1
|
St Helen G, Havel C, Addo N, Criner N, Jacob P, Benowitz N. Using a loose-leaf vaporizer to study tobacco-cannabis co-administration: A proof-of-concept study. Drug Alcohol Depend 2025; 272:112678. [PMID: 40328077 DOI: 10.1016/j.drugalcdep.2025.112678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/14/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVE We examined differences in Δ-9-tetrahydrocannabinol (THC) and nicotine intake, pharmacokinetics, subjective and physiologic effects from use of cannabis only, tobacco only, and a mixture of cannabis and tobacco using a PAX-3 vaporizer. METHODS Eight (7M, 1F) healthy adults who use both cannabis and tobacco participated in a 3-arm, within-subject study. Participants were administered 3 standardized puffs of cannabis only, tobacco only, or a 50-50 mixture with a PAX-3. Blood was collected and questionnaires were administered before and after the last puff. RESULTS Average maximum plasma THC concentration (Cmax) and area under the plasma THC concentration-time curve (AUC) were significantly higher after vaping the mixture compared to cannabis only [Cmax: 25.7 ± 14.0ng/mL vs. 9.7 ± 6.5ng/mL, p < 0.04 (mean±SD); AUC: 590 ± 555ng/mL•min vs. 306 ± 258ng/mL•min, p < 0.02]. Similarly, plasma nicotine Cmax and AUC(0→360) were significantly higher after vaping the mixture compared to tobacco only [Cmax: 1.6 ± 0.71ng/mL vs. 0.55 ± 0.32ng/mL, p < 0.02; AUC: 135 ± 35.7ng/mL•min vs. 63.1 ± 25.4ng/mL•min, p < 0.01]. Although elevated from use of the mixture, heart rate changes were not significantly different across study conditions. Subjective effects generally did not differ across study conditions, but this may have been due to the small sample size of the study. CONCLUSION Vaping cannabis and tobacco together leads to greater exposure to THC and nicotine than the substances by themselves. Despite differences in THC exposure, subjective effects and heart rate were not different between the mixture and cannabis only, indicating potential attenuation of THC-related effects by nicotine.
Collapse
Affiliation(s)
- Gideon St Helen
- Research Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA.
| | - Christopher Havel
- Research Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Newton Addo
- Research Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Nickole Criner
- Research Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Peyton Jacob
- Research Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Neal Benowitz
- Research Program in Clinical Pharmacology, Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Caicedo DA, Pérez-Mañá C, Farré M, Papaseit E. An Overview of the Potential for Pharmacokinetic Interactions Between Drugs and Cannabis Products in Humans. Pharmaceutics 2025; 17:319. [PMID: 40142983 PMCID: PMC11945156 DOI: 10.3390/pharmaceutics17030319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Cannabis is the most commonly used illicit substance worldwide. Recent years have seen an increase in cannabis consumption, and with new approvals and therapeutic indications, there are challenges in minimizing the risks and interactions between cannabis-based products, cannabis prescription drugs, other approved prescription drugs, and other substances of abuse. Thus, identifying the enzymes metabolizing cannabinoid drugs and their relationship with other prescription drugs is crucial for understanding the potential interactions and effects of their simultaneous use. This article offers a comprehensive review of cannabis and the pharmacokinetic interactions between cannabis products, cannabis prescription drugs, and other approved prescription drugs, as well as other substances of abuse. It also compiles existing evidence of these interactions and describes the clinical outcomes associated with the inhibition or induction of various enzymes.
Collapse
Affiliation(s)
- Dolly Andrea Caicedo
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias I Pujol, Institut de Recerca Germans Trias i Pujol (IGTP), Carretera de Canyet, s/n, 08916 Badalona, Spain; (D.A.C.); (C.P.-M.); (E.P.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Clara Pérez-Mañá
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias I Pujol, Institut de Recerca Germans Trias i Pujol (IGTP), Carretera de Canyet, s/n, 08916 Badalona, Spain; (D.A.C.); (C.P.-M.); (E.P.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Magí Farré
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias I Pujol, Institut de Recerca Germans Trias i Pujol (IGTP), Carretera de Canyet, s/n, 08916 Badalona, Spain; (D.A.C.); (C.P.-M.); (E.P.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Esther Papaseit
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias I Pujol, Institut de Recerca Germans Trias i Pujol (IGTP), Carretera de Canyet, s/n, 08916 Badalona, Spain; (D.A.C.); (C.P.-M.); (E.P.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Singh C, Rao K, Yadav N, Vashist Y, Chugh P, Bansal N, Minocha N. Current Cannabidiol Safety: A Review. Curr Drug Saf 2023; 18:465-473. [PMID: 36056846 DOI: 10.2174/1574886317666220902100511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Marijuana, also known as cannabis, is the second most widely used illegal psychoactive substance smoked worldwide after tobacco, mainly due to the psychoactive effects induced by D-9-tetrahydrocannabinol (9-THC). Cannabidiol (CBD) is extracted from cannabis and may be used as an anti-inflammatory agent. Some patents on cannabidiol are discussed in this review. The cannabinoid is a non-psychoactive isomer of the more infamous tetrahydrocannabinol (THC); and is available in several administration modes, most known as CBD oil. OBJECTIVES This study aims to provide an enhanced review of cannabidiol properties used in treating inflammation. This review also emphasises the current safety profile of cannabidiol. METHODS Cannabis is also called Marijuana. It is the second most commonly used illegal psychoactive substance in the universe after tobacco. D-9-tetrahydrocannabinol (9-THC) present in cannabis produces psychoactive effects. Cannabidiol (CBD) extracted from cannabis is used for antiinflammatory purposes. Cannabis smoking causes various types of cancer, such as lung, tongue, and jaw. The current review took literature from Google Scholar, PubMed, and Google Patents. Many clinical investigations are included in this review. RESULT After analysing the literature on cannabis, it has been suggested that although cannabis is banned in some countries, it may be included in the treatment and mitigation of some diseases and symptoms like pain management, epilepsy, cancer, and anxiety disorder. Mild side effects were frequently observed in cannabis medications, which included infertility in females, liver damage, etc. Conclusion: Cannabis contains chemical compounds such as the cannabinoids delta-9- tetrahydrocannabinol (THC), a psychoactive substance, and non-psychoactive cannabidiol (CBD). Cannabidiol has been confirmed as an efficient treatment of epilepsy in several clinical trials, with one pure CBD product named Epidiolex. It is also used in treating anxiety and acne, as a pain reliever, and has anti-inflammatory properties.
