1
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
2
|
Oncolytic Adenovirus in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12113354. [PMID: 33202717 PMCID: PMC7697649 DOI: 10.3390/cancers12113354] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-selective replicating "oncolytic" viruses are novel and promising tools for immunotherapy of cancer. However, despite their first success in clinical trials, previous experience suggests that currently used oncolytic virus monotherapies will not be effective enough to achieve complete tumor responses and long-term cure in a broad spectrum of cancers. Nevertheless, there are reasonable arguments that suggest advanced oncolytic viruses will play an essential role as enablers of multi-stage immunotherapies including established systemic immunotherapies. Oncolytic adenoviruses (oAds) display several features to meet this therapeutic need. oAds potently lyse infected tumor cells and induce a strong immunogenic cell death associated with tumor inflammation and induction of antitumor immune responses. Furthermore, established and versatile platforms of oAds exist, which are well suited for the incorporation of heterologous genes to optimally exploit and amplify the immunostimulatory effect of viral oncolysis. A considerable spectrum of functional genes has already been integrated in oAds to optimize particular aspects of immune stimulation including antigen presentation, T cell priming, engagement of additional effector functions, and interference with immunosuppression. These advanced concepts have the potential to play a promising future role as enablers of multi-stage immunotherapies involving adoptive cell transfer and systemic immunotherapies.
Collapse
|
3
|
Kim Y, Lee D, Lee J, Lee S, Lawler S. Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: A mathematical model. PLoS One 2019; 14:e0211041. [PMID: 30689655 PMCID: PMC6349324 DOI: 10.1371/journal.pone.0211041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Neutrophils display rapid and potent innate immune responses in various diseases. Tumor-associated neutrophils (TANs) however either induce or overcome immunosuppressive functions of the tumor microenvironment through complex tumor-stroma crosstalk. We developed a mathematical model to address the question of how phenotypic alterations between tumor suppressive N1 TANS, and tumor promoting N2 TANs affect nonlinear tumor growth in a complex tumor microenvironment. The model provides a visual display of the complex behavior of populations of TANs and tumors in response to various TGF-β and IFN-β stimuli. In addition, the effect of anti-tumor drug administration is incorporated in the model in an effort to achieve optimal anti-tumor efficacy. The simulation results from the mathematical model were in good agreement with experimental data. We found that the N2-to-N1 ratio (N21R) index is positively correlated with aggressive tumor growth, suggesting that this may be a good prognostic factor. We also found that the antitumor efficacy increases when the relative ratio (Dap) of delayed apoptotic cell death of N1 and N2 TANs is either very small or relatively large, providing a basis for therapeutically targeting prometastatic N2 TANs.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Seongwon Lee
- Division of Mathematical Models, National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Sean Lawler
- Department of neurosurgery, Harvard Medical School & Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Catani JPP, Medrano RFV, Hunger A, Del Valle P, Adjemian S, Zanatta DB, Kroemer G, Costanzi-Strauss E, Strauss BE. Intratumoral Immunization by p19Arf and Interferon-β Gene Transfer in a Heterotopic Mouse Model of Lung Carcinoma. Transl Oncol 2016; 9:565-574. [PMID: 27916291 PMCID: PMC5143354 DOI: 10.1016/j.tranon.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-β (IFNβ) in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFNβ significantly induced markers of immunogenic cell death. In situ gene therapy with IFNβ, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when using microarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1α, IL1β, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFNβ acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.
Collapse
Affiliation(s)
- João Paulo Portela Catani
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Ruan F V Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Paulo Del Valle
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Sandy Adjemian
- Laboratory of Cell and Molecular Biology, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, Brazil
| | - Daniela Bertolini Zanatta
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; U1138, INSERM, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Eugenia Costanzi-Strauss
- Gene Therapy Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil.
