1
|
Chen YZ, Zhou YH, Yan MB, Xiao M, Liu B, Yin YH, Tan XL, Huang YQ, Lin YH, Xie T, Tian JL, Wang Q, Li JY, Meng ZZ, Li Z, Xing E, Tang YX, Li YW, Su ZZ, Zhao LY. Artificial cavernosa-like tissue based on multibubble Matrigel and a human corpus cavernous fibroblast scaffold. Asian J Androl 2024; 26:260-267. [PMID: 38319194 PMCID: PMC11156451 DOI: 10.4103/aja202374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024] Open
Abstract
Ex vivo tissue culture of the human corpus cavernosum (CC) can be used to explore the tissue structural changes and complex signaling networks. At present, artificial CC-like tissues based on acellular or three-dimensional (3D)-printed scaffolds are used to solve the scarcity of primary penis tissue samples. However, inconvenience and high costs limit the wide application of such methods. Here, we describe a simple, fast, and economical method of constructing artificial CC-like tissue. Human CC fibroblasts (FBs), endothelial cells (ECs), and smooth muscle cells (SMCs) were expanded in vitro and mixed with Matrigel in specific proportions. A large number of bubbles were formed in the mixture by vortexing combined with pipette blowing, creating a porous, spongy, and spatial structure. The CC FBs produced a variety of signaling factors, showed multidirectional differentiation potential, and grew in a 3D grid in Matrigel, which is necessary for CC-like tissue to maintain a porous structure as a cell scaffold. Within the CC-like tissue, ECs covered the surface of the lumen, and SMCs were located inside the trabeculae, similar to the structure of the primary CC. Various cell components remained stable for 3 days in vitro , but the EC content decreased on the 7 th day. Wingless/integrated (WNT) signaling activation led to lumen atrophy and increased tissue fibrosis in CC-like tissue, inducing the same changes in characteristics as in the primary CC. This study describes a preparation method for human artificial CC-like tissue that may provide an improved experimental platform for exploring the function and structure of the CC and conducting drug screening for erectile dysfunction therapy.
Collapse
Affiliation(s)
- Yu-Zhuo Chen
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yi-Hong Zhou
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Min-Bo Yan
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ming Xiao
- Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Biao Liu
- Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ying-Hao Yin
- Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xiao-Li Tan
- Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yong-Quan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yu-Hong Lin
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ting Xie
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jia-Li Tian
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Qi Wang
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jian-Ying Li
- Department of Andrology, the Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zi-Zhou Meng
- Department of Andrology, the Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng Li
- Department of Andrology, the Center for Men’s Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Emily Xing
- Cedars-Sinai Medical Center, Los Angeles, CA 90024, USA
| | - Yu-Xin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ya-Wei Li
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhong-Zhen Su
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Liang-Yu Zhao
- Department of Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
2
|
Zhan S, Qiu M, Wei X, Wei J, Qin L, Jiang B, Wen Q, Chen P, Lin Q, Wei X, Zhou Z, Jiang Y, Liang X, Li R, Liu Y, Yu H. Potentially functional genetic variants in ferroptosis-related CREB3 and GALNT14 genes predict survival of hepatitis B virus-related hepatocellular carcinoma. Cancer Med 2024; 13:e6848. [PMID: 38151984 PMCID: PMC10807646 DOI: 10.1002/cam4.6848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Ferroptosis is a known crucial player in the development of cancers. However, the effect of single nucleotide polymorphisms (SNPs) in ferroptosis-related genes on survival in hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) patients remains unknown. METHODS We used two-stage multivariable Cox proportional hazards regression analyses to estimate the associations between 48,774 SNPs in 480 ferroptosis-related genes and overall survival (OS) of 866 HBV-HCC patients. RESULTS We identified that two potentially functional SNPs (CREB3 rs10814274 C > T and GALNT14 rs17010547 T > C) were significantly independently associated with the OS of HBV-HCC patients (CT + TT verse CC, hazards ratio (HR) = 0.77, 95% confidence interval (CI) = 0.67-0.89, p < 0.001 for rs10814274 and TC + CC verse TT, HR = 0.66, 95% CI = 0.53-0.82, p < 0.001 for rs17010547, respectively). Additional joint assessment of protective genotypes