1
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
2
|
Kumar N, Rachagani S, Natarajan G, Crook A, Gopal T, Rajamanickam V, Kaushal JB, Nagabhishek SN, Powers R, Batra SK, Saraswathi V. Histidine Enhances the Anticancer Effect of Gemcitabine against Pancreatic Cancer via Disruption of Amino Acid Homeostasis and Oxidant-Antioxidant Balance. Cancers (Basel) 2023; 15:cancers15092593. [PMID: 37174059 PMCID: PMC10177467 DOI: 10.3390/cancers15092593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Due to the severe toxicity posed by chemotherapeutic drugs, adjuvant nutritional intervention has gained increased attention in the treatment of pancreatic cancer (PC). Amino acid (AA) metabolism is aberrantly regulated in PC and circulating histidine (His) levels are low in PC patients. We hypothesized that His uptake and/or metabolism is dysregulated in PC and that combining His with gemcitabine (Gem), a drug used in the treatment of PC, will enhance the anti-cancer effects of Gem. We performed in vitro and in vivo studies to determine the anticancer effect of the combination of His and Gem against lethal PC. We demonstrate that circulating His levels are low in both human subjects and genetically engineered mice exhibiting pancreatic tumors. Interestingly, the expression of histidine ammonia lyase, an enzyme involved in His catabolism, is higher in PC compared to normal subjects. His + Gem exerts a more potent cytotoxic effect in PC cells compared to individual treatments. His treatment results in a profound increase in His accumulation, accompanied by a depletion of a number of AAs, promoting cancer cell survival and/or glutathione (GSH) synthesis. His but not Gem increases hydrogen peroxide and depletes cellular GSH. Supplementation with GSH protects cells against His + Gem-induced cytotoxicity. Further, our in vivo studies demonstrate that His + Gem potently reduced tumor mass and improved mouse survival. Taken together, our data suggest that PC cells exhibit an aberrant His uptake/accumulation which, in turn, leads to oxidative stress and depletion of AA pool, thereby enhancing the anticancer effect of Gem.
Collapse
Affiliation(s)
- Narendra Kumar
- The Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alexandra Crook
- The Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Thiyagarajan Gopal
- The Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Vinothkumar Rajamanickam
- The Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sirpu N Nagabhishek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert Powers
- The Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Viswanathan Saraswathi
- The Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
3
|
Hasbullah HH, Musa M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int J Mol Sci 2021; 22:11941. [PMID: 34769370 PMCID: PMC8584926 DOI: 10.3390/ijms222111941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
Collapse
Affiliation(s)
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
4
|
Shapira S, Boustanai I, Kazanov D, Ben Shimon M, Fokra A, Arber N. Innovative dual system approach for selective eradication of cancer cells using viral-based delivery of natural bacterial toxin-antitoxin system. Oncogene 2021; 40:4967-4979. [PMID: 34172933 PMCID: PMC8342310 DOI: 10.1038/s41388-021-01792-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 01/20/2023]
Abstract
The inactivation of p53, a tumor suppressor, and the activation of the RAS oncogene are the most frequent genetic alterations in cancer. We have shown that a unique E. coli MazF-MazE toxin–antitoxin (TA) system can be used for selective and effective eradication of RAS-mutated cancer cells. This out of the box strategy holds great promise for effective cancer treatment and management. We provide proof of concept for a novel platform to selectively eradicate cancer cells using an adenoviral delivery system based on the adjusted natural bacterial system. We generated adenoviral vectors carrying the mazF toxin (pAdEasy-Py4-SV40mP-mCherry-MazF) and the antitoxin mazE (pAdEasy-RGC-SV40mP-MazE-IRES-GFP) under the regulation of RAS and p53, resp. The control vector carries the toxin without the RAS-responsive element (pAdEasy-ΔPy4-SV40mP-mCherry-MazF). In vitro, the mazF-mazE TA system (Py4-SV40mP-mCherry-MazF+RGC-SV40mP-MazE-IRES-GFP) induced massive, dose-dependent cell death, at 69% compared to 19% for the control vector, in a co-infected HCT116 cell line. In vivo, the system caused significant tumor growth inhibition of HCT116 (KRASmut/p53mut) tumors at 73 and 65% compared to PBS and ΔPY4 control groups, resp. In addition, we demonstrate 65% tumor growth inhibition in HCT116 (KRASmut/p53wt) cells, compared to the other two control groups, indicating a contribution of the antitoxin in blocking system leakage in WT RAS cells. These data provide evidence of the feasibility of using mutations in the p53 and RAS pathway to efficiently kill cancer cells. The platform, through its combination of the antitoxin (mazE) with the toxin (mazF), provides effective protection of normal cells from basal low activity or leakage of mazF.
