1
|
Woo K, Kim DH, Park HS, Oh MH, Lee JC, Choi CH. Acinetobacter baumannii OmpA hinders host autophagy via the CaMKK2-reliant AMPK-pathway. mBio 2025; 16:e0336924. [PMID: 39998213 PMCID: PMC11980379 DOI: 10.1128/mbio.03369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Outer membrane protein A (OmpA) plays a vital role in the interactions between Acinetobacter baumannii and host cells. Autophagy is a defense mechanism that hinders the intracellular replication of bacteria, thereby safeguarding cells against microbial infections. While it has been observed that A. baumannii triggers cellular autophagy, the precise role of its virulence protein OmpA in this process remains uncertain. In this study, we investigated the effects of A. baumannii OmpA (AbOmpA) on autophagy and explored the underlying molecular mechanisms. We found that AbOmpA exerted its autophagy-suppressive effect through inhibition of CaMKK2 phosphorylation. Compared to the wild-type strain, the ompA-deletion mutant strain displayed considerably enhanced autophagy induction, via the AMPK-ULK1 pathway. AbOmpA hindered starvation-induced autophagy, while A. baumannii-Omp33 (AbOmp33) and Escherichia coli-OmpA (EcOmpA) did not. Importantly, we confirmed that exogenous AbOmpA suppressed autophagy through the CaMKK2-AMPK-ULK1 pathway during A. baumannii infection. These findings reveal a novel mechanism for AbOmpA-mediated autophagy evasion, providing new insights into the pathogenesis of A. baumannii infection.IMPORTANCEAcinetobacter baumannii is a significant clinical pathogen notorious for causing infections in hospitals. Its outer membrane protein A acts as a virulence factor and helps the bacteria evade host defenses. Autophagy is a defense mechanism that hinders the intracellular replication of bacteria. While it has been observed that A. baumannii triggers cellular autophagy, the precise role of its AbOmpA in this process remains uncertain. Our studies demonstrate the AbOmpA of A. baumannii inhibits the cellular defense process, autophagy, through the CaMKK2-AMPK-ULK1 signaling cascade, thereby enhancing bacterial survival. This insight into how AbOmpA bypasses autophagy sheds light on A. baumannii infection's novel virulence strategy and suggests possible treatments.
Collapse
Affiliation(s)
- Kyungho Woo
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Dong Ho Kim
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Ho-Sung Park
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, South Korea
- System Network Inflammation Control Research Center, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Chul Hee Choi
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, South Korea
- Translational Immunology Institute, School of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, South Korea
- System Network Inflammation Control Research Center, School of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
2
|
Zhang JY, Li XY, Li DX, Zhang ZH, Hu LQ, Sun CX, Zhang XN, Wu M, Liu LT. Endoplasmic reticulum stress in intestinal microecology: A controller of antineoplastic drug-related cardiovascular toxicity. Biomed Pharmacother 2024; 181:117720. [PMID: 39631125 DOI: 10.1016/j.biopha.2024.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is extensively studied as a pivotal role in the pathological processes associated with intestinal microecology. In antineoplastic drug treatments, ER stress is implicated in altering the permeability of the mechanical barrier, depleting the chemical barrier, causing dysbiosis, exacerbating immune responses and inflammation in the immune barrier. Enteric dysbiosis and intestinal dysfunction significantly affect the circulatory system in various heart disorders. In antineoplastic drug-related cardiovascular (CV) toxicity, ER stress constitutes a web of relationships in the host-microbiome symbiotic regulatory loop. Therefore, understanding the holobiont perspective will help de-escalate spatial and temporal restrictions. This review investigates the role of ER stress-mediated gut microecological alterations in antineoplastic treatment-induced CV toxicity.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Ya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - De-Xiu Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Zi-Hao Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lan-Qing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chang-Xin Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Nan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Long-Tao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
3
|
Vieira MFM, Hernandez G, Zhong Q, Arbesú M, Veloso T, Gomes T, Martins ML, Monteiro H, Frazão C, Frankel G, Zanzoni A, Cordeiro TN. The pathogen-encoded signalling receptor Tir exploits host-like intrinsic disorder for infection. Commun Biol 2024; 7:179. [PMID: 38351154 PMCID: PMC10864410 DOI: 10.1038/s42003-024-05856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.