Collapse
Affiliation(s)
- Chander Singh
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Komal Rao
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Nikita Yadav
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Yogesh Vashist
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Palak Chugh
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Nidhi Bansal
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Neha Minocha
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| |
Collapse
|
4
|
Fonseca DA, Ribeiro DM, Tapadas M, Cotrim MD. Ecstasy (3,4-methylenedioxymethamphetamine): Cardiovascular effects and mechanisms. Eur J Pharmacol 2021; 903:174156. [PMID: 33971177 DOI: 10.1016/j.ejphar.2021.174156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022]
Abstract
3,4-methylenedioxymethamphetamine or MDMA (known as "ecstasy") is a recreational drug of abuse, popular worldwide for its distinctive psychotropic effects. Currently, the therapeutic potential of MDMA in psychotherapy has attracted a lot of interest from the scientific community, despite the multitude of effects that this drug of abuse elicits on the human body. While neuronal effects have been the most studied, cardiovascular effects have also been described, as increased blood pressure and heart rate are the most recognizable. However, other effects have also been described at the cardiac (impaired cardiac contractile function, arrhythmias, myocardial necrosis and valvular heart disease) and vascular (vasoconstriction, disruption of vascular integrity and altered haemostasis) levels. Several mechanisms have been proposed, from the interaction with monoamine transporters and receptors to the promotion of oxidative stress or the activation of matrix metalloproteinases (MMPs). This review provides an overview of the cardiovascular implications of MDMA intake and underlying mechanisms, relevant when considering its consumption as drug of abuse but also when considering its therapeutic potential in psychiatry. Moreover, the risk/benefit ratio of the therapeutic use of MDMA remains to be fully elucidated from a cardiovascular standpoint, particularly in patients with underlying cardiovascular disease.
Collapse
Affiliation(s)
- Diogo A Fonseca
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal.
| | - Daniel M Ribeiro
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal
| | - Margarida Tapadas
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal
| | - Maria Dulce Cotrim
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal
| |
Collapse
|
5
|
Pasha AK, Clements CY, Reynolds CA, Lopez MK, Lugo CA, Gonzalez Y, Shirazi FM, Abidov A. Cardiovascular Effects of Medical Marijuana: A Systematic Review. Am J Med 2021; 134:182-193. [PMID: 33186596 DOI: 10.1016/j.amjmed.2020.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022]
Abstract
Utilization of marijuana as a medicinal agent is becoming increasingly popular, and so far, 25 states have legalized it for medical purposes. However, there is emerging evidence that marijuana use can result in cardiovascular side effects, such as rhythm abnormalities, syncope/dizziness, and myocardial infarction, among others. Further, there are currently no stringent national standards or approval processes, like Food and Drug Administration (FDA) evaluation, in place to assess medical marijuana products. This review includes the largest up-to-date pooled population of patients with exposure to marijuana and reported cardiovascular effects. Although purported as benign by many seeking to advance the use of marijuana as an adjunctive medical therapy across the country, marijuana is associated with its own set of cardiovascular risks and deserves further definitive study and the same level of scrutiny we apply in research of all other types of medications. When used as a medicinal agent, marijuana should be regarded accordingly, and both clinical providers and patients must be aware of potential adverse effects associated with its use for early recognition and management.
Collapse
Affiliation(s)
- Ahmed K Pasha
- Hospital Internal Medicine, Mayo Clinic Health System, Mankato, Minn
| | | | | | | | | | | | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson
| | - Aiden Abidov
- Cardiology Section, John D. Dingell VA Medical Center, Detroit, Mich.
| |
Collapse
|
6
|
Kim TE, Townsend RK, Branch CL, Romero-Sandoval EA, Hsu W. Cannabinoids in the Treatment of Back Pain. Neurosurgery 2021; 87:166-175. [PMID: 32097466 DOI: 10.1093/neuros/nyz573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/30/2019] [Indexed: 01/17/2023] Open
Abstract
Marijuana is increasingly utilized for the treatment of multiple medical problems, including back pain, in the United States. Although there is strong preclinical evidence supporting the promise of cannabinoids in the treatment of back pain, there is a paucity of clinical data supporting their use in clinical practice. Opioids are an important medication for the treatment of acute and chronic back pain, but utilization of opioid-based regimens have likely contributed to the growing opioid epidemic. The significant risk of morbidity, mortality, and dependence secondary to opioid medications have increased the interest in nonopioid medications, including cannabinoid-based pain regimens, in treating back pain. This review will provide an overview on the pharmacology, drug delivery methods, clinical evidence, and safety considerations critical to understanding the potential role of cannabinoids in the treatment of back pain.
Collapse
Affiliation(s)
- Teddy E Kim
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Robert K Townsend
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Charles L Branch
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Edgar A Romero-Sandoval
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Wesley Hsu
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
7
|
Adamson M, Di Giovanni B, Delgado DH. The positive and negative cardiovascular effects of cannabis. Expert Rev Cardiovasc Ther 2020; 18:905-917. [PMID: 33054426 DOI: 10.1080/14779072.2020.1837625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The use of cannabis and its derivatives have increased steadily over the past few decades, prompting patients and clinicians to increasingly inquire about its health effects and safety profile. However, despite promising evidence suggesting therapeutic utilization, cannabis remains a controlled substance in most countries and is largely considered to have no medical or recreational benefit; thus, a lack of observational studies and randomized control trials exist to outline positive and negative health implications. Ultimately, this leaves patients, health-care professionals, and policymakers without necessary evidence required to make informed decisions on cannabis use. AREAS COVERED This review outlines cannabis in a clinical setting and delves into specific effects of cannabinoids on cardiovascular health and disease. It discusses positive and negative health implications associated with cannabis, mechanisms in cardiovascular disease, and reveals methods guiding cannabis use in the clinical setting. EXPERT OPINION Advances in research are necessary to guide decisions regarding cannabinoid use. Countries that have federally legalized cannabis have a unique opportunity to study cardiovascular implications in an unbiased and comprehensive manner. Ultimately, as cannabis use will inevitably increase, researchers, clinicians, and policymakers must work together to ensure cannabis is utilized in a way that is therapeutically beneficial.