Collapse
Affiliation(s)
- Shiran Shapira
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilana Boustanai
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dina Kazanov
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Marina Ben Shimon
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Ahmad Fokra
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadir Arber
- The Integrated Cancer Prevention Center and the Health Promotion Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Shapira S, Shapira A, Kazanov D, Hevroni G, Kraus S, Arber N. Selective eradication of cancer cells by delivery of adenovirus-based toxins. Oncotarget 2018; 8:38581-38591. [PMID: 28445136 PMCID: PMC5503555 DOI: 10.18632/oncotarget.16934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 03/13/2017] [Indexed: 01/17/2023] Open
Abstract
Background and objective KRAS mutation is an early event in colorectal cancer carcinogenesis. We previously reported that a recombinant adenovirus, carrying a pro-apoptotic gene (PUMA) under the regulation of Ets/AP1 (RAS-responsive elements) suppressed the growth of cancer cells harboring hyperactive KRAS. We propose to exploit the hyperactive RAS pathway, rather than to inhibit it as was previously tried and failed repeatedly. We aim to improve efficacy by substituting PUMA with a more potent toxin, the bacterial MazF-MazE toxin-antitoxin system, under a very tight regulation. Results A massive cell death, in a dose-dependent manner, reaching 73% at MOI 10 was seen in KRAS cells as compared to 22% in WT cells. Increase expression of MazE (the anti-toxin) protected normal cells from any possible internal or external leakage of the system and confirmed the selectivity, specificity and safety of the targeting system. Considerable tumor shrinkage (61%) was demonstrated in vivo following MazEF-encoding adenovirus treatment without any side effects. Design Efficient vectors for cancer-directed gene delivery were constructed; “pAdEasy-Py4-SV40mP-mCherry-MazF”“pAdEasy-Py4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP“,“pAdEasy-ΔPy4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP “and “pAdEasy-mCherry”. Virus particles were produced and their potency was tested. Cell death was measured qualitatively by using the fluorescent microscopy and colony formation assay, and was quantified by MTT. FACS analysis using annexin V and RedDot2 dyes was performed for measuring apoptotic and dead cells, respectively. In vivo tumor formation was measured in a xenograft model. Conclusions A proof of concept for a novel cancer safe and effective gene therapy exploiting an aberrant hyperactive pathway is achievable.
Collapse
Affiliation(s)
- Shiran Shapira
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Assaf Shapira
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Diana Kazanov
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Gil Hevroni
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Sarah Kraus
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Nadir Arber
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Liu X, Wang Y, Zhao J. MicroRNA-337 inhibits colorectal cancer progression by directly targeting KRAS and suppressing the AKT and ERK pathways. Oncol Rep 2017; 38:3187-3196. [DOI: 10.3892/or.2017.5997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/04/2017] [Indexed: 11/06/2022] Open
|
7
|
Shapira S, Pleban S, Kazanov D, Tirosh P, Arber N. Terpinen-4-ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLoS One 2016; 11:e0156540. [PMID: 27275783 PMCID: PMC4898785 DOI: 10.1371/journal.pone.0156540] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 01/11/2023] Open
Abstract
Background Terpinen-4-ol, a naturally occurring monoterpene is the main bioactive component of tea-tree oil and has been shown to have many biological activities. Aim To study the antitumor effects of terpinen-4-ol and its mechanism of action in prostate and GI malignancies, alone and in combination with chemotherapeutic and biological agents. Methods Terpinen-4-ol was administrated alone or combined with standard chemotherapy (Oxaliplatin, Fluorouracil, Gemcitabine, Tarceva) and biological agent (Cetuximab). It was also combined with humanized anti-CD24 mAbs (was developed by us). Killing effects were measured qualitatively by light microscopy and quantitatively using the MTT and FACS analysis, following treatment of colorectal, pancreatic, gastric and prostate cancer cells. Terpinen-4-ol effect on tumor development was evaluated in xenograft model. Results Terpinen-4-ol induces a significant growth inhibition of colorectal, pancreatic, prostate and gastric cancer cells in a dose-dependent manner (10–90% in 0.005–0.1%). Terpinen-4-ol and various anti-cancer agents (0.2μM oxaliplatin and 0.5μM fluorouracil) demonstrated a synergistic inhibitory effect (83% and 91%, respectively) on cancer cell proliferation. In KRAS mutated colorectal cancer cells, which are resistant to anti-EGFR therapy, combining of terpinen-4-ol with cetuximab (1 μM) resulted in impressive efficacy of 80–90% growth inhibition. Sub-toxic concentrations of terpinen-4-ol potentiate anti-CD24 mAb (150μg/ml)-induced growth inhibition (90%). Considerable reduction in tumor volume was seen following terpinen-4-ol (0.2%) treatment alone and with cetuximab (10mg/kg) (40% and 63%, respectively) as compare to the control group. Conclusion Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents. The possible molecular mechanism for its activity involves induction of cell-death rendering this compound as a potential anti-cancer drug alone and in combination in the treatment of numerous malignancies. Terpinen-4-ol restores the activity of cetuximab in cancers with mutated KRAS.
