1
|
Schwarz E, Benner B, Yu L, Tounkara F, Carson WE. Analysis of Changes in Plasma Cytokine Levels in Response to IL12 Therapy in Three Clinical Trials. CANCER RESEARCH COMMUNICATIONS 2024; 4:81-91. [PMID: 38108458 PMCID: PMC10777814 DOI: 10.1158/2767-9764.crc-23-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The ability of IL12 to stimulate natural killer (NK) cell and T-cell antitumor activity makes it an attractive candidate for the immune therapy of cancer. Our group has demonstrated that IL12 enhances the NK cell response to antibody-coated tumor cells and conducted three clinical trials utilizing IL12 with mAbs (OSU-9968, OSU-0167, and OSU-11010). To better characterize IL12-induced immunity, plasma cytokine levels were measured in 21 patients from these trials with favorable and unfavorable responses. t-statistics and linear modeling were used to test for differences within and between response groups by examining levels at baseline and post-IL12 administration. Patients exhibited significant increases in 11 cytokines post-IL12 administration when analyzed collectively. However, several cytokines were differentially induced by IL12 depending on response. GMCSF was significantly increased in complete/partially responding patients, while stable disease patients had significant increases in IL10 and decreases in VEGF-C. Patients who experienced progressive disease had significant increases in CCL3, CCL4, IL18, TNFα, CXCL10, CCL8, CCL2, IL6, and IFNγ. The increases in CCL3, CCL4, and IL6 in progressive disease patients were significantly higher than in clinically benefitting patients and most prominent within the first two cycles of IL12 therapy. This correlative pilot study has identified changes that occur in levels of circulating cytokines following IL12 administration to patients with cancer, but this report must be viewed as exploratory in nature. It is meant to spark further inquiry into the topic via the analysis of additional cohorts of patients with similar characteristics who have received IL12 in a uniform fashion. SIGNIFICANCE IL12 activates immune cells and is used to treat cancer. The profile of circulating cytokines was measured in an exploratory fashion in patients with cancer that received IL12 in combination with mAbs. This correlative pilot study could serve as the basis for additional studies of IL12 effects on the production of immune cytokines.
Collapse
Affiliation(s)
- Emily Schwarz
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Fode Tounkara
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Tarhini AA, Joshi I, Garner F. Sargramostim and immune checkpoint inhibitors: combinatorial therapeutic studies in metastatic melanoma. Immunotherapy 2021; 13:1011-1029. [PMID: 34157863 DOI: 10.2217/imt-2021-0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of immune checkpoint inhibitors in patients with metastatic melanoma generates clinical benefit, including improved survival. Yet disease resistance and immune-related adverse events persist as unmet needs. Sargramostim, a yeast-derived recombinant human GM-CSF, has shown clinical activity against diverse solid tumors, including metastatic melanoma. Here we review the use of sargramostim for treatment of advanced melanoma. Potential sargramostim applications in melanoma draw on the unique ability of GM-CSF to link innate and adaptive immune responses. We review preclinical and translational data describing the mechanism of action of sargramostim and synergy with immune checkpoint inhibitors to enhance efficacy and reduce treatment-related toxicity.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Cutaneous Oncology & Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Ila Joshi
- Pre-Clinical & Translational Research & Development, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| | - Fiona Garner
- Immuno-Oncology Clinical Development & Translational Medicine, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| |
Collapse
|
3
|
Tucker CG, Mitchell JS, Martinov T, Burbach BJ, Beura LK, Wilson JC, Dwyer AJ, Singh LM, Mescher MF, Fife BT. Adoptive T Cell Therapy with IL-12-Preconditioned Low-Avidity T Cells Prevents Exhaustion and Results in Enhanced T Cell Activation, Enhanced Tumor Clearance, and Decreased Risk for Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:1449-1460. [PMID: 32737148 DOI: 10.4049/jimmunol.2000007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022]
Abstract
Optimal ex vivo expansion protocols of tumor-specific T cells followed by adoptive cell therapy must yield T cells able to home to tumors and effectively kill them. Our previous study demonstrated ex vivo activation in the presence of IL-12-induced optimal CD8+ T cell expansion and melanoma regression; however, adverse side effects, including autoimmunity, can occur. This may be due to transfer of high-avidity self-specific T cells. In this study, we compared mouse low- and high-avidity T cells targeting the tumor Ag tyrosinase-related protein 2 (TRP2). Not surprisingly, high-avidity T cells provide superior tumor control, yet low-avidity T cells can promote tumor regression. The addition of IL-12 during in vitro expansion boosts low-avidity T cell responsiveness, tumor regression, and prevents T cell exhaustion. In this study, we demonstrate that IL-12-primed T cells are resistant to PD-1/PD-L1-mediated suppression and retain effector function. Importantly, IL-12 preconditioning prevented exhaustion as LAG-3, PD-1, and TOX were decreased while simultaneously increasing KLRG1. Using intravital imaging, we also determined that high-avidity T cells have sustained contacts with intratumoral dendritic cells and tumor targets compared with low-avidity T cells. However, with Ag overexpression, this defect is overcome, and low-avidity T cells control tumor growth. Taken together, these data illustrate that low-avidity T cells can be therapeutically beneficial if cocultured with IL-12 cytokine during in vitro expansion and highly effective in vivo if Ag is not limiting. Clinically, low-avidity T cells provide a safer alternative to high-avidity, TCR-engineered T cells, as IL-12-primed, low-avidity T cells cause less autoimmune vitiligo.