Collapse
Affiliation(s)
- Mitchell Adamson
- Department of Medicine, Institute of Medical Sciences, University of Toronto , Toronto, ON, Canada.,Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network , Toronto, ON, Canada
| | - Bennett Di Giovanni
- Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network , Toronto, ON, Canada
| | - Diego H Delgado
- Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network , Toronto, ON, Canada
| |
Collapse
|
8
|
Papaseit E, Pérez-Mañá C, Torrens M, Farré A, Poyatos L, Hladun O, Sanvisens A, Muga R, Farré M. MDMA interactions with pharmaceuticals and drugs of abuse. Expert Opin Drug Metab Toxicol 2020; 16:357-369. [DOI: 10.1080/17425255.2020.1749262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Esther Papaseit
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Clara Pérez-Mañá
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Marta Torrens
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
- Drug Addiction Program, Institut De Neuropsiquiatria I Addiccions-INAD, Hospital Del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Adriana Farré
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
- Drug Addiction Program, Institut De Neuropsiquiatria I Addiccions-INAD, Hospital Del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Lourdes Poyatos
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Olga Hladun
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Arantza Sanvisens
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
| | - Roberto Muga
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| | - Magi Farré
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Departament of Pharmacology, Medicine and Psychiatry, Universitat Autònoma De Barcelona, Badalona, Spain
| |
Collapse
|
9
|
Sánchez Artiles AE, Awan A, Karl M, Santini A. Cardiovascular effects of cannabis (marijuana): A timely update. Phytother Res 2019; 33:1592-1594. [PMID: 30761633 DOI: 10.1002/ptr.6315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/08/2023]
Abstract
Cannabis (medical marijuana) is generally considered a low toxicity drug. The plant belongs to the family Cannabaceae (Urticales). Two main species may be recognized: Cannabis sativa and Cannabis indica. Plants of this species contain many psychoactive components, the cannabinoids, including the primary psychoactive compound Δ-9-tetrahydrocannabinol (THC), the active substance present in Marijuana. The history of its cultivation and use dates back thousands of years. A possible first documented use for medical purposes of this drug is found in Chinese records dated from 28th century BC. Moreover, the presence of THC has been detected in several internal organs from an Egyptian mummy with a 14 C-dating of approximately 950 BC. Evidence of therapeutic potential for marijuana and its components has been suggested for a large number of medical conditions. Despite this, a variety of cardiovascular complications have been documented. Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors CB1 and CB2 has been, in fact, linked to different cardiovascular pathologies. Here, we describe a timely update of possible cardiovascular effects of its use for medical purposes.
Collapse
Affiliation(s)
| | - Areeba Awan
- Schmidt School of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Mitchell Karl
- Schmidt School of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
10
|
Wemm SE, Sinha R. Drug-induced stress responses and addiction risk and relapse. Neurobiol Stress 2019; 10:100148. [PMID: 30937354 PMCID: PMC6430516 DOI: 10.1016/j.ynstr.2019.100148] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
A number of studies have assessed the effects of psychoactive drugs on stress biology, the neuroadaptations resulting from chronic drug use on stress biology, and their effects on addiction risk and relapse. This review mainly covers human research on the acute effects of different drugs of abuse (i.e., nicotine, cannabis, psychostimulants, alcohol, and opioids) on the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS) responses. We review the literature on acute peripheral stress responses in naïve or light recreational users and binge/heavy or chronic drug users. We also discuss evidence of alterations in tonic levels, or tolerance, in the latter relative to the former and associated changes in the phasic stress responses. We discuss the impact of the stress system tolerance in heavy users on their response to drug- and stress-related cue responses and craving as compared to control subjects. A summary is provided of the effects of glucocorticoid responses and their adaptations on brain striatal and prefrontal cortices involved in the regulation of drug seeking and relapse risk. Finally, we summarize important considerations, including individual difference factors such as gender, co-occurring drug use, early trauma and adversity and drug use history and variation in methodologies, that may further influence the effects of these drugs on stress biology.
Collapse
Affiliation(s)
- Stephanie E. Wemm
- Yale Stress Center, Yale School of Medicine, 2 Church St South Suite 209, New Haven, CT, 06519, USA
| | | |
Collapse
|
11
|
Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol 2018; 84:2477-2482. [PMID: 30001569 DOI: 10.1111/bcp.13710] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
There is increasing interest in the use of cannabinoids for disease and symptom management, but limited information available regarding their pharmacokinetics and pharmacodynamics to guide prescribers. Cannabis medicines contain a wide variety of chemical compounds, including the cannabinoids delta-9-tetrahydrocannabinol (THC), which is psychoactive, and the nonpsychoactive cannabidiol (CBD). Cannabis use is associated with both pathological and behavioural toxicity and, accordingly, is contraindicated in the context of significant psychiatric, cardiovascular, renal or hepatic illness. The pharmacokinetics of cannabinoids and the effects observed depend on the formulation and route of administration, which should be tailored to individual patient requirements. As both THC and CBD are hepatically metabolized, the potential exists for pharmacokinetic drug interactions via inhibition or induction of enzymes or transporters. An important example is the CBD-mediated inhibition of clobazam metabolism. Pharmacodynamic interactions may occur if cannabis is administered with other central nervous system depressant drugs, and cardiac toxicity may occur via additive hypertension and tachycardia with sympathomimetic agents. More vulnerable populations, such as older patients, may benefit from the potential symptomatic and palliative benefits of cannabinoids but are at increased risk of adverse effects. The limited availability of applicable pharmacokinetic and pharmacodynamic information highlights the need to initiate prescribing cannabis medicines using a 'start low and go slow' approach, carefully observing the patient for desired and adverse effects. Further clinical studies in the actual patient populations for whom prescribing may be considered are needed, to derive a better understanding of these drugs and enhance safe and optimal prescribing.
Collapse
Affiliation(s)
- Catherine J Lucas
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NSW Health Cannabis Medicines Advisory Service, Newcastle, New South Wales, Australia
| | - Peter Galettis
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
| | - Jennifer Schneider
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NSW Health Cannabis Medicines Advisory Service, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
12
|
Papaseit E, Torrens M, Pérez-Mañá C, Muga R, Farré M. Key interindividual determinants in MDMA pharmacodynamics. Expert Opin Drug Metab Toxicol 2018; 14:183-195. [DOI: 10.1080/17425255.2018.1424832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- E. Papaseit
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - M. Torrens
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
- Drug Addiction Program, Institut de Neuropsiquiatria i Addiccions-INAD, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - C. Pérez-Mañá
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - R. Muga
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - M. Farré
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| |
Collapse
|
13
|
Abstract
The growing popularity of medical and recreational consumption of cannabis, especially among the youth, raises immediate concerns regarding its safety and long-terms effects. The cardiovascular effects of cannabis are not well known. Cannabis consumption has been shown to cause arrhythmia including ventricular tachycardia, and potentially sudden death, and to increase the risk of myocardial infarction (MI). These effects appear to be compounded by cigarette smoking and precipitated by excessive physical activity, especially during the first few hours of consumption. Cannabinoids, or the active compounds of cannabis, have been shown to have heterogeneous effects on central and peripheral circulation. Acute cannabis consumption has been shown to cause an increase in blood pressure, specifically systolic blood pressure (SBP), and orthostatic hypotension. Cannabis use has been reported to increase risk of ischemic stroke, particularly in the healthy young patients. The endocannabinoid system (ECS) is currently considered as a promising therapeutic target in the management of several disease conditions. Synthetic cannabinoids (SCs) are being increasingly investigated for their therapeutic effects; however, the value of their benefits over possible complications remains controversial. Despite the considerable research in this field, the benefits of cannabis and its synthetic derivatives remains questionable even in the face of an increasingly tolerating attitude towards recreational consumption and promotion of the therapeutic complications. More efforts are needed to increase awareness among the public, especially youth, about the cardiovascular risks associated with cannabis use and to disseminate the accumulated knowledge regarding its ill effects.
