1
|
Li XM, Xu K, Wang JY, Guo JY, Wang XH, Zeng L, Wan B, Wang J, Chu BB, Yang GY, Pan JJ, Hao WB. The actin cytoskeleton is important for pseudorabies virus infection. Virology 2024; 600:110233. [PMID: 39255726 DOI: 10.1016/j.virol.2024.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Viruses are dependent on the host factors for their replication and survival. Therefore, identification of host factors that druggable for antiviral development is crucial. The actin cytoskeleton plays an important role in the virus infection. The dynamics change of actin and its function are regulated by multiple actin-associated proteins (AAPs). However, the role and mechanism of various AAPs in the life cycle of virus are still enigmatic. In this study, we analyzed the roles of actin and AAPs in the replication of pseudorabies virus (PRV). Using a library of compounds targeting AAPs, our data found that multiple AAPs, such as Rho-GTPases, Rock, Myosin and Formin were involved in PRV infection. Besides, our result demonstrated that the actin-binding protein Drebrin was also participated in PRV infection. Further studies are necessary to elucidate the molecular mechanism of AAPs in the virus life cycle, in the hope of mining host factors for antiviral developments.
Collapse
Affiliation(s)
- Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Kun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Jin-Yuan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Jie-Yuan Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Xiao-Han Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Henan University of Animal Husbandry and Economy, Zhengzhou, 450047, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Wen-Bo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Zhang J, Liu K, Zhu Z, Shang S, Wei D, Zheng Y, Zhang L, Liang Y, Ju D, Yuan J. Innovative strategies in genitourinary cancer: the role of oncolytic viruses. Front Oncol 2024; 14:1461324. [PMID: 39464707 PMCID: PMC11502293 DOI: 10.3389/fonc.2024.1461324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Urinary tumors pose a significant health threat because of their high prevalence and recurrence rates. Despite the availability of various treatment options, many patients poorly respond to traditional therapies, highlighting the urgent need for alternative approaches. Oncolytic viruses are promising therapeutic agents. These viruses exploit the unique characteristics of cancer cells to specifically target and destroy them, thereby triggering potent antitumor immune responses. This review delves into recent advancements and future prospects of oncolytic viruses, focusing on their application in renal, bladder, and prostate cancers. By discussing practical implications and the potential of different viruses, including the cowpox virus, adenovirus, measles virus, coxsackievirus, and reovirus, we pave the way for further exploration and refinement of this exciting field.
Collapse
Affiliation(s)
- Jie Zhang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ying Liang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Measles Virus as an Oncolytic Immunotherapy. Cancers (Basel) 2021; 13:cancers13030544. [PMID: 33535479 PMCID: PMC7867054 DOI: 10.3390/cancers13030544] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy.
Collapse
|
4
|
Iankov ID, Kurokawa C, Viker K, Robinson SI, Ammayappan A, Panagioti E, Federspiel MJ, Galanis E. Live Attenuated Measles Virus Vaccine Expressing Helicobacter pylori Heat Shock Protein A. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:136-148. [PMID: 33145397 PMCID: PMC7585873 DOI: 10.1016/j.omto.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
Measles virus (MV) Edmonston derivative strains are attractive vector platforms in vaccine development and oncolytic virotherapy. Helicobacter pylori heat shock protein A (HspA) is a bacterial heat shock chaperone with essential function as a Ni-ion scavenging protein. We generated and characterized the immunogenicity of an attenuated MV strain encoding the HspA transgene (MV-HspA). MV-HspA showed faster replication within 48 h of infection with >10-fold higher titers and faster accumulation of the MV proteins. It also demonstrated a superior tumor-killing effect in vitro against a variety of human solid tumor cell lines, including sarcoma, ovarian and breast cancer. Two intraperitoneal (i.p.) doses of 106 50% tissue culture infectious dose (TCID50) MV-HspA significantly improved survival in an ovarian cancer xenograft model: 63.5 days versus 27 days for the control group. The HspA transgene induced a humoral immune response in measles-permissive Ifnarko-CD46Ge transgenic mice. Eight of nine animals developed a long-term anti-HspA antibody response with titers of 1:400 to 1:12,800 without any negative impact on development of protective anti-MV immune memory. MV-HspA triggered an immunogenic cytopathic effect as measured by an HMGB1 assay. The absence of significant elevation of PD-L1 expression indicated that vector-encoded HspA could act as an immunomodulator on the immune check point axis. These data demonstrate that MV-HspA is a potent oncolytic agent and vaccine candidate for clinical translation in cancer treatment and immunoprophylaxis against H. pylori.