| |
Collapse
|
5
|
Kuo HY, Huang YS, Tseng CH, Chen YC, Chang YW, Shih HM, Wu CW. PML represses lung cancer metastasis by suppressing the nuclear EGFR-mediated transcriptional activation of MMP2. Cell Cycle 2014; 13:3132-3142. [PMID: 25486572 PMCID: PMC4614437 DOI: 10.4161/15384101.2014.949212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/14/2023] Open
Abstract
Promyelocytic leukemia protein (PML) is emerging as an important tumor suppressor. Its expression is lost during the progression of several types of cancer, including lung cancer. The EGF receptor (EGFR), a membrane-bound receptor tyrosine kinase, transduces intracellular signals responsible for cell proliferation, differentiation and migration. EGFR activity is frequently abnormally upregulated in lung adenocarcinoma (LAC) and thus is considered to be a driving oncogene for LAC. EGFR translocates into the nucleus and transcriptionally activates genes, such as CCND1, that promote cell growth. Recently, we demonstrated that PML interacted with nuclear EGFR (nEGFR) and suppressed the nEGFR-mediated transcriptional activation of CCND1 in lung cancer cells, thereby restraining cell growth. When we further investigated the interplay between PML and EGFR in lung cancer metastasis, we found that the matrix metalloprotease-2 gene (MMP2) was a novel nEGFR target gene and was repressed by PML. We provide evidence that nEGFR bound to the AT-rich sequence (ATRS) in the MMP2 promoter and enhanced its transcriptional activity. In addition, we demonstrated that PML repressed nEGFR-induced MMP2 transcription and reduced cell invasion. PML was recruited by nEGFR to the MMP2 promoter where it reduced histone acetylation, leading to the transcriptional repression of MMP2. Finally, we demonstrated that PML upregulation by interferon-β (IFNβ) in lung cancer cells decreased MMP2 expression and cell invasion. Together, our results suggested that IFNβ induced PML to inhibit lung cancer metastasis by repressing the nEGFR-mediated transcriptional activation of MMP2.
Collapse
Affiliation(s)
- Hong-Yi Kuo
- Institute of Biochemistry and Molecular Biology; National Yang Ming University; Taipei, Taiwan
| | - Yen-Sung Huang
- Institute of Biomedical Science; Academia Sinica; Taipei, Taiwan
| | - Chin-Hsiu Tseng
- Taiwan International Graduate Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei, Taiwan
| | - Yi-Chen Chen
- Institute of Biochemistry and Molecular Biology; National Yang Ming University; Taipei, Taiwan
| | - Yu-Wei Chang
- Institute of Biochemistry and Molecular Biology; National Yang Ming University; Taipei, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Science; Academia Sinica; Taipei, Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei, Taiwan
- Graduate Institute of Translational Medicine; College of Medical Science and Technology; Taipei Medical University; Taipei, Taiwan
- Institute of Molecular Medicine; College of Medicine; National Taiwan University; Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Biochemistry and Molecular Biology; National Yang Ming University; Taipei, Taiwan
- Institute of Microbiology and Immunology; National Yang Ming University; Taipei, Taiwan
- Institute of Clinical Medicine; National Yang Ming University; Taipei, Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei, Taiwan
| |
Collapse
|
6
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
7
|
Suppression of autophagy enhanced growth inhibition and apoptosis of interferon-β in human glioma cells. Mol Neurobiol 2013; 47:1000-10. [PMID: 23329343 DOI: 10.1007/s12035-013-8403-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022]
Abstract
Interferon-beta (IFN-β) is a cytokine with anti-viral, anti-proliferative, and immunomodulatory effects. In this study, we investigated the effects of IFN-β on the induction of autophagy and the relationships among autophagy, growth inhibition, and apoptosis induced by IFN-β in human glioma cells. We found that IFN-β induced autophagosome formation and conversion of microtubule associated protein 1 light chain 3 (LC3) protein, whereas it inhibited cell growth through caspase-dependent cell apoptosis. The Akt/mTOR signaling pathway was involved in autophagy induced by IFN-β. A dose- and time-dependent increase of p-ERK 1/2 expression was also observed in human glioma cells treated with IFN-β. Autophagy induced by IFN-β was suppressed when p-ERK1/2 was impaired by treatment with U0126. We also demonstrated that suppression of autophagy significantly enhanced growth inhibition and cell apoptosis induced by IFN-β, whereas inhibition of caspase-dependent cell apoptosis impaired autophagy induced by IFN-β. Collectively, these findings indicated that autophagy induced by IFN-β was associated with the Akt/mTOR and ERK 1/2 signaling pathways, and inhibition of autophagy could enhance the growth inhibitory effects of IFN-β and increase apoptosis in human glioma cells. Together, these findings support the possibility that autophagy inhibitors may improve IFN-β therapy for gliomas.