Collapse
Affiliation(s)
- Hemant Goyal
- Department of Internal Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Hamza H Awad
- Department of community Medicine/Internal Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Jalal K Ghali
- Division of Cardiology, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
14
|
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is being investigated in MDMA-assisted psychotherapy. The present study characterized the safety pharmacology of single-dose administrations of MDMA (75 or 125 mg) using data from nine double-blind, placebo-controlled, crossover studies performed in the same laboratory in a total of 166 healthy subjects. The duration of the subjective effects was 4.2 ± 1.3 h (range: 1.4-8.2 h). The 125 mg dose of MDMA produced greater 'good drug effect' ratings than 75 mg. MDMA produced moderate and transient 'bad drug effect' ratings, which were greater in women than in men. MDMA increased systolic blood pressure to >160 mmHg, heart rate >100 beats/min, and body temperature >38°C in 33%, 29% and 19% of the subjects, respectively. These proportions of subjects with hypertension (>160 mmHg), tachycardia, and body temperature >38°C were all significantly greater after 125 mg MDMA compared with the 75 mg dose. Acute and subacute adverse effects of MDMA as assessed by the List of Complaints were dose-dependent and more frequent in females. MDMA did not affect liver or kidney function at EOS 29 ± 22 days after use. No serious adverse events occurred. In conclusion, MDMA produced predominantly acute positive subjective drug effects. Bad subjective drug effects and other adverse effects were significantly more common in women. MDMA administration was overall safe in physically and psychiatrically healthy subjects and in a medical setting. However, the risks of MDMA are likely higher in patients with cardiovascular disease and remain to be investigated in patients with psychiatric disorders.
Collapse
Affiliation(s)
- Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Wiers CE, Shokri-Kojori E, Wong CT, Abi-Dargham A, Demiral ŞB, Tomasi D, Wang GJ, Volkow ND. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males. Neuropsychopharmacology 2016; 41:2596-605. [PMID: 27156854 PMCID: PMC4987858 DOI: 10.1038/npp.2016.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 12/14/2022]
Abstract
The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [(18)F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, caudate, midbrain, thalamus, and cerebellum. In CA, MP-induced metabolic increases in putamen correlated negatively with addiction severity. (iii) There were significant gender effects, such that both the group differences at baseline in frontal metabolism and the attenuated regional brain metabolic responses to MP were observed in female CA but not in male CA. As for other drug addictions, reduced baseline frontal metabolism is likely to contribute to relapse in CA. The attenuated responses to MP in midbrain and striatum are consistent with decreased brain reactivity to dopamine stimulation and might contribute to addictive behaviors in CA. The gender differences suggest that females are more sensitive than males to the adverse effects of cannabis in brain.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Christopher T Wong
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Anissa Abi-Dargham
- Division of Translational Imaging, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Şükrü B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| |
Collapse
|
16
|
Ray TS. Constructing the ecstasy of MDMA from its component mental organs: Proposing the primer/probe method. Med Hypotheses 2015; 87:48-60. [PMID: 26826641 DOI: 10.1016/j.mehy.2015.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/05/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
The drug MDMA, commonly known as ecstasy, produces a specific and distinct open hearted mental state, which led to the creation of a new pharmacological class, "entactogens". Extensive literature on its mechanisms of action has come to characterize MDMA as a "messy" drug with multiple mechanisms, but the consensus is that the distinctive entactogenic effects arise from the release of neurotransmitters, primarily serotonin. I propose an alternative hypothesis: The entactogenic mental state is due to the simultaneous direct activation of imidazoline-1 (I1) and serotonin-2 (5-HT2) receptors by MDMA. This hypothesis emerges from "mental organ" theory, which embodies many hypotheses, the most relevant of which are: "Mental organs" are populations of neurons that all express their defining metabotropic receptor, and each mental organ plays a distinct role in the mind, a role shaped by evolution as mental organs evolve by duplication and divergence. Mental organs are the mechanism by which evolution sculpts the mind. Mental organs can be in or out of consciousness. In order for a mental organ to enter consciousness, three things must happen: The mental organ must be activated directly at its defining receptor. 5-HT2 must be simultaneously activated. One of the functions of activated 5-HT2 is to load other simultaneously activated mental organs fully into consciousness. In some cases THC must be introduced to remove long-term blocks mediated by the cannabinoid system. I propose the "primer/probe" method to test these hypotheses. A "primer" is a drug that selectively activates 5-HT2 (e.g. DOB or MEM) or serotonin-1 (5-HT1) and 5-HT2 (e.g. DOET or 2C-B-fly). A "probe" is a drug that activates a receptor whose corresponding mental organ we wish to load into consciousness in order to understand its role in the mind. The mental organ is loaded into consciousness when the primer and probe are taken together, but not when taken separately. For example, the blood pressure medications rilmenidine and moxonidine are selective for imidazoline-1 and can be used to test the hypothesis that the entactogenic mental effects of MDMA are due to loading the imidazoline-1 mental organ into consciousness. The primer/probe method is not limited to testing the specific hypothesis about MDMA and imidazoline, but is a general method for studying the role of mental organs in the mind. For example, the role of dopamine mental organs can be studied by using Parkinson's drugs such as ropinirole or pramipexole as probes.
Collapse
Affiliation(s)
- Thomas S Ray
- Department of Biology, University of Oklahoma, Norman, OK 73069, United States.
| |
Collapse
|
17
|
Marchetti D, Spagnolo A, De Matteis V, Filograna L, De Giovanni N. Coronary thrombosis and marijuana smoking: a case report and narrative review of the literature. Drug Test Anal 2015; 8:56-62. [PMID: 26607055 DOI: 10.1002/dta.1898] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 11/11/2022]
Abstract
We encountered evidence of myocardial infarction due to coronary thrombosis in an autopsy of an occasional marijuana smoker. These findings prompted us to perform a narrative review of the literature to determine when post-mortem toxicological tests may support a temporal relationship between marijuana smoking and cardiovascular disease. Toxicological examination showed the presence of Δ-9-tetrahydrocannabinol, its main metabolite and cannabinol in blood and urine. Quali-quantitative analysis revealed that Δ-9-tetrahydrocannabinol was taken within 2 h of the onset of cardiovascular symptoms, according to circumstantial data. Post-mortem toxicological results must take into account the degradation and post-mortem redistribution of analytes. However, for any inference about the specific cardiovascular triggering effect of Δ-9-tetrahydrocannabinol intake, we maintain that cannabinoid analysis in blood samples must be considered an essential requirement to estimate the time of last intake and avoid incomplete documentation. The literature, combined with the present case report, highlights an association between marijuana use and negative cardiovascular events, although few authors have supported their conclusions with toxicological results. Thus, additional research is needed.
