1
|
Pathak S, Zajac KK, Annaji M, Govindarajulu M, Nadar RM, Bowen D, Babu RJ, Dhanasekaran M. Clinical outcomes of chemotherapy in cancer patients with different ethnicities. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1830. [PMID: 37150853 PMCID: PMC10440845 DOI: 10.1002/cnr2.1830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Choosing the most effective chemotherapeutic agent with safest side effect profile is a common challenge in cancer treatment. Although there are standardized chemotherapy protocols in place, protocol changes made after extensive clinical trials demonstrate significant improvement in the efficacy and tolerability of certain drugs. The pharmacokinetics, pharmacodynamics, and tolerance of anti-cancer medications are all highly individualized. A driving force behind these differences lies within a person's genetic makeup. RECENT FINDINGS Pharmacogenomics, the study of how an individual's genes impact the processing and action of a drug, can optimize drug responsiveness and reduce toxicities by creating a customized medication regimen. However, these differences are rarely considered in the initial determination of standardized chemotherapeutic protocols and treatment algorithms. Because pharmacoethnicity is influenced by both genetic and nongenetic variables, clinical data highlighting disparities in the frequency of polymorphisms between different ethnicities is steadily growing. Recent data suggests that ethnic variations in the expression of allelic variants may result in different pharmacokinetic properties of the anti-cancer medication. In this article, the clinical outcomes of various chemotherapy classes in patients of different ethnicities were reviewed. CONCLUSION Genetic and nongenetic variables contribute to the interindividual variability in response to chemotherapeutic drugs. Considering pharmacoethnicity in the initial determination of standard chemotherapeutic protocols and treatment algorithms can lead to better clinical outcomes of patients of different ethnicities.
Collapse
Affiliation(s)
- Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Kelsee K. Zajac
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison College of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Rishi M. Nadar
- Department of Drug Discovery and Development, Harrison College of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Dylan Bowen
- Department of Drug Discovery and Development, Harrison College of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of PharmacyAuburn UniversityAuburnAlabamaUSA
| | | |
Collapse
|
2
|
Bi SQ, Peng Y, Wei ZD, Yao SZ, Luo B, Ge YY, Xie XX, Nong WX, Liu C, Xiao SW, Zhang QM. FMR1NB Involved in Glioma Tumorigenesis Is a Promising Target for Prognosis and Therapy. Curr Med Sci 2022; 42:803-816. [PMID: 35819657 DOI: 10.1007/s11596-022-2586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/12/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Cancer/testis antigen FMR1NB is aberrantly expressed in various types of cancer, but not in normal tissues except for testis. This study aimed to investigate the expression and functional role of FMR1NB in glioma. METHODS The expression of FMR1NB mRNA and protein was determined using RT-PCR and immunohistochemistry, respectively, in glioma specimens from 83 patients at follow-up. The effects of siRNA-mediated FMR1NB silencing on malignant biological behaviors were evaluated in glioma cell lines A172 and U251. RESULTS FMR1NB mRNA and protein expression was detected in 58.8% (77/131) and 46.34% (57/123) of glioma tissues, respectively. FMR1NB protein was positively correlated with World Health Organization grade and found to be an independent prognostic marker for poor outcome. Knockdown of FMR1NB induced apoptosis and suppressed proliferation, adhesion, migration, and invasion by modulating the expression of cyclin A, CDK2, caspase-3, E-cadherin, and N-cadherin in A172 and U251 cells. CONCLUSION Our findings suggest that FMR1NB contributes to the tumorigenesis of glioma cells and may represent a potential prognostic biomarker and an attractive therapeutic target in glioma.
Collapse
Affiliation(s)
- Shui-Qing Bi
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ya Peng
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Zong-Dang Wei
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Sheng-Zhong Yao
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Ying-Ying Ge
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Wei-Xia Nong
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Chang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shao-Wen Xiao
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China.