Collapse
Affiliation(s)
- Christopher G Tucker
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Jason S Mitchell
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Lalit K Beura
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Joseph C Wilson
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Alexander J Dwyer
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Lovejot M Singh
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Matthew F Mescher
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455;
| |
Collapse
|
4
|
Huang A, Ma J, Huang L, Yang F, Cheng P. Mechanisms for enhanced antitumor immune responses induced by irradiated hepatocellular carcinoma cells engineered to express hepatitis B virus X protein. Oncol Lett 2018; 15:8505-8515. [PMID: 29928322 PMCID: PMC6004658 DOI: 10.3892/ol.2018.8430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 02/23/2018] [Indexed: 02/05/2023] Open
Abstract
Tumor associated antigen (TAA) induces both humoral immunity and cellular immunity. The T cell-mediated immune response has an important role in the immune response induced by TAA. The hepatitis B virus X protein (HBx) sequence is mapped with Custer of differentiation (CD)8+ T cell (CTL) epitopes, while a large number of studies have indicated that HBx may enhance the autophagy. In our previous study, a novel hepatocellular carcinoma vaccine was designed that was an irradiated HBx modified hepatocellular carcinoma cell vaccine in autophagic form, which significantly induced antitumor immune responses in vivo. However, the mechanism by which this vaccine contributes to enhancing antitumor immune responses have yet to be fully elucidated. In the present study, we examined how autophagy was induced by this vaccine's influence on the generation of the ‘danger signal’ by hepatoma tumor cells and the subsequent activation of the immunoresponse. The data showed that the vaccine induced phenotypic maturation of DCs, which leads to efficient cross-presentation and a specific response. Both CD8+ and CD4+ T lymphocytes were involved in the antitumor immune response, as reflected by IFN-γ secretion. In addition, damage-associated molecular pattern molecules (DAMPs) were significantly elevated in the vaccine, and the elevation of DAMPs was autophagy-dependent. Furthermore, the antitumor activity was achieved by adoptive transfer of lymphocytes but not serum. The present findings indicated that this vaccine enhanced antitumor immune responses, which was in accordance with our previous study.