Collapse
Affiliation(s)
- Daniela Marchetti
- Institute of Public Health, Section of Legal Medicine, Catholic University of Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Angelico Spagnolo
- Institute of Public Health, Section of Legal Medicine, Catholic University of Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Valentino De Matteis
- Institute of Public Health, Section of Legal Medicine, Catholic University of Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Laura Filograna
- Institute of Public Health, Section of Legal Medicine, Catholic University of Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Nadia De Giovanni
- Institute of Public Health, Section of Legal Medicine, Catholic University of Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| |
Collapse
|
18
|
Liechti ME. Effects of MDMA on body temperature in humans. Temperature (Austin) 2014; 1:192-200. [PMID: 27626046 PMCID: PMC5008716 DOI: 10.4161/23328940.2014.955433] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 07/12/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023] Open
Abstract
Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation.
Collapse
Affiliation(s)
- Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology; Department of Biomedicine and Department of Clinical Research; University Hospital and University of Basel ; Switzerland
| |
Collapse
|
19
|
van den Elsen GAH, Ahmed AIA, Lammers M, Kramers C, Verkes RJ, van der Marck MA, Rikkert MGMO. Efficacy and safety of medical cannabinoids in older subjects: a systematic review. Ageing Res Rev 2014; 14:56-64. [PMID: 24509411 DOI: 10.1016/j.arr.2014.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
This systematic review aims to integrate the evidence on indications, efficacy, safety and pharmacokinetics of medical cannabinoids in older subjects. The literature search was conducted using PubMed, EMBASE, CINAHL and Cochrane Library. We selected controlled trials including solely older subjects (≥65 years) or reporting data on older subgroups. 105 (74%) papers, on controlled intervention trials, reported the inclusion of older subjects. Five studies reported data on older persons separately. These were randomized controlled trials, including in total 267 participants (mean age 47-78 years). Interventions were oral tetrahydrocannabinol (THC) (n=3) and oral THC combined with cannabidiol (n=2). The studies showed no efficacy on dyskinesia, breathlessness and chemotherapy induced nausea and vomiting. Two studies showed that THC might be useful in treatment of anorexia and behavioral symptoms in dementia. Adverse events were more common during cannabinoid treatment compared to the control treatment, and were most frequently sedation like symptoms. Although trials studying medical cannabinoids included older subjects, there is a lack of evidence of its use specifically in older patients. Adequately powered trials are needed to assess the efficacy and safety of cannabinoids in older subjects, as the potential symptomatic benefit is especially attractive in this age group.
Collapse
Affiliation(s)
- G A H van den Elsen
- Radboud university medical center, Radboud Alzheimer Centre, Department of Geriatric Medicine, Nijmegen, The Netherlands.
| | - A I A Ahmed
- Radboud university medical center, Radboud Alzheimer Centre, Department of Geriatric Medicine, Nijmegen, The Netherlands; Vincent van Gogh Institute, Department of Elderly, Venray, The Netherlands; Radboud university medical center, Department of Pharmacology and Toxicology, Nijmegen, The Netherlands.
| | - M Lammers
- Radboud university medical center, Radboud Alzheimer Centre, Department of Geriatric Medicine, Nijmegen, The Netherlands.
| | - C Kramers
- Radboud university medical center, Department of Pharmacology and Toxicology, Nijmegen, The Netherlands.
| | - R J Verkes
- Radboud university medical center, Department of Psychiatry, Nijmegen, The Netherlands.
| | - M A van der Marck
- Radboud university medical center, Radboud Alzheimer Centre, Department of Geriatric Medicine, Nijmegen, The Netherlands.
| | - M G M Olde Rikkert
- Radboud university medical center, Radboud Alzheimer Centre, Department of Geriatric Medicine, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Llorente-Berzal A, Puighermanal E, Burokas A, Ozaita A, Maldonado R, Marco EM, Viveros MP. Sex-dependent psychoneuroendocrine effects of THC and MDMA in an animal model of adolescent drug consumption. PLoS One 2013; 8:e78386. [PMID: 24223797 PMCID: PMC3817254 DOI: 10.1371/journal.pone.0078386] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/18/2013] [Indexed: 01/05/2023] Open
Abstract
Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd) 28 to 45, alone and/or in conjunction with 3,4-methylenedioxymethamphetamine [MDMA; two daily doses of 10 mg/kg every 5 days; s.c.] from pnd 30 to 45, in both male and female Wistar rats. When tested one day after the end of the pharmacological treatment (pnd 46), MDMA administration induced a reduction in directed exploration in the holeboard test and an increase in open-arm exploration in an elevated plus maze. In the long-term, cognitive functions in the novel object test were seen to be disrupted by THC administration to female but not male rats. In the prepulse inhibition test, MDMA-treated animals showed a decrease in prepulse inhibition at the most intense prepulse studied (80 dB), whereas in combination with THC it induced a similar decrease at 75 dB. THC decreased hippocampal Arc expression in both sexes, while in the frontal cortex this reduction was only evident in females. MDMA induced a reduction in ERK1/2 immunoreactivity in the frontal cortex of male but not female animals, and THC decreased prepro-orexin mRNA levels in the hypothalamus of males, although this effect was prevented when the animals also received MDMA. The results presented indicate that adolescent exposure to THC and/or MDMA induces long-term, sex-dependent psychophysiological alterations and they reveal functional interactions between the two drugs.
Collapse
Affiliation(s)
- Alvaro Llorente-Berzal
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Emma Puighermanal
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aurelijus Burokas
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrés Ozaita
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (RM); (MPV)
| | - Eva M. Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Maria-Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
- * E-mail: (RM); (MPV)
| |
Collapse
|
21
|
α₁-Adrenergic receptors contribute to the acute effects of 3,4-methylenedioxymethamphetamine in humans. J Clin Psychopharmacol 2013; 33:658-66. [PMID: 23857311 DOI: 10.1097/jcp.0b013e3182979d32] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Preclinical studies implicate a role for α₁-noradrenergic receptors in the effects of psychostimulants, including 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). The present study evaluated the effects of the α₁-noradrenergic receptor antagonist doxazosin on the acute pharmacodynamic and pharmacokinetic response to MDMA in 16 healthy subjects. Doxazosin (8 mg/d) or placebo was administered for 3 days before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, 4-session, crossover design. Doxazosin reduced MDMA-induced elevations in blood pressure, body temperature, and moderately attenuated positive mood but enhanced tachycardia associated with MDMA. The results indicate that α₁-adrenergic receptors contribute to the acute cardiostimulant and to a minor extent possibly also to the thermogenic and euphoric effects of MDMA in humans.