of these two SNPs showed that patients with 1-2 protective genotypes had a significantly better OS compared with those carrying 0 protective genotypes (HR = 0.56, 95% CI = 0.45-0.70, p < 0.001). Moreover, the expression quantitative trait loci (eQTL) analysis revealed that the survival-associated SNP rs10814274 T allele was significantly correlated with reduced CREB3 transcript levels in both normal liver tissues and whole blood cells, while the GALNT14 rs17010547 C allele had a significant correlation with increased GALNT14 transcript levels in whole blood cells. CONCLUSION These results suggest that genetic variants of CREB3 and GALNT14 may affect the survival of HBV-HCC patients, likely via transcriptional regulation of respective genes. However, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Shicheng Zhan
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Moqin Qiu
- Department of Respiratory OncologyGuangxi Medical University Cancer HospitalNanningChina
| | - Xueyan Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Junjie Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Liming Qin
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Binbin Jiang
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuping Wen
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Peiqin Chen
- Editorial Department of Chinese Journal of Oncology Prevention and TreatmentGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuling Lin
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Xiaoxia Wei
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Zihan Zhou
- Department of Cancer Prevention and ControlGuangxi Medical University Cancer HospitalNanningChina
| | - Yanji Jiang
- Scientific Research DepartmentGuangxi Medical University Cancer HospitalNanningChina
| | - Xiumei Liang
- Department of Disease Process ManagementGuangxi Medical University Cancer HospitalNanningChina
| | - Runwei Li
- Department of Civil Engineering, College of EngineeringNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Yingchun Liu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
| | - Hongping Yu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
3
|
Zhang N, Chen R, Cao X, Wang L. Aberrantly expressed HIF-1α enhances HCC stem cell-like traits via Wnt/β-catenin signaling activation after insufficient radiofrequency ablation. J Cancer Res Ther 2023; 19:1517-1524. [PMID: 38156917 DOI: 10.4103/jcrt.jcrt_1458_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Radiofrequency ablation has become a favorable treatment modality for small hepatocellular carcinoma (HCC) recently; however, insufficient radiofrequency ablation (RFA) was shown to lead to enhanced invasiveness and metastasis of HCC in our previous study, while the underlying molecular mechanism has not been understood. MATERIALS AND METHODS In order to explore the influence of the hypoxic microenvironment on residual cancer and cancer stem cell (CSC)-like characteristics of HCC cells in this process, an in vitro hypoxic model and an insufficient RFA mouse model were established with HCC cancer cell lines. Immunochemistry staining and western blot were used to examine the expression of hypoxia-inducible factor (HIF)-1α and liver CSC markers. The 3D colon formation assay, tumor cell invasion assay, and gene transfection assays were applied to test the change in liver CSC stemness and HCC cell invasion. RESULTS After insufficient RFA treatment, the upregulated HIF-1α expression was associated with an increase in the CSC-like population in residual cancer. In vitro, hypoxic tumor cells showed aggressive CSC-like properties and phenotypes. Wnt/β-catenin signaling activation was shown to be necessary for the acquisition of liver CSC-like characteristics under hypoxic conditions. CONCLUSION Overall, the aberrantly enhanced HIF-1α expression enhanced the liver CSC-like traits via abnormal Wnt/β-catenin signaling activation after insufficient RFA, and the overexpressed HIF-1α would be a vital factor and useful biomarker during the HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
4
|
Almasi S, SarmastiEmami S, Baird S, Ning Z, Figeys D, Côté J, Cowan KN, Jasmin BJ. Staufen1 controls mitochondrial metabolism via HIF2α in embryonal rhabdomyosarcoma and promotes tumorigenesis. Cell Mol Life Sci 2023; 80:328. [PMID: 37847286 PMCID: PMC11071833 DOI: 10.1007/s00018-023-04969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Elevated mitochondrial metabolism promotes tumorigenesis of Embryonal Rhabdomyosarcomas (ERMS). Accordingly, targeting oxidative phosphorylation (OXPHOS) could represent a therapeutic strategy for ERMS. We previously demonstrated that genetic reduction of Staufen1 (STAU1) levels results in the inhibition of ERMS tumorigenicity. Here, we examined STAU1-mediated mechanisms in ERMS and focused on its potential involvement in regulating OXPHOS. We report the novel and differential role of STAU1 in