Collapse
Affiliation(s)
- Marta F M Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Qiyun Zhong
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Miguel Arbesú
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- InstaDeep Ltd, 5 Merchant Square, London, UK
| | - Tiago Veloso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Maria L Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.
| |
Collapse
|
4
|
Zhao Q, Xu Q, Serafino MA, Zhang Q, Wang C, Yu Y. Comprehensive analysis of circular RNAs in porcine small intestine epithelial cells associated with susceptibility to Escherichia coli F4ac diarrhea. BMC Genomics 2023; 24:211. [PMID: 37085748 PMCID: PMC10122348 DOI: 10.1186/s12864-022-08994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/06/2022] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Diarrhea is one of the most common diseases in pig industry, which seriously threatens the health of piglets and causes huge economic losses. Enterotoxigenic Escherichia coli (ETEC) F4 is regarded as the most important cause of diarrhea in piglets. Some pigs are naturally resistant to those diarrheas caused by ETEC-F4, because they have no F4 receptors (F4R) on their small intestine epithelial cells that allow F4 fimbriae adhesion. Circular RNA (circRNA) has been shown to play an important regulatory role in the pathogenesis of disease. We hypothesized that circRNAs may also regulate the adhesion of piglet small intestinal epithelial cells to ETEC F4 fimbriae. However, the circRNA expression profiles of piglets with different Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotypes are still unclear, and the intermediate regulatory mechanisms need to be explored. Hence, the present study assessed the circRNA expression profiling in small intestine epithelial cells of eight male piglets with different ETEC-F4 adhesion phenotypes and ITGB5 genotypes to unravel their regulatory function in susceptibility to ETEC-F4ac diarrhea. Piglets were divided into two groups: non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS The RNA-seq data analysis identified 13,199 circRNAs from eight samples, most of which were exon-derived. In the small intestine epithelial cells, 305 were differentially expressed (DE) circRNAs between the adhesive and non-adhesive groups; of which 46 circRNAs were upregulated, and 259 were downregulated. Gene ontology and KEGG enrichment analysis revealed that most significantly enriched DE circRNAs' host genes were linked to cytoskeletal components, protein phosphorylation, cell adhesion, ion transport and pathways (such as adherens junction, gap junction) associated with ETEC diarrhea. The circRNA-miRNA-mRNA interaction network was also constructed to elucidate their underlying regulatory relationships. Our results identified several candidate circRNAs that affects susceptibility to ETEC diarrhea. Among them, circ-SORBS1 can adsorb ssc-miR-345-3p to regulate the expression of its host gene SORBS1, thus improving cell adhesion. CONCLUSION Our results provided insights into the regulation function of circRNAs in susceptibility to ETEC diarrhea of piglets, and enhanced our understanding of the role of circRNAs in regulating ETEC diarrhea, and reveal the great potential of circRNA as a diagnostic marker for susceptibility of ETEC diarrhea in piglets.
Collapse
Affiliation(s)
- Qingyao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qinglei Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - M A Serafino
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- School of Natural Resources and Environmental Studies, University of Juba, B. O. Pox 82, Juba, South Sudan
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong, 271018, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Tao L, Liu K, Li J, Zhang Y, Cui L, Dong J, Meng X, Zhu G, Wang H. Selenomethionine alleviates NF-κB-mediated inflammation in bovine mammary epithelial cells induced by Escherichia coli by enhancing autophagy. Int Immunopharmacol 2022; 110:108989. [PMID: 35785729 DOI: 10.1016/j.intimp.2022.108989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
Autophagy is crucial for the maintenance of homeostasis under stimuli related to infection. Selenium (Se) plays variable roles in defence against infection and Selenomethionine (Se-Met) is a common Se supplementation. This study aimed to understand whether Se-Met could regulate the nuclear factor-kappa B (NF-κB) signaling pathway through autophagy. Mammary alveolar cell-T (MAC-T) was challenged with Escherichia coli (E. coli). Western blotting and real-time quantitative PCR (RT-qPCR) were used to detect the protein expression and mRNA expression of cytokines. Immunofluorescence assays were performed to observe the expression of intracellular LC3. The results showed that E. coli inhibited autophagy by decreasing the LC3-Ⅱ protein levels, and the Atg5 and Beclin1 protein levels were increased after 4 h. Infection also decreased the number of LC3 puncta. E. coli increased the phosphorylation of p65 and IκBα protein. Concomitantly, the levels of interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor (TNF)-α mRNA increased at 3 and 4 h post-infection. We further explored the regulatory role of autophagy on NF-κB-mediated inflammation with autophagy modulators and shAtg5. The results indicated that the autophagy activator reduced the phosphorylation of p65 and IκBα and the mRNA expression of IL-1β, IL-6, IL-8 and TNF-α. Additionally, activating autophagy weakened the adhesion to MAC-T of E. coli. Autophagy inhibitors exacerbated NF-κB-mediated inflammation and strengthened the adhesion of E. coli to cells. We then examined the effects of Se-Met on NF-κB-mediated inflammation through autophagy. The data suggested that Se-Met enhanced LC3-II expression, inhibited the E. coli-induced phosphorylation of p65 and IκBα, and suppressed the adhesion ability of E. coli to MAC-T and that the effects of Se-Met in attenuating NF-κB-mediated inflammation were partially blocked by an autophagy inhibitor. In summary, Se-Met alleviated NF-κB-mediated inflammation induced by E. coli by enhancing autophagy in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Luyao Tao
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Yihui Zhang
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Experimental Farm of Yangzhou University, Yangzhou, 225009 Jiangsu, China.