Collapse
|
22
|
Schulz S, Becker T, Nagel U, von Ameln-Mayerhofer A, Koch M. Chronic co-administration of the cannabinoid receptor agonist WIN55,212-2 during puberty or adulthood reverses 3,4 methylenedioxymetamphetamine (MDMA)-induced deficits in recognition memory but not in effort-based decision making. Pharmacol Biochem Behav 2013; 106:91-100. [DOI: 10.1016/j.pbb.2013.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 11/30/2022]
|
23
|
Hysek C, Schmid Y, Rickli A, Simmler LD, Donzelli M, Grouzmann E, Liechti ME. Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans. Br J Pharmacol 2012; 166:2277-88. [PMID: 22404145 DOI: 10.1111/j.1476-5381.2012.01936.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The use of ± 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') is associated with cardiovascular complications and hyperthermia. EXPERIMENTAL APPROACH We assessed the effects of the α(1) - and β-adrenoceptor antagonist carvedilol on the cardiostimulant, thermogenic and subjective responses to MDMA in 16 healthy subjects. Carvedilol (50 mg) or placebo was administered 1 h before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, four-period crossover design. KEY RESULTS Carvedilol reduced MDMA-induced elevations in blood pressure, heart rate and body temperature. Carvedilol did not affect the subjective effects of MDMA including MDMA-induced good drug effects, drug high, drug liking, stimulation or adverse effects. Carvedilol did not alter the plasma exposure to MDMA. CONCLUSIONS AND IMPLICATIONS α(1) - and β-Adrenoceptors contribute to the cardiostimulant and thermogenic effects of MDMA in humans but not to its psychotropic effects. Carvedilol could be useful in the treatment of cardiovascular and hyperthermic complications associated with ecstasy use.
Collapse
Affiliation(s)
- Cm Hysek
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Catecholaminergic polymorphic ventricular tachycardia found in an adolescent after a methylenedioxymethamphetamine and marijuana-induced cardiac arrest. Crit Care Med 2012; 40:2223-6. [PMID: 22584762 DOI: 10.1097/ccm.0b013e318250a870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To illustrate the challenges of managing patients with acute, undiagnosed arrhythmias through a case that demonstrates a possible association between catecholaminergic polymorphic ventricular tachycardia, a genetically determined severe arrhythmia disorder that often presents as either syncope or sudden death, and 3,4-Methylenedioxymethamphetamine ("Ecstasy") combined with marijuana, which are often considered safe drugs by users. DESIGN Case report. SETTING Pediatric intensive care unit. PATIENT A 15-yr-old male collapsed suddenly after ingesting an unknown substance and smoking marijuana. He was successfully resuscitated by first-responder chest compressions and rescue breaths along with a single 100-J shock by paramedics. He was intubated and transferred to a pediatric intensive care unit. Initial cardiac workup was negative but severe instability on vasopressors and a family history of intermittent palpitations and syncope in his brother raised suspicion for catecholaminergic polymorphic ventricular tachycardia. Identification of the unknown substance required coordination with a toxicology laboratory. INTERVENTIONS The patient had extremely labile cardiovascular responses to vasopressors. On day 5, his blood pressure was stable and he was extubated. A full cardiac workup, including a catheterization (preadmission to pediatric intensive care unit), electrocardiogram, cardiac magnetic resonance imaging were done to screen out most structural arrythmogenic diseases. A specific genetic test for catecholaminergic polymorphic ventricular tachycardia was sent. MEASUREMENTS AND MAIN RESULTS The patient's methylenedioxymethamphetamine blood level was 87 ng/mL approximately 12 hrs after ingestion. Given the 3-8 hr half-life of methylenedioxymethamphetamine, it is likely that levels were toxic at the time of ingestion (>110 ng/mL). Marijuana may have provided a synergistic critical catecholamine release to trigger an arrhythmia. Genetic testing showed a ryanodine receptor-2 mutation that was consistent with catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS While an initial cardiac workup for an acute, undiagnosed arrhythmia may be negative, family history may be a simple, essential component of patient management and disease diagnosis. This case demonstrates a possible association between methylenedioxymethamphetamine, marijuana, and catecholaminergic polymorphic ventricular tachycardia. All genetic and structural arrythmogenic disorders should be considered when working up a patient with presumed toxin-induced arrhythmias.
Collapse
|
25
|
Malinowska B, Baranowska-Kuczko M, Schlicker E. Triphasic blood pressure responses to cannabinoids: do we understand the mechanism? Br J Pharmacol 2012; 165:2073-88. [PMID: 22022923 DOI: 10.1111/j.1476-5381.2011.01747.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cannabinoids comprise three major classes of substances, including compounds derived from the cannabis plant (e.g. Δ(9) -tetrahydrocannabinol and the chemically related substances CP55940 and HU210), endogenously formed (e.g. anandamide) and synthetic compounds (e.g. WIN55212-2). Beyond their psychotropic effects, cannabinoids have complex effects on blood pressure, including biphasic changes of Δ(9) -tetrahydrocannabinol and WIN55212-2 and an even triphasic effect of anandamide. The differing pattern of blood pressure changes displayed by the three types of compounds is not really surprising since, although they share an agonistic effect at cannabinoid CB(1) and CB(2) receptors, some compounds have additional effects. In particular, anandamide is known for its pleiotropic effects, and there is overwhelming evidence that anandamide influences blood pressure via (i) CB(1) receptors, (ii) TRPV1 receptors, (iii) endothelial cannabinoid receptors and (iv) degradation products. This review is dedicated to the description of the effects of externally added cannabinoids on cardiovascular parameters in vivo. First, the cardiovascular effects of cannabinoids in anaesthetized animals will be highlighted since most data have been generated in experiments of that type. The text will follow the three phases of anandamide on blood pressure, and we will check to which extent cardiovascular changes elicited by other cannabinoids show overlap with those effects or differ. The second part will be dedicated to the cardiovascular effects of the cannabinoids in conscious animals. In the third part, cardiovascular effects in humans will be discussed, and similarities and differences with respect to the data from animals will be examined.