mitochondrial metabolism in cancerous versus non-malignant skeletal muscle cells (NMSkMCs). Specifically, our data show that STAU1 depletion reduces OXPHOS and inhibits proliferation of ERMS cells. Our findings further reveal the binding of STAU1 to several OXPHOS mRNAs which affects their stability. Indeed, STAU1 depletion reduced the stability of OXPHOS mRNAs, causing inhibition of mitochondrial metabolism. In parallel, STAU1 depletion impacted negatively the HIF2α pathway which further modulates mitochondrial metabolism. Exogenous expression of HIF2α in STAU1-depleted cells reversed the mitochondrial inhibition and induced cell proliferation. However, opposite effects were observed in NMSkMCs. Altogether, these findings revealed the impact of STAU1 in the regulation of mitochondrial OXPHOS in cancer cells as well as its differential role in NMSkMCs. Overall, our results highlight the therapeutic potential of targeting STAU1 as a novel approach for inhibiting mitochondrial metabolism in ERMS.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sahar SarmastiEmami
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Stephen Baird
- High Throughput Lab, CHEO, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kyle N Cowan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Surgery, Division of Paediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, ON, K1Y 4E9, Canada
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario, Ottawa, ON, K1H 8L1, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Sun EJ, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9111639. [PMID: 34829868 PMCID: PMC8615614 DOI: 10.3390/biomedicines9111639] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite advances in the treatment of cancers through surgical procedures and new pharmaceuticals, the treatment of hepatocellular carcinoma (HCC) remains challenging as reflected by low survival rates. The PI3K/Akt/mTOR pathway is an important signaling mechanism that regulates the cell cycle, proliferation, apoptosis, and metabolism. Importantly, deregulation of the PI3K/Akt/mTOR pathway leading to activation is common in HCC and is hence the subject of intense investigation and the focus of current therapeutics. In this review article, we consider the role of this pathway in the pathogenesis of HCC, focusing on its downstream effectors such as glycogen synthase kinase-3 (GSK-3), cAMP-response element-binding protein (CREB), forkhead box O protein (FOXO), murine double minute 2 (MDM2), p53, and nuclear factor-κB (NF-κB), and the cellular processes of lipogenesis and autophagy. In addition, we provide an update on the current ongoing clinical development of agents targeting this pathway for HCC treatments.
Collapse
Affiliation(s)
- Eun Jin Sun
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Miriam Wankell
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
| | - Pranavan Palamuthusingam
- Institute of Surgery, The Townsville University Hospital, Townsville, QLD 4811, Australia;
- Mater Hospital, Townsville, QLD 4811, Australia
| | - Craig McFarlane
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
| | - Lionel Hebbard
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
6
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
7
|
Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells. Nat Commun 2020; 11:2687. [PMID: 32483116 PMCID: PMC7264263 DOI: 10.1038/s41467-020-16192-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
Injury of corpus cavernosa results in erectile dysfunction, but its treatment has been very difficult. Here we construct heparin-coated 3D-printed hydrogel scaffolds seeded with hypoxia inducible factor-1α (HIF-1α)-mutated muscle-derived stem cells (MDSCs) to develop bioengineered vascularized corpora. HIF-1α-mutated MDSCs significantly secrete various angiogenic factors in MDSCs regardless of hypoxia or normoxia. The biodegradable scaffolds, along with MDSCs, are implanted into corpus cavernosa defects in a rabbit model to show good histocompatibility with no immunological rejection, support vascularized tissue ingrowth, and promote neovascularisation to repair the defects. Evaluation of morphology, intracavernosal pressure, elasticity and shrinkage of repaired cavernous tissue prove that the bioengineered corpora scaffolds repair the defects and recover penile erectile and ejaculation function successfully. The function recovery restores the reproductive capability of the injured male rabbits. Our work demonstrates that the 3D-printed hydrogels with angiogenic cells hold great promise for penile reconstruction to restore reproductive capability of males. Injury of corpus cavernosa results in erectile dysfunction, and repair leading to restoration of function is difficult. Here the authors construct 3D printed hydrogel constructs seeded with HIF-1α-expressing muscle derived stem cells to restore corpus function in a rabbit model.