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
3
|
Moitra P, Chatterjee A, Kota PK, Epari S, Patil V, Dasgupta A, Kowtal P, Sarin R, Gupta T. Temozolomide-induced myelotoxicity and single nucleotide polymorphisms in the MGMT gene in patients with adult diffuse glioma: a single-institutional pharmacogenetic study. J Neurooncol 2022; 156:625-634. [PMID: 35037156 DOI: 10.1007/s11060-022-03944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Nearly 10% of patients with adult diffuse glioma develop clinically significant myelotoxicity while on temozolomide (TMZ) leading to treatment interruptions. This study aimed to assess single nucleotide polymorphisms (SNPs) in the O6-methylguanine-DNA methyltransferase (MGMT) gene in adults with biopsy-proven diffuse glioma who develop TMZ-induced myelotoxicity and correlate their presence with severity and duration of such toxicity. METHODS This study assessed 33 adults treated with TMZ for diffuse glioma who developed ≥ grade 2 thrombocytopenia and/or ≥ grade 3 neutropenia. Genomic DNA was extracted from peripheral blood cells for MGMT SNP analysis after written informed consent. TMZ-induced severe myelotoxicity (≥ grade 3) was correlated with three specified SNPs commonly seen in the MGMT gene (L84F, I143V/K178R) using chi-square test or Fischer's exact test as appropriate. RESULTS Of the 33 adults, 24 (72.7%) experienced ≥ grade 3 thrombocytopenia and/or neutropenia, while 9 (27.3%) developed grade 2 thrombocytopenia only. The variant T allele of L84F was expressed in 28.7% (19/66) of analyzed alleles, which was substantially higher than previously reported for South Asian ancestry. The variant G allele of I143V/K178R was expressed in 9.3% (6/64) of analyzed alleles. Of which 3 patients showed statistically significant association with prolonged myelosuppression for > 2 months (p = 0.03). No significant correlation was established between the mentioned SNPs and severe myelotoxicity. CONCLUSIONS There is substantially higher frequency of variant T allele (L84F) in Indian patients than previously reported for South Asians. The presence of specific SNPs in the MGMT gene correlates with prolonged duration but not severity of TMZ-induced myelotoxicity.
Collapse
Affiliation(s)
- Prithwijit Moitra
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India
| | - Abhishek Chatterjee
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India
| | - Priti Khatri Kota
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Archya Dasgupta
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India
| | - Pradnya Kowtal
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Rajiv Sarin
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Tejpal Gupta
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India.
| |
Collapse
|
4
|
Comprehensive pharmacogenomics characterization of temozolomide response in gliomas. Eur J Pharmacol 2021; 912:174580. [PMID: 34678239 DOI: 10.1016/j.ejphar.2021.174580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/11/2023]
Abstract
Recent developments in pharmacogenomics have created opportunities for predicting temozolomide response in gliomas. Temozolomide is the main first-line alkylating chemotherapeutic drug together with radiotherapy as standard treatments of high-risk gliomas after surgery. However, there are great individual differences in temozolomide response. Besides the heterogeneity of gliomas, pharmacogenomics relevant genetic polymorphisms can not only affect pharmacokinetics of temozolomide but also change anti-tumor effects of temozolomide. This review will summarize pharmacogenomic studies of temozolomide in gliomas which can lay the foundation to personalized chemotherapy.
Collapse
|
5
|
Kim NY, Hwang SH, Yang Y, Kim Y. Temozolomide abrogates the aggressiveness of urothelial carcinoma cells by enhancing senescence and depleting the side population. Oncol Lett 2021; 22:845. [PMID: 34733363 PMCID: PMC8561215 DOI: 10.3892/ol.2021.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with advanced urothelial carcinoma (UC) generally have poor prognoses due to therapeutic resistance. Furthermore, there are limited treatment options for advanced UC. Therefore, novel or effective chemotherapeutic agents are needed to improve patient survival. The present study was conducted to investigate the effect of temozolomide (TMZ) on UC cells so as to identify a potential method to overcome therapeutic resistance. TMZ is an alkylating agent with a target different from that of other anticancer drugs used to treat UC, such as cisplatin. TMZ enhanced the autophagic response and senescence, which was mediated via the p53 and p21 pathways. Inhibiting the autophagic response using chloroquine synergistically augmented the cytotoxic effect of TMZ on UC cells. TMZ significantly reduced the invasiveness of UC cells. Notably, the abundance of side population fraction was also significantly reduced following TMZ treatment. Considering that side population fraction is known to confer therapeutic resistance, it is noteworthy that the TMZ treatment markedly decreased side population fraction. Altogether, TMZ may have the potential to be applied as a part of an alternative treatment strategy to reduce the malignancy of UC cells.
