1
|
Atsuta Y, Lee C, Rodrigues AR, Colle C, Tomizawa RR, Lujan EG, Tschopp P, Galan L, Zhu M, Gorham JM, Vannier JP, Seidman CE, Seidman JG, Ros MA, Pourquié O, Tabin CJ. Direct reprogramming of non-limb fibroblasts to cells with properties of limb progenitors. Dev Cell 2024; 59:415-430.e8. [PMID: 38320485 PMCID: PMC10932627 DOI: 10.1016/j.devcel.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/25/2022] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
The early limb bud consists of mesenchymal limb progenitors derived from the lateral plate mesoderm (LPM). The LPM also gives rise to the mesodermal components of the flank and neck. However, the cells at these other levels cannot produce the variety of cell types found in the limb. Taking advantage of a direct reprogramming approach, we find a set of factors (Prdm16, Zbtb16, and Lin28a) normally expressed in the early limb bud and capable of imparting limb progenitor-like properties to mouse non-limb fibroblasts. The reprogrammed cells show similar gene expression profiles and can differentiate into similar cell types as endogenous limb progenitors. The further addition of Lin41 potentiates the proliferation of the reprogrammed cells. These results suggest that these same four factors may play pivotal roles in the specification of endogenous limb progenitors.
Collapse
Affiliation(s)
- Yuji Atsuta
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Biology, Kyushu University, Fukuoka 819-0395, Japan
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Alan R Rodrigues
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Charlotte Colle
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Reiko R Tomizawa
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ernesto G Lujan
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Patrick Tschopp
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Laura Galan
- Instituto de Biomedicina y Biotecnologia de Cantabria, CSIC, SODERCAN- Universidad de Cantabria, 39011 Santander, Spain
| | - Meng Zhu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnologia de Cantabria, CSIC, SODERCAN- Universidad de Cantabria, 39011 Santander, Spain
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Hadzimustafic N, D’Elia A, Shamoun V, Haykal S. Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. Int J Mol Sci 2024; 25:1863. [PMID: 38339142 PMCID: PMC10855589 DOI: 10.3390/ijms25031863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A hallmark of plastic and reconstructive surgery is restoring form and function. Historically, tissue procured from healthy portions of a patient's body has been used to fill defects, but this is limited by tissue availability. Human-induced pluripotent stem cells (hiPSCs) are stem cells derived from the de-differentiation of mature somatic cells. hiPSCs are of particular interest in plastic surgery as they have the capacity to be re-differentiated into more mature cells, and cultured to grow tissues. This review aims to evaluate the applications of hiPSCs in the plastic surgery context, with a focus on recent advances and limitations. The use of hiPSCs and non-human iPSCs has been researched in the context of skin, nerve, vasculature, skeletal muscle, cartilage, and bone regeneration. hiPSCs offer a future for regenerated autologous skin grafts, flaps comprised of various tissue types, and whole functional units such as the face and limbs. Also, they can be used to model diseases affecting tissues of interest in plastic surgery, such as skin cancers, epidermolysis bullosa, and scleroderma. Tumorigenicity, immunogenicity and pragmatism still pose significant limitations. Further research is required to identify appropriate somatic origin and induction techniques to harness the epigenetic memory of hiPSCs or identify methods to manipulate epigenetic memory.
