosis in C. albicans; additionally, ion channels contributed these effects. © 2018 IUBMB Life, 70(3):197-206, 2018.
Collapse
Affiliation(s)
- Wonjong Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, Republic of Korea
| |
Collapse
|
17
|
Profiling molecular factors associated with pyknosis and developmental arrest induced by an opioid receptor antagonist and dihydroartemisinin in Plasmodium falciparum. PLoS One 2017; 12:e0184874. [PMID: 28934264 PMCID: PMC5608265 DOI: 10.1371/journal.pone.0184874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/03/2017] [Indexed: 12/26/2022] Open
Abstract
Malaria continues to be a devastating disease, largely caused by Plasmodium falciparum infection. We investigated the effects of opioid and cannabinoid receptor antagonists on the growth of intraerythrocytic P. falciparum. The delta opioid receptor antagonist 7-benzylidenenaltrexone (BNTX) and the cannabinoid receptor antagonists rimonaband and SR144528 caused growth arrest of the parasite. Notably BNTX and the established antimalarial drug dihydroartemisinin induced prominent pyknosis in parasite cells after a short period of incubation. We compared genome-wide transcriptome profiles in P. falciparum with different degrees of pyknosis in response to drug treatment, and identified 11 transcripts potentially associated with the evoking of pyknosis, of which three, including glutathione reductase (PfGR), triose phosphate transporter (PfoTPT), and a conserved Plasmodium membrane protein, showed markedly different gene expression levels in accordance with the degree of pyknosis. Furthermore, the use of specific inhibitors confirmed PfGR but not PfoTPT as a possible factor contributing to the development of pyknosis. A reduction in total glutathione levels was also detected in association with increased pyknosis. These results further our understanding of the mechanisms responsible for P. falciparum development and the antimalarial activity of dihydroartemisinin, and provide useful information for the development of novel antimalarial agents.
Collapse
|
18
|
MacVicar BA, Choi HB. Astrocytes Provide Metabolic Support for Neuronal Synaptic Function in Response to Extracellular K . Neurochem Res 2017; 42:2588-2594. [PMID: 28664400 DOI: 10.1007/s11064-017-2315-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/07/2023]
Abstract
It is an honour to have this opportunity write an article in recognition of the immense contributions of Bruce Ransom to the field of glial research. For me (BAM) personally there are many highlights both as a colleague and a friend that come to mind when I reflect on the many years that I have known Bruce. My own entry into the glial field was inspired by the early work by Ransom and his lab showing the sensitivity of astrocytes to neuronal activity. During my PhD and postdoctoral research I read these early papers and was inspired to ask the question when I first set up my independent lab in 1983: what if astrocytes also express some of the multitude of ion channels or transmitter receptors that were beginning to be described in neurons? Could they modify neuronal excitability during seizures or behaviour? As it turned out this was not only true but glial-neuronal interactions continues to be a growing and exciting field that I am still working in. I first met Bruce at the 1984 Society for Neuroscience meeting in Anaheim at my poster describing voltage gated calcium channels in astrocytes in cell culture. That was the start of a great friendship and years of discussions and collaborations. This review describes recent work from my lab led by Hyun Beom Choi that followed and was inspired by the groundbreaking studies by Bruce on electrophysiological and pH recordings from astrocytes and on glycogen mobilization in astrocytes to protect white matter axons.
Collapse
Affiliation(s)
- Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| | - Hyun Beom Choi
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|