Collapse
Affiliation(s)
- Na-Yon Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyun Hwang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeseul Yang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Ding X, Zhao Y, Yuan H, Zhang Y, Gao Y. Role of PVT1 polymorphisms in the glioma susceptibility and prognosis. Eur J Cancer Prev 2021; 30:400-408. [PMID: 33443959 DOI: 10.1097/cej.0000000000000636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Genetic factors play a crucial role in the glioma risk and prognosis of glioma patients. To explore the role of plasmacytoma variant translocation 1 (PVT1) polymorphism in the susceptibility and survival of glioma in the Chinese Han population, we conducted a case-control study. METHODS The three single-nucleotide polymorphisms (SNPs) in PVT1 were genotyped using Agena MassARRAY from 575 patients with glioma and 500 healthy controls. We used the χ2 test to analyze the differences in distribution of allele and genotype between the cases and controls. Odds ratio and 95% confidence interval (CI) were calculated by logistic regression analysis to evaluate the association SNPs with glioma risk. The effects of polymorphisms and clinical features on survival of glioma patients were evaluated using the log-rank test, Kaplan-Meier and Cox regression analysis. RESULTS We found that rs13255292 was associated with a decreased risk of glioma in the recessive model in overall or male; and rs4410871 was significantly associated with an increased the risk of glioma in age ≤40 years old or female. Moreover, the extent of resection and chemotherapy were found to be key prognostic factors in survival of glioma patients. However, the gender, age, tumor grade, radiotherapy and PVT1 polymorphisms have no effect on prognosis of glioma patients. CONCLUSIONS Our results indicated that PVT1 polymorphisms (rs13255292 and rs4410871) were associated with glioma susceptibility, but have no effect on prognosis of glioma patients. Further studies with large samples are required to confirm the results.
Collapse
Affiliation(s)
| | | | | | | | - Ya Gao
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
7
|
miR-149 rs2292832 C allele enhances the cytotoxic effect of temozolomide against glioma cells. Neuroreport 2020; 31:498-506. [DOI: 10.1097/wnr.0000000000001440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Yan Y, Xu Z, Chen X, Wang X, Zeng S, Zhao Z, Qian L, Li Z, Wei J, Huo L, Li X, Gong Z, Sun L. Novel Function of lncRNA ADAMTS9-AS2 in Promoting Temozolomide Resistance in Glioblastoma via Upregulating the FUS/MDM2 Ubiquitination Axis. Front Cell Dev Biol 2019; 7:217. [PMID: 31632968 PMCID: PMC6783494 DOI: 10.3389/fcell.2019.00217] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND LncRNAs have been shown to play essential roles in cancer therapeutic response. However, the detailed mechanism of lncRNAs in temozolomide (TMZ) resistance in glioblastoma (GBM) remain to be elucidated. METHODS To elucidate the mechanism maintaining TMZ resistance, we constructed two TMZ-resistant GBM cell lines (T98G-R/U118-R). LncRNAs from four public datasets were reanalyzed, and the candidate lncRNA ADAMTS9-AS2 was evaluated in TMZ-treated GBM patients and in vitro cell lines. RESULTS Reanalysis of lncRNA expression profiles identified ADAMTS9-AS2 as significantly overexpressed in TMZ-resistant GBM cells and as positively associated with the IC50 of TMZ in GBM cells. Overexpression of ADAMTS9-AS2 was also significantly associated with poor TMZ response and shorter progression-free survival (PFS) in TMZ-treated GBM patients. Knockdown of ADAMTS9-AS2 inhibited proliferation and attenuated the IC50 of TMZ, as well as mitigating invasion and migration in TMZ-resistant GBM cells. Subsequent investigations indicated that reduced expression of ADAMTS9-AS2 significantly suppressed expression of the FUS protein, which was predicted as a direct substrate of ADAMTS9-AS2. Expression trends of FUS were directly correlated with those of ADAMTS9-AS2, as shown by increasing concentrations and prolonged treatment with TMZ. RNA pull-down and RIP assays indicated that both endogenous and exogenous ADAMTS9-AS2 directly binds to the RRM and Znf_RanBP2 domains of FUS, consequently increasing FUS protein expression. Knockdown of ADAMTS9-AS2 reduced the half-life of FUS and decreased FUS protein stability via K48 ubiquitin degradation. Moreover, the E3 ubiquitin-protein ligase MDM2 interacts with and down regulates FUS, while the RRM and Znf_RanBP2 domains of FUS facilitate its binding with MDM2. ADAMTS9-AS2 decreased the interaction between MDM2 and FUS, which mediates FUS K48 ubiquitination. Additionally, knockdown of the ADAMTS9-AS2/FUS signaling axis significantly alleviated progression and metastasis in TMZ-resistant cells. CONCLUSION ADAMTS9-AS2 possessed a novel function that promotes TMZ resistance via upregulating the FUS/MDM2 axis in GBM cells. The RRM or Znf_RanBP2 domains of FUS facilitate the combination of ADAMTS9-AS2 and FUS, competitively inhibiting MDM2-dependent FUS K48 ubiquitination and resulting in enhanced FUS stability and TMZ resistance. Our results suggest that the ADAMTS9-AS2/FUS/MDM2 axis may represent a suitable prognostic biomarker and a potential target in TMZ-resistant GBM therapy.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Li
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Huo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|