Collapse
Affiliation(s)
- Nina Hadzimustafic
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Andrew D’Elia
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Valentina Shamoun
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Siba Haykal
- Department of Plastic and Reconstructive Surgery, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
3
|
Jou V, Lehoczky JA. Toeing the line between regeneration and fibrosis. Front Cell Dev Biol 2023; 11:1217185. [PMID: 37325560 PMCID: PMC10267333 DOI: 10.3389/fcell.2023.1217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Understanding the remarkable capacity of vertebrates to naturally regenerate injured body parts has great importance for potential translation into human therapeutic applications. As compared to other vertebrates, mammals have low regenerative capacity for composite tissues like the limb. However, some primates and rodents can regenerate the distal tips of their digits following amputation, indicating that at least very distal mammalian limb tissues are competent for innate regeneration. It follows that successful digit tip regenerative outcome is highly dependent on the location of the amputation; those proximal to the position of the nail organ do not regenerate and result in fibrosis. This distal regeneration versus proximal fibrosis duality of the mouse digit tip serves as a powerful model to investigate the driving factors in determining each process. In this review, we present the current understanding of distal digit tip regeneration in the context of cellular heterogeneity and the potential for different cell types to function as progenitor cells, in pro-regenerative signaling, or in moderating fibrosis. We then go on to discuss these themes in the context of what is known about proximal digit fibrosis, towards generating hypotheses for these distinct healing processes in the distal and proximal mouse digit.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
4
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Min S, Whited JL. Limb blastema formation: How much do we know at a genetic and epigenetic level? J Biol Chem 2023; 299:102858. [PMID: 36596359 PMCID: PMC9898764 DOI: 10.1016/j.jbc.2022.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023] Open
Abstract
Regeneration of missing body parts is an incredible ability which is present in a wide number of species. However, this regenerative capability varies among different organisms. Urodeles (salamanders) are able to completely regenerate limbs after amputation through the essential process of blastema formation. The blastema is a collection of relatively undifferentiated progenitor cells that proliferate and repattern to form the internal tissues of a regenerated limb. Understanding blastema formation in salamanders may enable comparative studies with other animals, including mammals, with more limited regenerative abilities and may inspire future therapeutic approaches in humans. This review focuses on the current state of knowledge about how limb blastemas form in salamanders, highlighting both the possible roles of epigenetic controls in this process as well as limitations to scientific understanding that present opportunities for research.
Collapse
Affiliation(s)
- Sangwon Min
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
6
|
Aztekin C, Storer MA. To regenerate or not to regenerate: Vertebrate model organisms of regeneration-competency and -incompetency. Wound Repair Regen 2022; 30:623-635. [PMID: 35192230 PMCID: PMC7613846 DOI: 10.1111/wrr.13000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022]
Abstract
Why only certain species can regenerate their appendages (e.g. tails and limbs) remains one of the biggest mysteries of nature. Unlike anuran tadpoles and salamanders, humans and other mammals cannot regenerate their limbs, but can only regrow lost digit tips under specific circumstances. Numerous hypotheses have been postulated to explain regeneration-incompetency in mammals. By studying model organisms that show varying regenerative abilities, we now have more opportunities to uncover what contributes to regeneration-incompetency and functionally test which perturbations restore appendage regrowth. Particularly, Xenopus laevis tail and limb, and mouse digit tip model systems exhibit naturally occurring variations in regenerative capacities. Here, we discuss major hypotheses that are suggested to contribute to regeneration-incompetency, and how species with varying regenerative abilities reflect on these hypotheses.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)Lausanne
| | - Mekayla A. Storer
- Department of Physiology, Development and Neuroscience and Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridge
| |
Collapse
|
7
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
8
|
Davidian D, Levin M. Inducing Vertebrate Limb Regeneration: A Review of Past Advances and Future Outlook. Cold Spring Harb Perspect Biol 2022; 14:a040782. [PMID: 34400551 PMCID: PMC9121900 DOI: 10.1101/cshperspect.a040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Limb loss due to traumatic injury or amputation is a major biomedical burden. Many vertebrates exhibit the ability to form and pattern normal limbs during embryogenesis from amorphous clusters of precursor cells, hinting that this process could perhaps be activated later in life to rebuild missing or damaged limbs. Indeed, some animals, such as salamanders, are proficient regenerators of limbs throughout their life span. Thus, research over the last century has sought to stimulate regeneration in species that do not normally regenerate their appendages. Importantly, these efforts are not only a vital aspect of regenerative medicine, but also have fundamental implications for understanding evolution and the cellular control of growth and form throughout the body. Here we review major recent advances in augmenting limb regeneration, summarizing the degree of success that has been achieved to date in frog and mammalian models using genetic, biochemical, and bioelectrical interventions. While the degree of whole limb repair in rodent models has been modest to date, a number of new technologies and approaches comprise an exciting near-term road map for basic and clinical progress in regeneration.