Collapse
Affiliation(s)
- Barbara Malinowska
- Zakład Fizjologii i Patofizjologii Doświadczalnej, Uniwersytet Medyczny w Białymstoku, ul. Mickiewicza 2A, Białystok, Poland
| | | | | |
Collapse
|
26
|
Licht CL, Christoffersen M, Okholm M, Damgaard L, Fink-Jensen A, Knudsen GM, Erritzoe D. Simultaneous polysubstance use among Danish 3,4-methylenedioxymethamphetamine and hallucinogen users: combination patterns and proposed biological bases. Hum Psychopharmacol 2012; 27:352-63. [PMID: 22696164 DOI: 10.1002/hup.2234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/03/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To describe patterns of simultaneous polysubstance use (SPU) among Danish 3,4-methylenedioxymethamphetamine (MDMA) ("Ecstasy") and hallucinogen users. METHODS A cross-sectional survey of 98 active MDMA and/or hallucinogen users recruited through homepage advertisements, flyers, and word of mouth in Denmark. Lifetime and recent substance use and SPU at last recalled use was described by structured interviews. Hair samples from a subset of participants were analyzed for MDMA. RESULTS The participants had used an average of 12.6 (95% confidence interval: 11.7-13.4) psychoactive substances during their lifetime. SPU was prevalent among MDMA, d-lysergic acid diethylamide (LSD), and psilocybin users, in particular with alcohol and cannabis. Among MDMA users, 69% had combined MDMA with amphetamines, 56% with hallucinogens, and 47% with cocaine. At last recalled use, MDMA was taken with 2.1 ± 1.2 substances in 32 different combinations. The participants preferred specific drug combinations and named several, which in their experience enhanced or counteracted each other. Alcohol and cannabis were typically used before, during, and after MDMA, LSD, and psilocybin, whereas amphetamines were predominantly taken before these substances. When LSD was combined with MDMA, the majority took MDMA after LSD. CONCLUSIONS Simultaneous polysubstance use was common among Danish MDMA and hallucinogen users, and patterns of preferred substance combinations were evident.
Collapse
Affiliation(s)
- Cecilie L Licht
- Neurobiology Research Unit (NRU) and Center for Integrated Molecular Brain Imaging (Cimbi), University of Copenhagen and Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
27
|
Hysek CM, Brugger R, Simmler LD, Bruggisser M, Donzelli M, Grouzmann E, Hoener MC, Liechti ME. Effects of the α₂-adrenergic agonist clonidine on the pharmacodynamics and pharmacokinetics of 3,4-methylenedioxymethamphetamine in healthy volunteers. J Pharmacol Exp Ther 2012; 340:286-94. [PMID: 22034656 DOI: 10.1124/jpet.111.188425] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of action of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) involves the carrier-mediated and potentially vesicular release of monoamines. We assessed the effects of the sympatholytic α₂-adrenergic receptor agonist clonidine (150 μg p.o.), which inhibits the neuronal vesicular release of norepinephrine, on the cardiovascular and psychotropic response to MDMA (125 mg p.o.) in 16 healthy subjects. The study used a randomized, double-blind, placebo-controlled crossover design with four experimental sessions. The administration of clonidine 1 h before MDMA reduced the MDMA-induced increases in plasma norepinephrine concentrations and blood pressure but only to the extent that clonidine lowered norepinephrine levels and blood pressure compared with placebo. Thus, no interaction was found between the cardiovascular effects of the two drugs. Clonidine did not affect the psychotropic effects or pharmacokinetics of MDMA. The lack of an interaction of the effects of clonidine and MDMA indicates that vesicular release of norepinephrine, which is inhibited by clonidine, does not critically contribute to the effects of MDMA in humans. Although clonidine may be used in the treatment of stimulant-induced hypertensive reactions, the present findings do not support a role for α₂-adrenergic receptor agonists in the prevention of psychostimulant dependence.
Collapse
Affiliation(s)
- Cédric M Hysek
- Division of Clinical Pharmacology and Toxicology, Departments of Biomedicine and Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Taffe MA. Δ9-Tetrahydrocannabinol attenuates MDMA-induced hyperthermia in rhesus monkeys. Neuroscience 2011; 201:125-33. [PMID: 22138434 DOI: 10.1016/j.neuroscience.2011.11.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/01/2011] [Accepted: 11/16/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cannabis is commonly consumed by Ecstasy (3,4-methylenedioxymethamphetamine; MDMA) users, including as an intentional strategy to manipulate the drug experience. The most active psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), and other drugs with partial or full agonist activity at the CB(1) receptor, produces a reduction of body temperature in rodents. Reports show that administration of THC can attenuate temperature increases caused by MDMA in mice or rats; however, a recent study in humans shows that THC potentiates MDMA-induced temperature elevations. Relatively little scientific evidence on the thermoregulatory effects of THC in monkeys is available. METHODS The body temperature of male rhesus macaques was recorded after challenge with THC (0.1-0.3 mg/kg, i.m.) or combined challenge of THC with the CB(1) receptor antagonist SR141716 (Rimonabant; 0.3 mg/kg, i.m.) or combined challenge of THC (0.1, 0.3 mg/kg, i.m.) with MDMA (1.78 mg/kg p.o.) using minimally-invasive, implanted radiotelemetry techniques. RESULTS THC reduced the body temperature of monkeys in a dose-dependent manner with the nadir observed 3-5 h post-injection; however, an attenuation of normal circadian cooling was also produced overnight following dosing. Hypothermia induced by THC (0.3 mg/kg, i.m.) was prevented by Rimonabant (0.3 mg/kg, i.m.). Finally, 0.3 mg/kg THC (i.m.) attenuated the elevation of body temperature produced by MDMA for about 4 h after oral dosing. CONCLUSIONS As with rodents THC produces a robust and lasting decrement in the body temperature of rhesus monkeys; this effect is mediated by the CB(1) receptor. THC also protects against the immediate hyperthermic effects of MDMA in monkeys in a dose-dependent manner. Nevertheless, a paradoxical attenuation of circadian cooling overnight after the THC/MDMA combination cautions that longer-term effects may be critical in assessing risks for the recreational user of cannabis in combination with MDMA.
Collapse
Affiliation(s)
- M A Taffe
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Mohamed WM, Hamida SB, Cassel JC, de Vasconcelos AP, Jones BC. MDMA: Interactions with other psychoactive drugs. Pharmacol Biochem Behav 2011; 99:759-74. [DOI: 10.1016/j.pbb.2011.06.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/10/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
30
|
Spronk D, Dumont GJH, Verkes RJ, de Bruijn ERA. Acute effects of delta-9-tetrahydrocannabinol on performance monitoring in healthy volunteers. Front Behav Neurosci 2011; 5:59. [PMID: 22046151 PMCID: PMC3202219 DOI: 10.3389/fnbeh.2011.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/24/2011] [Indexed: 11/13/2022] Open
Abstract
Rationale: The error-related negativity (ERN) is a negative event-related potential that occurs immediately after an erroneous response and is thought to reflect human performance monitoring. Delta-9-Tetrahydrocannabinol (THC) administration in healthy volunteers has been linked to impaired performance monitoring in behavioral studies, but to date no studies have examined the effects of cannabinoids on the ERN. Methods: EEG data from 10 healthy volunteers was recorded during execution of a speeded choice-reaction-time task (Flankers task) after administration of THC or placebo vapor in a double-blind randomized crossover design. Results: The findings of this study show that the ERN was significantly reduced after administration of THC. The behavioral outcomes on the Flankers task showed no indications of drug-induced impairments. Discussion: The diminished ERN reflects impairments in the process of performance monitoring. The task design was not optimized to find behavioral effects. The study shows that cannabinoids impair performance monitoring.