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| |
Collapse
|
6
|
Streptococcus pneumoniae exerts oxidative stress, subverts antioxidant signaling and autophagy in human corneal epithelial cells that is alleviated by tert-Butylhydroquinone. Med Microbiol Immunol 2022; 211:119-132. [PMID: 35325292 DOI: 10.1007/s00430-022-00731-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Streptococcus pneumoniae is one of the leading causes of bacterial keratitis in the developing world and globally. In the current study, we have determined oxidative stress as pathogenesis of S. pneumoniae infection in corneal tissues and human corneal epithelial cells (HCEC) and explored host immune response of HCEC towards S. pneumoniae. We also determined whether treatment with tert-Butylhydroquinone (tBHQ), a Nrf2 inducer, could alleviate oxidative stress and reduce bacterial cytotoxicity in these cells. Oxidative stress was determined in corneal tissues of patients and HCEC by immunohistochemistry and immunofluorescence analysis, respectively. The expression of antioxidant genes, cytokines and antimicrobial peptides was determined by quantitative PCR. Infection of HCEC by S. pneumoniae was determined by colony-forming units. The autophagy and cell death were determined by fluorescence microscopy. The phosphorylation of signaling proteins was evaluated by immunoblot analysis. S. pneumoniae induced oxidative stress during corneal infections and inhibited antioxidant signaling pathways and immune responses like autophagy. tBHQ aided in restoring Nrf2 activation, reduced reactive oxygen species generation and prevented cytotoxicity and cell death in S. pneumoniae-infected HCEC. tBHQ also induced autophagy in a Nrf2-dependent manner and reduced bacterial survival in HCEC. Increased expression of antimicrobial peptides by tBHQ might have contributed to a reduction of bacterial load and cytotoxicity, as exemplified in LL-37 depleted corneal epithelial cells exposed to S. pneumoniae compared to control siRNA-transfected cells. tBHQ mediates alleviation of oxidative stress induced by S. pneumoniae by activating Nrf2-mediated antioxidant signaling in corneal epithelial cells. tBHQ also enhances expression of antimicrobial peptides in corneal cells and aids in inhibition of bacterial survival and cytotoxicity of HCEC.
Collapse
|
7
|
Exopolysaccharides from Bifidobacterium animalis Ameliorate Escherichia coli-Induced IPEC-J2 Cell Damage via Inhibiting Apoptosis and Restoring Autophagy. Microorganisms 2021; 9:microorganisms9112363. [PMID: 34835488 PMCID: PMC8625581 DOI: 10.3390/microorganisms9112363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/26/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a common zoonotic pathogen that causes acute infectious diarrhea. Probiotics like Bifidobacterium are known to help prevent pathogen infections. The protective effects of Bifidobacterium are closely associated with its secretory products exopolysaccharides (EPS). We explored the effects of the EPS from Bifidobacterium animalis subsp. lactis (B. lactis) on ameliorating the damage of an intestinal porcine epithelial cell line (IPEC-J2) during EPEC infection. Pretreatment with EPS alleviated EPEC-induced apoptosis through the restoration of cell morphology and the downregulation of protein expressions of cleaved-caspase 8, cleaved-caspase 3, and cleaved-PARP. EPS-mediated remission of apoptosis significantly improved cell viability during EPEC infection. EPEC infection also resulted in impaired autophagy, as demonstrated by decreased expressions of autophagy-related proteins Beclin 1, ATG5, and microtubule-binding protein light chain-3B (LC3B) and the increased expression of p62 through western blot analysis. However, EPS reversed these effects which indicated that EPS promoted autophagosome formation. Furthermore, EPS prevented the lysosome damage induced by EPEC as it enhanced lysosomal acidification and raised lysosome-associated protein levels, thus promoted autophagosome degradation. Our findings suggest that the amelioration of EPEC-induced cell damages by EPS is associated with the limitation of detrimental apoptosis and the promotion of autophagy flux.