Collapse
Affiliation(s)
- Devon Davidian
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Yamada D, Nakamura M, Takao T, Takihira S, Yoshida A, Kawai S, Miura A, Ming L, Yoshitomi H, Gozu M, Okamoto K, Hojo H, Kusaka N, Iwai R, Nakata E, Ozaki T, Toguchida J, Takarada T. Induction and expansion of human PRRX1 + limb-bud-like mesenchymal cells from pluripotent stem cells. Nat Biomed Eng 2021; 5:926-940. [PMID: 34373601 DOI: 10.1038/s41551-021-00778-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
Current protocols for the differentiation of human pluripotent stem cells (hPSCs) into chondrocytes do not allow for the expansion of intermediate progenitors so as to prospectively assess their chondrogenic potential. Here we report a protocol that leverages PRRX1-tdTomato reporter hPSCs for the selective induction of expandable and ontogenetically defined PRRX1+ limb-bud-like mesenchymal cells under defined xeno-free conditions, and the prospective assessment of the cells' chondrogenic potential via the cell-surface markers CD90, CD140B and CD82. The cells, which proliferated stably and exhibited the potential to undergo chondrogenic differentiation, formed hyaline cartilaginous-like tissue commensurate to their PRRX1-expression levels. Moreover, we show that limb-bud-like mesenchymal cells derived from patient-derived induced hPSCs can be used to identify therapeutic candidates for type II collagenopathy and we developed a method to generate uniformly sized hyaline cartilaginous-like particles by plating the cells on culture dishes coated with spots of a zwitterionic polymer. PRRX1+ limb-bud-like mesenchymal cells could facilitate the mass production of chondrocytes and cartilaginous tissues for applications in drug screening and tissue engineering.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kawai
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akihiro Miura
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Lu Ming
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Yoshitomi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mai Gozu
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kumi Okamoto
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Kusaka
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama, Japan
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama, Japan
| | - Eiji Nakata
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
10
|
Abstract
Species that can regrow their lost appendages have been studied with the ultimate aim of developing methods to enable human limb regeneration. These examinations highlight that appendage regeneration progresses through shared tissue stages and gene activities, leading to the assumption that appendage regeneration paradigms (e.g. tails and limbs) are the same or similar. However, recent research suggests these paradigms operate differently at the cellular level, despite sharing tissue descriptions and gene expressions. Here, collecting the findings from disparate studies, I argue appendage regeneration is context dependent at the cellular level; nonetheless, it requires (i) signalling centres, (ii) stem/progenitor cell types and (iii) a regeneration-permissive environment, and these three common cellular principles could be more suitable for cross-species/paradigm/age comparisons.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Xu H, Zhang H, Fang Y, Yang H, Chen Y, Zhang C, Lin G. Activation of the Melanocortin-4 receptor signaling by α-MSH stimulates nerve-dependent mouse digit regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:19. [PMID: 33937937 PMCID: PMC8089069 DOI: 10.1186/s13619-021-00081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Expression of Mc4r in peripheral organs indicates it has broader roles in organ homeostasis and regeneration. However, the expression and function of Mc4r in the mouse limb and digit has not been fully investigated. Our previous work showed that Mc4r-/- mice fail to regenerate the digit, but whether activation of MC4R signaling could rescue digit regeneration, or stimulate proximal digit regeneration is not clear. RESULTS We analyzed the expression dynamics of Mc4r in the embryonic and postnatal mouse limb and digit using the Mc4r-gfp mice. We found that Mc4r-GFP is mainly expressed in the limb nerves, and in the limb muscles that are undergoing secondary myogenesis. Expression of Mc4r-GFP in the adult mouse digit is restricted to the nail matrix. We also examined the effect of α-MSH on mouse digit regeneration. We found that administration of α-MSH in the Mc4r+/- mice rescue the delayed regeneration of distal digit tip. α-MSH could rescue distal digit regeneration in denervated hindlimbs. In addition, α-MSH could stimulate regeneration of the proximally amputated digit, which is non-regenerative. CONCLUSIONS Mc4r expression in the mouse limb and digit is closely related to nerve tissues, and α-MSH/MC4R signaling has a neurotrophic role in mouse digit tip regeneration.