Collapse
Affiliation(s)
- Ianko D Iankov
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Cheyne Kurokawa
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kimberly Viker
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Steven I Robinson
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Eleni Panagioti
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Leber MF, Neault S, Jirovec E, Barkley R, Said A, Bell JC, Ungerechts G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev 2020; 56:39-48. [PMID: 32718830 PMCID: PMC7333629 DOI: 10.1016/j.cytogfr.2020.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy using tumor-selective, oncolytic viruses is an emerging therapeutic option for solid and hematologic malignancies. A considerable variety of viruses ranging from small picornaviruses to large poxviruses are currently being investigated as potential candidates. In the early days of virotherapy, non-engineered wild-type or vaccine-strain viruses were employed. However, these viruses often did not fully satisfy the major criteria of safety and efficacy. Since the advent of reverse genetics systems for manipulating various classes of viruses, the field has shifted to developing genetically engineered viruses with an improved therapeutic index. In this review, we will summarize the concepts and strategies of multi-level genetic engineering of oncolytic measles virus, a prime candidate for cancer immunovirotherapy. Furthermore, we will provide a brief overview of measles virus-based multimodal combination therapies for improved tumor control and clinical efficacy.
Collapse
Affiliation(s)
- Mathias F Leber
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| | - Serge Neault
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Elise Jirovec
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Russell Barkley
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada; University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Guy Ungerechts
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
6
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
7
|
Gilchrist VH, Jémus-Gonzalez E, Said A, Alain T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev 2020; 56:83-93. [PMID: 32690442 DOI: 10.1016/j.cytogfr.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.
Collapse
Affiliation(s)
- Victoria Heather Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Estephanie Jémus-Gonzalez
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ, Galanis E. Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects. Curr Cancer Drug Targets 2019; 18:177-187. [PMID: 28228086 DOI: 10.2174/1568009617666170222125035] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023]
Abstract
Attenuated Edmonston lineage measles virus (MV-Edm) vaccine strains can preferentially infect and lyse a wide variety of cancer cells. Oncolytic MV-Edm derivatives are genetically engineered to express the human carcinoembryonic antigen (MV-CEA virus) or the human sodium iodide symporter (MV-NIS virus) and are currently being tested in clinical trials against ovarian cancer, glioblastoma multiforme, multiple myeloma, mesothelioma, head and neck cancer, breast cancer and malignant peripheral nerve sheath tumors. This review describes the basic and preclinical data that facilitated the clinical translation of MV-Edm strains, and summarizes the clinical results of this oncolytic platform to date. Furthermore, we discuss the latest clinically relevant MV-Edm vector developments and creative strategies for future translational steps.
Collapse
Affiliation(s)
- Pavlos Msaouel
- MD Anderson Cancer Center, Division of Cancer Medicine, 1400 Holcombe Blvd, Unit 0463, Houston, TX 77030, USA
| | - Mateusz Opyrchal
- Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Angela Dispenzieri
- Division of Hematology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen J Russell
- Division of Hematology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Abstract
INTRODUCTION Oncolytic viruses represent a novel treatment modality that is unencumbered by the standard resistance mechanisms limiting the therapeutic efficacy of conventional antineoplastic agents. Attenuated engineered measles virus strains derived from the Edmonston vaccine lineage have undergone extensive preclinical evaluation with significant antitumor activity observed in a broad range of preclinical tumoral models. These have laid the foundation for several clinical trials in both solid and hematologic malignancies, which have demonstrated safety, biologic activity and the ability to elicit antitumor immune responses. Areas covered: This review examines the published preclinical data which supported the clinical translation of this therapeutic platform, reviews the available clinical trial data and expands on ongoing phase II testing. It also looks at approaches to optimize clinical applicability and offers future perspectives. Expert opinion: Reverse genetic engineering has allowed the generation of oncolytic MV strains retargeted to increase viral tumor specificity, or armed with therapeutic and immunomodulatory genes in order to enhance anti-tumor efficacy. Continuous efforts focusing on exploring methods to overcome resistance pathways and determining optimal combinatorial strategies will facilitate further development of this encouraging antitumor strategy.
Collapse
Affiliation(s)
- Steven Robinson
- a Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| | - Evanthia Galanis
- a Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
10
|
Abstract
New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer.
Collapse
Affiliation(s)
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E. Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 2013; 13:483-502. [PMID: 23289598 DOI: 10.1517/14712598.2013.749851] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. AREAS COVERED The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. EXPERT OPINION Clinical viral kinetic data derived from noninvasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs, such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Albert Einstein College of Medicine, Jacobi Medical Center, Department of Internal Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|