Collapse
Affiliation(s)
- Anliang Huang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinhu Ma
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liyan Huang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fan Yang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Cheng
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Valedkarimi Z, Nasiri H, Aghebati-Maleki L, Majidi J. Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy. Biomed Pharmacother 2017; 95:731-742. [PMID: 28888210 DOI: 10.1016/j.biopha.2017.07.160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 12/23/2022] Open
|
6
|
Combined Interleukin 12 and Granulocyte-macrophage Colony-stimulating Factor Gene Therapy Synergistically Suppresses Tumor Growth in the Murine Fibrosarcoma. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Zheng Q, Li X, Cheng X, Cui T, Zhuo Y, Ma W, Zhao X, Zhao P, Liu X, Feng W. Granulocyte-macrophage colony-stimulating factor increases tumor growth and angiogenesis directly by promoting endothelial cell function and indirectly by enhancing the mobilization and recruitment of proangiogenic granulocytes. Tumour Biol 2017; 39:1010428317692232. [PMID: 28240048 DOI: 10.1177/1010428317692232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor has been widely used as an adjuvant therapy for cancer patients exhibiting myelosuppression induced by chemotherapy or radiotherapy. However, the effects of granulocyte-macrophage colony-stimulating factor on tumor growth, as well as its precise mechanism, are still controversial due to inconsistent evidence. This study investigated the effect of exogenous granulocyte-macrophage colony-stimulating factor on the growth of B16 melanoma, S180 sarcoma, and U14 cervical carcinoma in mice. The angiogenesis and recruitment of bone-marrow-derived cells were analyzed in tumor tissues. Interactions among granulocyte-macrophage colony-stimulating factor, bone-marrow-derived cells, and B16 tumor cells were investigated in vitro. Proangiogenic types of bone-marrow-derived cells in blood were assessed both in vivo and in vitro. The results showed that granulocyte-macrophage colony-stimulating factor markedly facilitated the growth of B16 and S180 tumors, but not U14 tumors. Granulocyte-macrophage colony-stimulating factor increased the densities of blood vessels and the number of bone-marrow-derived cells in B16 tumor tissues. The granulocyte-macrophage colony-stimulating factor–induced enhancement of tumor cell proliferation was mediated by bone-marrow-derived cells in vitro. Meanwhile, a distinct synergistic effect on endothelial cell function between granulocyte-macrophage colony-stimulating factor and bone-marrow-derived cells was observed. After separating two types of bone-marrow-derived cells, granulocyte-macrophage colony-stimulating factor–induced enhancement of tumor growth and angiogenesis in vivo was mediated by proangiogenic cells in granulocytes, but not monocytes, with CD11b+, vascular endothelial growth factor receptor 2, and C-X-C chemokine receptor 4 granulocytes possibly involved. These data suggest that granulocyte-macrophage colony-stimulating factor contributes to the growth and angiogenesis of certain types of tumor, and these mechanisms are probably mediated by proangiogenic cells in granulocytes. Applying granulocyte-macrophage colony-stimulating factor may attenuate the antitumor effects of chemotherapy and radiotherapy in certain types of tumor.
Collapse
Affiliation(s)
- Qiaowei Zheng
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xueqian Li
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Cheng
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Ting Cui
- China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen, China
| | - Yingcheng Zhuo
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Wenbin Ma
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xue Zhao
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Peipei Zhao
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xuanlin Liu
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Weiyi Feng
- First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Miguel A, Sendra L, Noé V, Ciudad CJ, Dasí F, Hervas D, Herrero MJ, Aliño SF. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma. Onco Targets Ther 2017; 10:503-514. [PMID: 28176947 PMCID: PMC5271385 DOI: 10.2147/ott.s104393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg), which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the "in vitro" cell entrance and gene silencing efficacy of two tools, 2'-O-methyl phosphorotioate-modified oligonucleotides (2'-OMe-PS-ASOs) and polypurine reverse Hoogsteen hairpins (PPRHs), were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) and were intraperitoneally treated with CTLA4 and Foxp3 2'-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following results were obtained: 1) only 2'-OMe-PS-ASO reached gene silencing efficacy "in vitro"; 2) an improved survival effect was achieved combining both therapeutic vaccine and Foxp3 antisense or CTLA4 antisense oligonucleotides (50% and 20%, respectively); 3) The blood CD4+CD25+Foxp3+ (Treg) and CD4+CTLA4+ cell counts were higher in mice that developed tumor on the day of sacrifice. Our data showed that tumor cell vaccine combined with Foxp3 or CTLA4 gene silencing can increase the efficacy of therapeutic antitumor vaccination.