Collapse
|
8
|
Gomez-Gutierrez JG, Rao XM, Zhou HS, McMasters KM. Enhanced cancer cell killing by truncated E2F-1 used in combination with oncolytic adenovirus. Virology 2012; 433:538-47. [PMID: 23021422 PMCID: PMC3494286 DOI: 10.1016/j.virol.2012.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/27/2012] [Accepted: 09/07/2012] [Indexed: 12/26/2022]
Abstract
Adenovirus-mediated gene transfer into a tumor mass can be improved by combining it with conditionally-replicating adenovirus (CRAd) when both vectors co-infect the same cancer cell. We investigated the efficiency of enhancing transgene expression and effectiveness of cancer killing of two advenoviruses (Ads), one expressing E2F-1 (AdE2F-1) and another expressing a truncated form of E2F-1 that lacks the transactivation domain (AdE2Ftr), when combined with oncolytic Adhz60. We found that AdE2F-1 with Adhz60 actually decreased E2F-1 expression and viral replication through a mechanism apparently involving repression of the cyclin-E promoter and decreased expression of early and late structural proteins necessary for viral replication. In contrast, AdE2Ftr with Adhz60 resulted in increased E2Ftr expression, AdE2Ftr replication, and cancer cell death both in vitro and in vivo. These results indicate that AdE2Ftr coupled with a CRAd enhances AdE2Ftr-mediated cancer cell death.
Collapse
Affiliation(s)
- Jorge G. Gomez-Gutierrez
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Xiao-Mei Rao
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Kelly M. McMasters
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| |
Collapse
|
9
|
Dietrich A, Stockmar C, Endesfelder S, Guetz A, Aust G. The impact of intraoperative vaccination with IL-12 modified autologous tumor cells in the Lewis lung carcinoma mouse model. J Cancer Res Clin Oncol 2012; 138:901-6. [PMID: 22322363 DOI: 10.1007/s00432-012-1160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/23/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE To improve immunological defense of tumors, we investigated the effect of intraoperative vaccination with IL-12 cDNA transfected cells in an autologous mouse tumor model. METHODS Tumors derived from autologous Lewis lung carcinoma cells were established in C57/BL6 mice. At day seven, the tumors were surgically removed. Simultaneously, the mice were vaccinated intraoperatively with Lewis lung carcinoma cells transfected with an IL-12-encoding pRSC construct or with the empty plasmid, or with dead cells either intrasplenically (i.s.) or subcutaneously (s.c.). Control mice did not obtain vaccination. Tumor re-growth, survival, and metastasis were monitored. Mice with no tumor re-growth underwent a second tumor implantation. The same parameters were examined. RESULTS After tumor resection and vaccination tumors reappeared in 60.0% of the animals of the control group. Lowest tumor reoccurrence rates of 41.4 and 43.5% were seen in animals receiving IL-12 pRSC cells either i.s. or s.c. Survival tended to be enhanced in all vaccinated animals compared with the control group. Following R0 tumor resection, the rate of tumor-free survivors was highest when IL-12 pRSC cells were given i.s. (73%, control 45%). 37-59% of the mice of the therapy groups did not develop a tumor, that is, they were tumor-free survivors. These mice underwent a second tumor implantation 120 days after tumor resection and vaccination. Tumor growth was significantly delayed in mice receiving IL-12 pRSC cells. CONCLUSIONS Intraoperative autologous whole-cell vaccination is practicable and proved to have anti-tumor potential, and therefore, it could be an additional option in adjuvant cancer therapy.
Collapse
Affiliation(s)
- Arne Dietrich
- Department of Surgery, Clinic for Abdominal, Vascular, Thoracic and Transplantion Surgery, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
10
|
Lv H, Zhang H, Wu J, Guan Y. Effect of plasmid-mediated stable interferon-γ expression on proliferation and cell death in the SKOV-3 human ovarian cancer cell line. Immunopharmacol Immunotoxicol 2011; 33:498-503. [DOI: 10.3109/08923973.2010.543685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|