Collapse
|
8
|
Xue Y, Zhu MJ. Unraveling enterohemorrhagic Escherichia coli infection: the promising role of dietary compounds and probiotics in bacterial elimination and host innate immunity boosting. Crit Rev Food Sci Nutr 2021; 63:1551-1563. [PMID: 34404306 DOI: 10.1080/10408398.2021.1965538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The innate immune system has developed sophisticated strategies to defense against infections. Host cells utilize the recognition machineries such as toll-like receptors and nucleotide binding and oligomerization domain-like receptors to identify the pathogens and alert immune system. However, some pathogens have developed tactics to evade host defenses, including manipulation of host inflammatory response, interference with cell death pathway, and highjack of phagocytosis signaling for a better survival and colonization in host. Enterohemorrhagic Escherichia coli (EHEC) is a notorious foodborne pathogen that causes severe tissue damages and gastrointestinal diseases, which has been reported to disturb host immune responses. Diverse bioactive compounds such as flavonoids, phenolic acids, alkaloids, saccharides, and terpenoids derived from food varieties and probiotics have been discovered and investigated for their capability of combating bacterial infections. Some of them serve as novel antimicrobial agents and act as immune boosters that harness host immune system. In this review, we will discuss how EHEC, specifically E. coli O157:H7, hijacks the host immune system and interferes with host signaling pathway; and highlight the promising role of food-derived bioactive compounds and probiotics in harnessing host innate immunity and eliminating E. coli O157:H7 infection with multiple strategies.
Collapse
Affiliation(s)
- Yansong Xue
- Key Laboratory of Functional Dairy, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
9
|
Di YQ, Han XL, Kang XL, Wang D, Chen CH, Wang JX, Zhao XF. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy 2021; 17:1170-1192. [PMID: 32324083 PMCID: PMC8143247 DOI: 10.1080/15548627.2020.1752497] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
CTSD/CathD/CATD (cathepsin D) is a lysosomal aspartic protease. A distinguishing characteristic of CTSD is its dual functions of promoting cell proliferation via secreting a pro-enzyme outside the cells as a ligand, and promoting apoptosis via the mature form of this enzyme inside cells; however, the regulation of its secretion, expression, and maturation is undetermined. Using the lepidopteran insect Helicoverpa armigera, a serious agricultural pest, as a model, we revealed the dual functions and regulatory mechanisms of CTSD secretion, expression, and maturation. Glycosylation of asparagine 233 (N233) determined pro-CTSD secretion. The steroid hormone 20-hydroxyecdysone (20E) promoted CTSD expression. Macroautophagy/autophagy triggered CTSD maturation and localization inside midgut cells to activate CASP3 (caspase 3) and promote apoptosis. Pro-CTSD was expressed in the pupal epidermis and was secreted into the hemolymph to promote adult fat body endoreplication/endoreduplication, cell proliferation, and association. Our study revealed that the differential expression and autophagy-mediated maturation of CTSD in tissues determine its roles in apoptosis and cell proliferation, thereby determining the cell fates of tissues during lepidopteran metamorphosis.Abbreviations: 20E: 20-hydroxyecdysone; 3-MA: 3-methyladenine; ACTB/β-actin: actin beta; AKT: protein kinase B; ATG1: autophagy-related 1; ATG4: autophagy-related 4; ATG5: autophagy-related 5; ATG7: autophagy-related 7; ATG14: autophagy-related 14; BSA: bovine serum albumin; CASP3: caspase 3; CQ: choroquine; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; DMSO: dimethyl sulfoxide; DPBS: dulbecco's phosphate-buffered saline; DsRNA: double-stranded RNA; EcR: ecdysone receptor; EcRE: ecdysone response element; EdU: 5-ethynyl-2´-deoxyuridine; G-m-CTSD: glycosylated-mautre-CTSD; G-pro-CTSD: glycosylated-pro-CTSD; HaEpi: Helicoverpa armigera epidermal cell line; HE staining: hematoxylin and eosin staining; IgG: immunoglobin G; IM: imaginal midgut; JH: juvenile hormone; Kr-h1: krueppel homologous protein 1; LM: larval midgut; M6P: mannose-6-phosphate; PBS: phosphate-buffered saline; PCD: programmed cell death; PNGase: peptide-N-glycosidase F; RFP: red fluorescent protein; RNAi: RNA interference; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SYX17: syntaxin 17; USP1: ultraspiracle isoform 1.