Collapse
|
8
|
Neumann-Raizel H, Shilo A, Lev S, Mogilevsky M, Katz B, Shneor D, Shaul YD, Leffler A, Gabizon A, Karni R, Honigman A, Binshtok AM. 2-APB and CBD-Mediated Targeting of Charged Cytotoxic Compounds Into Tumor Cells Suggests the Involvement of TRPV2 Channels. Front Pharmacol 2019; 10:1198. [PMID: 31680972 PMCID: PMC6804401 DOI: 10.3389/fphar.2019.01198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022] Open
Abstract
Targeted delivery of therapeutic compounds to particular cell types such that they only affect the target cells is of great clinical importance since it can minimize undesired side effects. For example, typical chemotherapeutic treatments used in the treatment of neoplastic disorders are cytotoxic not only to cancer cells but also to most normal cells when exposed to a critical concentration of the compound. As such, many chemotherapeutics exhibit severe side effects, often prohibiting their effective use in the treatment of cancer. Here, we describe a new means for facilitated delivery of a clinically used chemotherapy compound' doxorubicin, into hepatocellular carcinoma cell line (BNL1 ME). We demonstrate that these cells express a large pore, cation non-selective transient receptor potential (TRP) channel V2. We utilized this channel to shuttle doxorubicin into BNL1 ME cells. We show that co-application of either cannabidiol (CBD) or 2-APB, the activators of TRPV2 channels, together with doxorubicin leads to significantly higher accumulation of doxorubicin in BNL1 ME cells than in BNL1 ME cells that were exposed to doxorubicin alone. Moreover, we demonstrate that sub-effective doses of doxorubicin when co-applied with either 2-APB or CBD lead to a significant decrease in the number of living BNL1 ME cell and BNL1 ME cell colonies in comparison to application of doxorubicin alone. Finally, we demonstrate that the doxorubicin-mediated cell death is significantly more potent, requiring an order of magnitude lower dose, when co-applied with CBD than with 2-APB. We suggest that CBD may have a dual effect in promoting doxorubicin-mediated cell death by facilitating the entry of doxorubicin via TRPV2 channels and preventing its clearance from the cells by inhibiting P-glycoprotein ATPase transporter. Collectively, these results provide a foundation for the use of large pore cation-non selective channels as “natural” drug delivery systems for targeting specific cell types.
Collapse
Affiliation(s)
- Hagit Neumann-Raizel
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Asaf Shilo
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Maxim Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - David Shneor
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav D Shaul
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Alberto Gabizon
- Shaare Zedek Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alik Honigman
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
9
|
Ding L, Gong Y, Yang Z, Zou B, Liu X, Zhang B, Li J. Lactobacillus rhamnosus GG Ameliorates Liver Injury and Hypoxic Hepatitis in Rat Model of CLP-Induced Sepsis. Dig Dis Sci 2019; 64:2867-2877. [PMID: 31049763 DOI: 10.1007/s10620-019-05628-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Probiotic use to prevent gastrointestinal infections in critical care has shown great promise in recent clinical trials. Although well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to ameliorate liver injury and hypoxic hepatitis following sepsis has not been well explored. METHODS In order to evaluate, if Lactobacillus rhamnosus GG (LGG) treatment in septic rats will protect against liver injury, this study used 20-22-week-old Sprague-Dawley rats which were subjected to cecal ligation and puncture to establish sepsis model and examine mRNA and protein levels of IL-1β, NLRP3, IL-6, TNF-a, VEGF, MCP1, NF-kB and HIF-1α in the liver via real-time PCR, Elisa and Western blot. RESULTS This study showed that LGG treatment significantly ameliorated liver injury following experimental infection and sepsis. Liver mRNA and protein levels of IL-1β, NLRP3, IL-6, TNF-a, VEGF, MCP1, NF-kB and HIF-1α were significantly reduced in rats receiving LGG. CONCLUSIONS Thus, our study demonstrated that LGG treatment can reduce liver injury following experimental infection and sepsis and is associated with improved hypoxic hepatitis. Probiotic therapy may be a promising intervention to ameliorate clinical liver injury and hypoxic hepatitis following systemic infection and sepsis.