Collapse
Affiliation(s)
- Antonio Miguel
- Department of Pharmacology, Faculty of Medicine, University of Valencia
| | - Luis Sendra
- Department of Pharmacology, Faculty of Medicine, University of Valencia
| | - Verónica Noé
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona
| | - Carles J Ciudad
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona
| | - Francisco Dasí
- Research University Hospital of Valencia, INCLIVA Health Research Institute; Department of Physiology, Faculty of Medicine, University of Valencia Foundation
| | | | - María José Herrero
- Department of Pharmacology, Faculty of Medicine, University of Valencia; Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe)
| | - Salvador F Aliño
- Department of Pharmacology, Faculty of Medicine, University of Valencia; Clinical Pharmacology Unit, ACM Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
9
|
Sendra Gisbert L, Miguel Matas A, Sabater Ortí L, Herrero MJ, Sabater Olivas L, Montalvá Orón EM, Frasson M, Abargues López R, López-Andújar R, García-Granero Ximénez E, Aliño Pellicer SF. Efficacy of hydrodynamic interleukin 10 gene transfer in human liver segments with interest in transplantation. Liver Transpl 2017; 23:50-62. [PMID: 27783460 DOI: 10.1002/lt.24667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Different diseases lead, during their advanced stages, to chronic or acute liver failure, whose unique treatment consists in organ transplantation. The success of intervention is limited by host immune response and graft rejection. The use of immunosuppressant drugs generally improve organ transplantation, but they cannot completely solve the problem. Also, their management is delicate, especially during the early stages of treatment. Thus, new tools to set an efficient modulation of immune response are required. The local expression of interleukin (IL) 10 protein in transplanted livers mediated by hydrodynamic gene transfer could improve the organ acceptance by the host because it presents the natural ability to modulate the immune response at different levels. In the organ transplantation scenario, IL10 has already demonstrated positive effects on graft tolerance. Hydrodynamic gene transfer has been proven to be safe and therapeutically efficient in animal models and could be easily moved to the clinic. In the present work, we evaluated efficacy of human IL10 gene transfer in human liver segments and the tissue natural barriers for gene entry into the cell, employing gold nanoparticles. In conclusion, the present work shows for the first time that hydrodynamic IL10 gene transfer to human liver segments ex vivo efficiently delivers a human gene into the cells. Indexes of tissue protein expression achieved could mediate local pharmacological effects with interest in controlling the immune response triggered after liver transplantation. On the other hand, the ultrastructural study suggests that the solubilized plasmid could access the hepatocyte in a passive manner mediated by the hydric flow and that an active mechanism of transportation could facilitate its entry into the nucleus. Liver Transplantation 23:50-62 2017 AASLD.
Collapse
Affiliation(s)
- Luis Sendra Gisbert
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe and Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia
- Gene Therapy Unit, Pharmacology Department, Medicine Faculty, Universidad de Valencia, Valencia, Spain
| | - Antonio Miguel Matas
- Gene Therapy Unit, Pharmacology Department, Medicine Faculty, Universidad de Valencia, Valencia, Spain
| | - Luis Sabater Ortí
- General and Digestive Surgery Department, Hospital Clínico Universitario, Valencia, Spain
| | - María José Herrero
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe and Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia
| | | | - Eva María Montalvá Orón
- Hepatobiliopancreatic Surgery and Transplantation Unit, General Surgery Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Matteo Frasson
- Coloproctology Unit, General Surgery Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Rafael López-Andújar
- Hepatobiliopancreatic Surgery and Transplantation Unit, General Surgery Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Salvador Francisco Aliño Pellicer
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe and Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia
- Gene Therapy Unit, Pharmacology Department, Medicine Faculty, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
10
|
Xue D, Liang Y, Duan S, He J, Su J, Zhu J, Hu N, Liu J, Zhao Y, Lu X. Enhanced anti-tumor immunity against breast cancer induced by whole tumor cell vaccines genetically modified expressing α-Gal epitopes. Oncol Rep 2016; 36:2843-2851. [PMID: 27666541 DOI: 10.3892/or.2016.5128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/27/2016] [Indexed: 11/05/2022] Open
Abstract
Whole tumor cell vaccines have shown much promise, but demonstrated poor efficiency in phase III trials. In this study, we modified MDA-MB‑231 tumor cells (MDA-MB‑231Gal+) to express α-1, 3-galactosyltransferase (α-1, 3-GT) protein, to potentially enhance antitumor effect of whole tumor cell vaccines. MDA-MB‑231 tumor cell vaccines were transfected with a reconstructed lentiviral containing α-1, 3-GT genes. Tumor growth, tumorigenesis and survival of Hu-NOD-SCID mice were observed when tumor-bearing mice were injected with tumor cell vaccines. Proliferation and apoptosis in MDA-MB‑231 tumor xenografts were observed by immunohistochemistry. The levels of cytokine secretion in the serum of mice were tested by ELISA. CD8+ T cells infiltrating tumors were assessed by flow cytometry. MDA-MB‑231Gal+ cells expressed active α-1, 3-GT and produced α-Gal in vitro. MDA-MB‑231Gal+ cell vaccines suppressed tumor growth and tumorigenesis in immunized Hu-NOD-SCID mice. Additionally, decrease of TGF-β, IL-10 and increase of INF-γ, IL-12 were observed in tumor cell vaccinated mice. Furthermore, the cell vaccines enhanced infiltration of cytotoxic CD8+ T cells in the tumor microenvironment of immunized mice. The MDA-MB‑231Gal+ cell vaccines modified α-1, 3-GT genes improved the antitumor effect.