Collapse
Affiliation(s)
- Shiran Shapira
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | - Diana Kazanov
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | - Nadir Arber
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
8
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [PMID: 26022400 DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
9
|
Huang C, Wang WM, Gong JP, Yang K. Oncogenesis and the clinical significance of K-ras in pancreatic adenocarcinoma. Asian Pac J Cancer Prev 2015; 14:2699-701. [PMID: 23803017 DOI: 10.7314/apjcp.2013.14.5.2699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The RAS family genes encode small GTP-binding cytoplasmic proteins. Activated KRAS engages multiple effector pathways, notably the RAF-mitogen-activated protein kinase, phosphoinositide-3-kinase (PI3K) and RalGDS pathways. In the clinical field, K-ras oncogene activation is frequently found in human cancers and thus may serve as a potential diagnostic marker for cancer cells in circulation. This mini-review aims to summarise information on Ras-induced oncogenesis and the clinical significance of K-ras.
Collapse
Affiliation(s)
- Chun Huang
- Department of General Surgery, Three Gorges Medical College, Chongqing, China
| | | | | | | |
Collapse
|
10
|
Guo G, Yao G, Zhan G, Hu Y, Yue M, Cheng L, Liu Y, Ye Q, Qing G, Zhang Y, Liu H. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation. Toxicol Appl Pharmacol 2014; 280:475-83. [DOI: 10.1016/j.taap.2014.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
11
|
Li C, Chen D, Luo M, Ge M, Zhu J. Knockdown of ribosomal protein L39 by RNA interference inhibits the growth of human pancreatic cancer cells in vitro and in vivo. Biotechnol J 2014; 9:652-63. [PMID: 24799381 DOI: 10.1002/biot.201300321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/02/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer remains a major unsolved health problem lacking a potent therapeutic option. Our previous studies showed that the ribosomal protein L39 (RPL39) gene was up-regulated after long-term silencing of oncogenic KRAS in pancreatic cancer PANC-1 cells, which indicated that RPL39 may be important for pancreatic cancer development and survival. In the current study, small interfering RNA (siRNA) targeting of the RPL39 gene was performed to determine the effects of the RPL39 gene on growth of pancreatic cancer PANC-1 and BxPC-3 cells in vitro and in vivo. Results from in vitro experiments showed that knockdown of RPL39 expression with RPL39-siRNA suppressed cell proliferation and specifically enhanced cell apoptosis significantly in both PANC-1 and BxPC-3 cells. The increase of caspase-8 activities and the loss of mitochondrial membrane potential after RPL39 silencing indicated that the RPL39 gene may be involved in caspase-8-related mitochondrial apoptosis. Further, treatment with the RPL39-siRNA inhibited the growth of a human pancreatic cancer xenograft in BALB/c nude mice, accompanied by a decreased expression of RPL39. In the xenograft tumors with injection of RPL39-siRNA, the expressions of Ki-67 and CD31 were significantly down-regulated, and apoptosis was markedly induced. Our findings suggested that siRNA against the RPL39 gene may be of value for gene therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Chaodong Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Engineering Research Center for Cell Engineering and Therapeutic Antibody, SJTU, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Ady JW, Heffner J, Klein E, Fong Y. Oncolytic viral therapy for pancreatic cancer: current research and future directions. Oncolytic Virother 2014; 3:35-46. [PMID: 27512661 PMCID: PMC4918362 DOI: 10.2147/ov.s53858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of targeted agents and chemotherapies for pancreatic cancer has only modestly affected clinical outcome and not changed 5-year survival. Fortunately the genetic and molecular mechanisms underlying pancreatic cancer are being rapidly uncovered and are providing opportunities for novel targeted therapies. Oncolytic viral therapy is one of the most promising targeted agents for pancreatic cancer. This review will look at the current state of the development of these self-replicating nanoparticles in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Justin W Ady
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jacqueline Heffner
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Klein
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|