Collapse
Affiliation(s)
- Lei Ding
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yihang Gong
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Zhengfei Yang
- Emergency Department, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong Province, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Baimeng Zhang
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| |
Collapse
|
10
|
Voropaev H, Gimmelshein Vatkin M, Shneor D, Luski S, Honigman A, Frenkel S. Infectious Knockdown of CREB and HIF-1 for the Treatment of Metastatic Uveal Melanoma. Cancers (Basel) 2019; 11:cancers11081056. [PMID: 31357444 PMCID: PMC6721386 DOI: 10.3390/cancers11081056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular cancer in adults. Up to half the patients develop metastases that are currently incurable, and most patients die within two years following the diagnosis of metastases. Therefore, novel therapeutic approaches are required. It has been established that tumor cells are more resistant to the hypoxia cue than non-malignant cells and can remain viable in hypoxia. Oxygen absence in hypoxic tumor areas means the absence of chemotherapeutics and the absence of the effector for radiotherapy (free oxygen radicals). To overcome this treatment resistance, we constructed MuLV-based replication-competent retroviral (RCR) vectors expressing shRNA targeting the hypoxia-response regulating genes CREB and HIF-1. These RCRs express shRNAs either against a single exon or against an exon and the poly-A signal to minimize the point-mutation resistance. These RCRs that only infect replicating cells will preferentially infect tumor cells. Pre-infected Mel270 UM subcutaneous xenografts in SCID mice were monitored weekly in vivo via bioluminescence. Here, we demonstrate that the knockdown of CREB or HIF-1 in UM cells dramatically decreases UM tumor progression. The reduction of the expression of Glut-1, which is a major glucose transporter in cancer cells, within tumors that are infected with the armed viruses may indicate UM's dependence on glycolysis for tumor progression.
Collapse
Affiliation(s)
- Hanna Voropaev
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Maria Gimmelshein Vatkin
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Dudi Shneor
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Shahar Luski
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Alik Honigman
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Biotechnology, Hadassah Academic College, Jerusalem 9101001, Israel
| | - Shahar Frenkel
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
11
|
A novel combinatorial treatment option for metastatic uveal melanoma. Oncotarget 2018; 9:26096-26108. [PMID: 29899845 PMCID: PMC5995237 DOI: 10.18632/oncotarget.25445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/28/2018] [Indexed: 01/01/2023] Open
Abstract
Uveal melanoma (UM) is the most frequent intraocular tumor in adult patients. When metastases occur, systemic therapy with alkylating agents (fotemustine or dacarbazine (DTIC)) has shown only modest efficacy. The common chemotherapeutic drug doxorubicin (DOX) is not used to treat metastatic UM (mUM). To expand the chemotherapeutic arsenal for mUM, we tested the effect of DOX on UM cell mortality. We have previously shown that CREB knockdown enhances sensitivity to DOX. UM cells infected with recombinant MuLV-based replicative competent retroviruses (RCR) expressing shRNA targeting CREB were co-treated with either DTIC or DOX. We found that CREB knockdown increases the sensitivity of these cells to both DOX and DTIC in normoxia and more so in hypoxia as measured by cell survival and Caspase 3 activation. The ability to combine CREB knockdown by infection with the RCR recombinant virus which preferentially infects replicating tumor cells and chemotherapy to achieve the same amount of cell death in lower concentrations may result in fewer side effects of the drugs. This combination is a possible new treatment for mUM.
Collapse
|
12
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|