Collapse
Affiliation(s)
- Dabing Xue
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ying Liang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Siliang Duan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian He
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Su
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianmeng Zhu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Nan Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianming Liu
- Department of Respiratoy Diseases, The Third Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Vanitha S, Chaubey N, Ghosh SS, Sanpui P. Recombinant human granulocyte macrophage colony stimulating factor (hGM-CSF): Possibility of nanoparticle-mediated delivery in cancer immunotherapy. Bioengineered 2016; 8:120-123. [PMID: 27459024 DOI: 10.1080/21655979.2016.1212136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most of the cancer treatment strategies from chemotherapy to radiotherapy render cancer cells apoptotic and these apoptotic cancer cells accumulate at the tumor sites. The accumulation of apoptotic cancer cells often result in inflammation and autoimmune responses causing serious health implications. Macrophages, which are effective immune combatants, can help in the clearance of these deleterious occupants. Granulocyte macrophage colony stimulating factor (GM-CSF) is a key cytokine, modulator of immune system and responsible for growth and differentiation of granulocytes and macrophages. In this regard, supply of recombinant GM-CSF can enhance the capability of macrophages for clearance of apoptotic cancer cells. However, delivery of the cytokine in vivo can suffer from certain disadvantages like faster depletion, less stability and low targeting efficiency. We believe that the stability and sustained release of GM-CSF can be improved through its encapsulation inside appropriately designed nanoparticles.
Collapse
Affiliation(s)
- Selvarajan Vanitha
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| | - Nidhi Chaubey
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| | - Siddhartha S Ghosh
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India.,b Centre for Nanotechnology, Indian Institute of Technology Guwahati , Assam , India
| | - Pallab Sanpui
- b Centre for Nanotechnology, Indian Institute of Technology Guwahati , Assam , India
| |
Collapse
|
12
|
Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, Li N, Wei F. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res 2015; 4. [PMID: 26918147 PMCID: PMC4754024 DOI: 10.12688/f1000research.7010.1] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Interleukin-10 and Interleukin-12 are produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells. IL-10 and IL-12 play very important immunoregulatory roles in host defense and immune homeostasis. Being anti- and pro-inflammatory in nature, respectively, their functions are antagonistically opposing. A comprehensive and in-depth understanding of their immunological properties and signaling mechanisms will help develop better clinical intervention strategies in therapy for a wide range of human disorders. Here, we provide an update on some emerging concepts, controversies, unanswered questions, and opinions regarding the immune signaling of IL-10 and IL-12.