Collapse
Affiliation(s)
- Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Lin Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Di Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Cai-Hua Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Zhou P, Hao X, Liu Y, Yang Z, Xu M, Liu S, Zhang S, Yang T, Wang X, Wang Y. Determination of the protective effects of Hua-Zhuo-Jie-Du in chronic atrophic gastritis by regulating intestinal microbiota and metabolites: combination of liquid chromatograph mass spectrometer metabolic profiling and 16S rRNA gene sequencing. Chin Med 2021; 16:37. [PMID: 33933119 PMCID: PMC8088729 DOI: 10.1186/s13020-021-00445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background
Hua-Zhuo-Jie-Du (HZJD), a Chinese herbal prescription consisting of 11 herbs, is commonly used in China to treat chronic atrophic gastritis (CAG). We aimed to determine the effect of HZJD on the microbiome-associated metabolic changes in CAG rats. Methods
The CAG rat models were induced by 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with irregular fasting and 2% sodium salicylate, which was intragastrically administrated in fasted animals for 24 weeks. The CAG rats in the Chinese medicine (CM) group were administered a daily dose of 14.81 g/kg/day HZJD, and the vitacoenzyme (V) group were administered a daily dose of 0.08 g/kg/day vitacoenzyme. All animals were treated for 10 consecutive weeks, consecutively. Hematoxylin and eosin (H&E) staining was used to assess the histopathological changes in the gastric tissues. An integrated approach based on liquid chromatograph mass spectrometer (LC-MS) metabolic profiling combined with 16S rRNA gene sequencing was carried out to assess the effects of HZJD on CAG rats. Spearman analysis was used to calculate the correlation coefficient between the different intestinal microbiota and the metabolites. Results The H&E results indicated that HZJD could improve the pathological condition of CAG rats. The LC–MS results indicated that HZJD could significantly improve 21 gastric mucosal tissue perturbed metabolites in CAG rats; the affected metabolites were found to be involved in multiple metabolic pathways, such as the central carbon metabolism in cancer. The results of 16S rRNA gene sequencing indicated that HZJD could regulate the diversity, microbial composition, and abundance of the intestinal microbiota of CAG rats. Following HZJD treatment, the relative abundance of Turicibacter was increased, and the relative abundance of Desulfococcus and Escherichia were decreased in the CM group when compared with the M group. Spearman analysis revealed that perturbed intestinal microbes had a strong correlation with differential metabolites, Escherichia exhibited a negative correlation with l-Leucine, Turicibacter was negatively correlated with urea, and Desulfococcus exhibited a positive correlation with trimethylamine, and a negative correlation with choline. Conclusions HZJD could protect CAG by regulating intestinal microbiota and its metabolites.
Collapse
Affiliation(s)
- Pingping Zhou
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Xinyu Hao
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Yu Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Zeqi Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Miaochan Xu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Shaowei Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Shixiong Zhang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Xiaomei Wang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Yangang Wang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China. .,Beijing University of Chinese Medicine Third Affiliated Hospital, Anwai Xiaoguan Street No. 51, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|
11
|
Autophagy-A Story of Bacteria Interfering with the Host Cell Degradation Machinery. Pathogens 2021; 10:pathogens10020110. [PMID: 33499114 PMCID: PMC7911818 DOI: 10.3390/pathogens10020110] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.