Collapse
Affiliation(s)
- Hanqian Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hailin Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanqing Fang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huiran Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Li Y, Yang S, Qin L, Yang S. TAZ is required for chondrogenesis and skeletal development. Cell Discov 2021; 7:26. [PMID: 33879790 PMCID: PMC8058044 DOI: 10.1038/s41421-021-00254-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
Chondrogenesis is a major contributor to skeletal development and maintenance, as well as bone repair. Transcriptional coactivator with PDZ-binding motif (TAZ) is a key regulator of osteogenesis and adipogenesis, but how TAZ regulates chondrogenesis and skeletal development remains undefined. Here, we found that TAZ expression is gradually increased during chondrogenic differentiation. Deletion of TAZ in chondrocyte lineage impaired articular and growth plate, as well as the bone development in TAZ-deficient mice. Consistently, loss of TAZ impaired fracture healing. Mechanistically, we found that ectopic expression of TAZ markedly promoted chondroprogenitor proliferation, while deletion of TAZ impaired chondrocyte proliferation and differentiation. TAZ associated with Sox5 to regulate the expression and stability of Sox5 and downstream chondrocyte marker genes' expression. In addition, overexpression of TAZ enhanced Col10a1 expression and promoted chondrocyte maturation, which was blocked by deletion of TAZ. Overall, our findings demonstrated that TAZ is required for skeletal development and joint maintenance that provided new insights into therapeutic strategies for fracture healing, heterotopic ossification, osteoarthritis, and other bone diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Papantoniou I, Nilsson Hall G, Loverdou N, Lesage R, Herpelinck T, Mendes L, Geris L. Turning Nature's own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering. Adv Drug Deliv Rev 2021; 169:22-39. [PMID: 33290762 PMCID: PMC7839840 DOI: 10.1016/j.addr.2020.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
A decade after the term developmental engineering (DE) was coined to indicate the use of developmental processes as blueprints for the design and development of engineered living implants, a myriad of proof-of-concept studies demonstrate the potential of this approach in small animal models. This review provides an overview of DE work, focusing on applications in bone regeneration. Enabling technologies allow to quantify the distance between in vitro processes and their developmental counterpart, as well as to design strategies to reduce that distance. By embedding Nature's robust mechanisms of action in engineered constructs, predictive large animal data and subsequent positive clinical outcomes can be gradually achieved. To this end, the development of next generation biofabrication technologies should provide the necessary scale and precision for robust living bone implant biomanufacturing.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), Stadiou street, 26504 Patras, Greece; Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Gabriella Nilsson Hall
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Niki Loverdou
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Raphaelle Lesage
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Tim Herpelinck
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Luis Mendes
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| |
Collapse
|
14
|
Qu F, Palte IC, Gontarz PM, Zhang B, Guilak F. Transcriptomic analysis of bone and fibrous tissue morphogenesis during digit tip regeneration in the adult mouse. FASEB J 2020; 34:9740-9754. [PMID: 32506623 DOI: 10.1096/fj.202000330r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Humans have limited regenerative potential of musculoskeletal tissues following limb or digit loss. The murine digit has been used to study mammalian regeneration, where stem/progenitor cells (the "blastema") completely regenerate the digit tip after distal, but not proximal, amputation. However, the molecular mechanisms responsible for this response remain to be determined. Here, we evaluated the spatiotemporal formation of bone and fibrous tissues after level-dependent amputation of the murine terminal phalanx and quantified the transcriptome of the repair tissue. Distal (regenerative) and proximal (non-regenerative) amputations showed significant differences in temporal gene expression and tissue regrowth over time. Genes that direct skeletal system development and limb morphogenesis are transiently upregulated during blastema formation and differentiation, including distal Hox genes. Overall, our results suggest that digit tip regeneration is controlled by a gene regulatory network that recapitulates aspects of limb development, and that failure to activate this developmental program results in fibrotic wound healing.
Collapse
Affiliation(s)
- Feini Qu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Ilan C Palte
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Paul M Gontarz
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| |
Collapse
|