Collapse
Affiliation(s)
- Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Wenjun Yan
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Hua Zheng
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Qinglin Du
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Lixing Zhang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Na Li
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Fang Wei
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| |
Collapse
|
13
|
Li Y, Yang F, Sang L, Zhu J, Han X, Shan F, Li S, Zhai J, Wang D, Lu C, Sun X. Enhanced therapeutic effects against murine colon carcinoma induced by a Colon 26/Ag85A-CD226 tumor cell vaccine. Oncol Rep 2015; 34:1795-804. [PMID: 26238268 DOI: 10.3892/or.2015.4137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Genetically modified tumor cells represent one of the most effective cancer vaccine strategies. In the present study, we describe our approach for inducing an immune response against a colon carcinoma in BALB/c mice, using a Colon 26 tumor cell line expressing Ag85A and CD226. We investigated whether CD226 plays a promotive role for Ag85A against Colon 26 colon carcinoma. The therapeutic efficacy was investigated. The cytotoxic T lymphocyte (CTL) and natural killer (NK) cell cytotoxicity were assessed. Dynamic changes in interferon (IFN)-γ levels in the spleen and the number of IFN-γ-producing CD4+ or CD8+ T cells in the spleen or mesenteric lymph nodes were detected by enzyme-linked immunoabsorbent assay or flow cytometry. Extended survival times, delayed appearances of tumors, and reduced tumor volumes were achieved by preventive vaccination with the Colon 26/Ag85A-CD226 tumor cell vaccine. NK cell or CTL cytotoxicity in the spleens of mice immunized with the Colon 26/Ag85A-CD226 tumor cell vaccine was significantly higher than that in the other treatment groups. The numbers of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells were both significantly increased in mice immunized with the Colon 26/Ag85A-CD226 tumor cell vaccine in both the spleen and mesenteric lymph nodes. Our results indicated that the tumor vaccine expressing Ag85A and CD226 induced more intensive antitumor immunity than tumor vaccine expressing Ag85A or CD226 only. Moreover, the results suggest that Ag85A and CD226 play a synergistic antitumor effect and CD226 could be used as a genetic adjuvant to enhance the effects of Ag85A vaccine against murine colon carcinoma.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Fangli Yang
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Lixuan Sang
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Junfeng Zhu
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Xue Han
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Shengjun Li
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Jingbo Zhai
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Danan Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Changlong Lu
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Xun Sun
- Department of Immunology, School of Basic Medical Science, China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
14
|
Tabolacci C, Cordella M, Turcano L, Rossi S, Lentini A, Mariotti S, Nisini R, Sette G, Eramo A, Piredda L, De Maria R, Facchiano F, Beninati S. Aloe-emodin exerts a potent anticancer and immunomodulatory activity on BRAF-mutated human melanoma cells. Eur J Pharmacol 2015; 762:283-92. [PMID: 26048310 DOI: 10.1016/j.ejphar.2015.05.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/18/2022]
Abstract
Aim of this study was to extend the knowledge on the antineoplastic effect of aloe-emodin (AE), a natural hydroxyanthraquinone compound, both in metastatic human melanoma cell lines and in primary stem-like cells (melanospheres). Treatment with AE caused reduction of cell proliferation and induction of SK-MEL-28 and A375 cells differentiation, characterized by a marked increase of transamidating activity of transglutaminase whose expression remained unmodified. In vitro antimetastatic property of AE was evaluated by adhesion and Boyden chamber invasion assays. The effect of AE on melanoma cytokines/chemokines production was determined by a multiplex assay: interestingly AE showed an immunomodulatory activity through GM-CSF and IFN-γ production. We report also that AE significantly reduced the proliferation, stemness and invasive potential of melanospheres. Moreover, AE treatment significantly enhanced dabrafenib (a BRAF inhibitor) antiproliferative activity in BRAF mutant cell lines. Our results confirm that AE possesses remarkable antineoplastic properties against melanoma cells, indicating this anthraquinone as a promising agent for differentiation therapy of cancer, or as adjuvant in chemotherapy and targeted therapy. Further, its mechanisms of action support a potential efficacy of AE treatment to counteract resistance of BRAF-mutated melanoma cells to target therapy.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; Department of Biology, University "Tor Vergata", Rome, Italy
| | - Martina Cordella
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lorenzo Turcano
- Department of Biology, University "Tor Vergata", Rome, Italy
| | - Stefania Rossi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Sabrina Mariotti
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Nisini
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Piredda
- Department of Biology, University "Tor Vergata", Rome, Italy
| | | | - Francesco Facchiano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Simone Beninati
- Department of Biology, University "Tor Vergata", Rome, Italy
| |
Collapse
|
15
|
Antitumor cell-complex vaccines employing genetically modified tumor cells and fibroblasts. Toxins (Basel) 2014; 6:636-49. [PMID: 24556729 PMCID: PMC3942756 DOI: 10.3390/toxins6020636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 02/08/2023] Open
Abstract
The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok) and a low producer (p2F). Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP) IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01). When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05). Significant survival (40%) was only observed in the groups vaccinated with free transfected B16 cells.
Collapse
|