Collapse
|
12
|
Lactobacillus johnsonii L531 Ameliorates Escherichia coli-Induced Cell Damage via Inhibiting NLRP3 Inflammasome Activity and Promoting ATG5/ATG16L1-Mediated Autophagy in Porcine Mammary Epithelial Cells. Vet Sci 2020; 7:vetsci7030112. [PMID: 32823867 PMCID: PMC7558184 DOI: 10.3390/vetsci7030112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli (E. coli), a main mastitis-causing pathogen in sows, leads to mammary tissue damage. Here, we explored the effects of Lactobacillus johnsonii L531 on attenuating E. coli-induced inflammatory damage in porcine mammary epithelial cells (PMECs). L. johnsonii L531 pretreatment reduced E. coli adhesion to PMECs by competitive exclusion and the production of inhibitory factors and decreased E. coli-induced destruction of cellular morphology and ultrastructure. E. coli induced activation of NLRP3 inflammasome associated with increased expression of NLRP3, ASC, and cleaved caspase-1, however, L. johnsonii L531 inhibited E. coli-induced activation of NLRP3 inflammasome. Up-regulation of interleukin (Il)-1β, Il-6, Il-8, Il-18, tumor necrosis factor alpha, and chemokine Cxcl2 expression after E. coli infection was attenuated by L. johnsonii L531. E. coli infection inhibited autophagy, whereas L. johnsonii L531 reversed the inhibitory effect of E. coli on autophagy by decreasing the expression of autophagic receptor SQSTM1/p62 and increasing the expression of autophagy-related proteins ATG5, ATG16L1, and light chain 3 protein by Western blotting analysis. Our findings suggest that L. johnsonii L531 pretreatment restricts NLRP3 inflammasome activity and induces autophagy through promoting ATG5/ATG16L1-mediated autophagy, thereby protecting against E. coli-induced inflammation and cell damage in PMECs.
Collapse
|
13
|
Abstract
Autophagy is a conserved and fundamental cellular process mainly to recycle or eliminate dysfunctional cellular organelles or proteins. As a response to cellular stress, autophagy is used as a defense mechanism to combat the infection with pathogenic bacteria. However, many intracellular bacteria have developed diverse mechanisms to evade recognition, to manipulate the autophagic pathway, and to hijack the autophagosomal compartment for replication. In this review, we discuss recent understandings on how bacteria interact with host autophagy.
Collapse
Affiliation(s)
- Yao-Wen Wu
- a Department of Chemistry, Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden.,b Chemical Genomics Centre of the Max Planck Society , Dortmund , Germany.,c Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Fu Li
- a Department of Chemistry, Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden.,b Chemical Genomics Centre of the Max Planck Society , Dortmund , Germany.,c Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
14
|
Shekar A, Ramlal S, Jeyabalaji JK, Sripathy MH. Intranasal immunization of cocktail/fusion protein containing Tir along with ΔG active fragment of Zot as mucosal adjuvant confers enhanced immunogenicity and reduces E. coli O157:H7 shedding in mice. Int Immunopharmacol 2018; 63:211-219. [PMID: 30103196 DOI: 10.1016/j.intimp.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
Abstract
Ruminants are the major reservoirs of Escherichia coli O157:H7 and its fecal shedding mainly act as a source of entry of this pathogen into the human food chain. In humans, E. coli O157:H7 infection causes diarrhea, hemorrhagic colitis and hemolytic uremic syndrome. Intimate adherence of E. coli O157:H7 is mediated by Translocated intimin receptor (Tir) to which intimin binds in the host cell. Since E. coli O157:H7 colonizes intestinal epithelium, the mucosal vaccine has a potential to prevent its colonization. Zonula occludens toxin (Zot) of Vibrio cholerae transiently, reversibly alters epithelial tight junction structure to increase mucosal permeability of macromolecules via paracellular route. The C-terminal region of Zot (ΔG) responsible for this function could be used for mucosal antigen delivery. Therefore, we employed individual (Tir), cocktail (ΔG + Tir), fusion protein (ΔG-Tir) and assessed the efficacy of its intranasal immunization on immunogenicity and fecal shedding of E. coli O157:H7 in streptomycin treated mouse model. Compared to control, ΔG + Tir, ΔG-Tir immunized mice elicited significant antigen specific antibody titers in serum (IgG, IgA) and feces (IgA), whereas Tir immunized mice induced only serum IgG titer. Cytokine analysis revealed mixed Th1/Th2 type immune response in case of ΔG + Tir, ΔG-Tir group while that of Tir group was solely Th2 type. Tir, ΔG + Tir and ΔG-Tir immunized mice showed reduction in shedding of E. coli O157:H7 compared to control group. However, ΔG-Tir immunized group performed better than ΔG + Tir, Tir group in reducing fecal shedding. Overall, our results demonstrate that intranasal immunization of ΔG-Tir induces effective systemic, mucosal, cellular immune responses and represents a promising mucosal subunit vaccine to prevent E. coli O157:H7 colonization.
Collapse
|
15
|
Suppressing autophagy: a strategy by Escherichia coli O157:H7 for its survival on host epithelial cells. Cell Death Dis 2018; 9:64. [PMID: 29352117 PMCID: PMC5833748 DOI: 10.1038/s41419-017-0095-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022]
|