Collapse
Affiliation(s)
- Desirée Spronk
- Department of Psychiatry, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | |
Collapse
|
31
|
Chronic administration of THC prevents the behavioral effects of intermittent adolescent MDMA administration and attenuates MDMA-induced hyperthermia and neurotoxicity in rats. Neuropharmacology 2011; 61:1183-92. [PMID: 21763331 DOI: 10.1016/j.neuropharm.2011.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 11/20/2022]
Abstract
Most recreational users of 3, 4-methylenedioxymethamphetamine (MDMA or "ecstasy") also take cannabis, in part because cannabis can reduce the dysphoric symptoms of the ecstasy come-down such as agitation and insomnia. Although previous animal studies have examined the acute effects of co-administering MDMA and Δ(9)-tetrahydrocannabinol (THC), which is the major psychoactive ingredient in cannabis, research on chronic exposure to this drug combination is lacking. Therefore, the present study was conducted to investigate the effects of chronic adolescent administration of both THC and MDMA on behavior and on regional serotonin transporter (SERT) binding and serotonin (5-HT) concentrations as indices of serotonergic system integrity. Male Sprague-Dawley rats were divided into four drug administration groups: (1) MDMA alone, (2) THC alone, (3) MDMA plus THC, and (4) vehicle controls. MDMA (2 × 10 mg/kg × 4 h) was administered every fifth day from postnatal day (PD) 35 to 60 to simulate intermittent recreational ecstasy use, whereas THC (5mg/kg) was given once daily over the same time period to simulate heavy cannabis use. THC unexpectedly produced a modest hyperthermic effect when administered alone, but in animals co-treated with both THC and MDMA, there was an attenuation of MDMA-induced hyperthermia on dosing days. Subsequent testing conducted after a drug washout period revealed that THC reduced MDMA-related behavioral changes in the emergence and social interaction tests of anxiety-like behavior and also blunted the MDMA-induced decrease in exploratory behavior in the hole-board test. THC additionally attenuated MDMA -induced decreases in 5-HT levels and in SERT binding in the frontal cortex, parietal cortex, and striatum, but not in the hippocampus. These results suggest that chronic co-administration of THC during adolescence can provide some protection against various adverse physiological, behavioral, and neurochemical effects produced by MDMA.
Collapse
|
32
|
Hysek CM, Simmler LD, Ineichen M, Grouzmann E, Hoener MC, Brenneisen R, Huwyler J, Liechti ME. The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA ("ecstasy") in humans. Clin Pharmacol Ther 2011; 90:246-55. [PMID: 21677639 DOI: 10.1038/clpt.2011.78] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study assessed the pharmacodynamic and pharmacokinetic effects of the interaction between the selective norepinephrine (NE) transporter inhibitor reboxetine and 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in 16 healthy subjects. The study used a double-blind, placebo-controlled crossover design. Reboxetine reduced the effects of MDMA including elevations in plasma levels of NE, increases in blood pressure and heart rate, subjective drug high, stimulation, and emotional excitation. These effects were evident despite an increase in the concentrations of MDMA and its active metabolite 3,4-methylenedioxyamphetamine (MDA) in plasma. The results demonstrate that transporter-mediated NE release has a critical role in the cardiovascular and stimulant-like effects of MDMA in humans.
Collapse
Affiliation(s)
- C M Hysek
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dumont GJH, van Hasselt JGC, de Kam M, van Gerven JMA, Touw DJ, Buitelaar JK, Verkes RJ. Acute psychomotor, memory and subjective effects of MDMA and THC co-administration over time in healthy volunteers. J Psychopharmacol 2011; 25:478-89. [PMID: 20817749 DOI: 10.1177/0269881110376687] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Western societies a considerable percentage of young people expose themselves to the combination of 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') and cannabis. The aim of the present study was to assess the acute effects of co-administration of MDMA and THC (the main psychoactive compound of cannabis) on pharmacokinetics, psychomotor performance, memory and subjective experience over time. We performed a four-way, double blind, randomized, crossover, placebo-controlled study in 16 healthy volunteers (12 male, four female) between the ages of 18 and 27. MDMA (100 mg) was given orally, THC (4, 6, and 6 mg, interval of 90 min) was vaporized and inhaled. THC induced more robust cognitive impairment compared with MDMA, and co-administration did not exacerbate single drug effects on cognitive function. However, co-administration of THC with MDMA increased desired subjective drug effects and drug strength compared with the MDMA condition, which may explain the widespread use of this combination.
Collapse
Affiliation(s)
- G J H Dumont
- Donders Institute for Brain, Cognition and Behaviour, Department of Psychiatry, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
Almeida B, Joglar J, Luque Rojas MJ, Decara JM, Bermúdez-Silva FJ, Macias-González M, Fitó M, Romero-Cuevas M, Farré M, Covas MI, Rodríguez de Fonseca F, de la Torre R. Synthesis of fatty acid amides of catechol metabolites that exhibit antiobesity properties. ChemMedChem 2011; 5:1781-7. [PMID: 20718074 DOI: 10.1002/cmdc.201000161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A series of fatty acid amides of 3,4-methylenedioxymethamphetamine (MDMA) catechol metabolites were synthesized in order to evaluate their biological activities. Upon administration, all synthesized compounds resulted in negative modulation of food intake in rats. The most active compounds have affinity for the CB(1) receptor and/or PPAR-α; part of their biological activity may be caused by these double interactions.
Collapse
Affiliation(s)
- Bruno Almeida
- Human Pharmacology and Clinical Neurosciences Research Group, IMIM-Hospital del Mar Research Institute, Barcelona 08003, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lansbergen MM, Dumont GJH, van Gerven JMA, Buitelaar JK, Verkes RJ. Acute effects of MDMA (3,4-methylenedioxymethamphetamine) on EEG oscillations: alone and in combination with ethanol or THC (delta-9-tetrahydrocannabinol). Psychopharmacology (Berl) 2011; 213:745-56. [PMID: 20924751 PMCID: PMC3033515 DOI: 10.1007/s00213-010-2031-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/20/2010] [Indexed: 01/09/2023]
Abstract
RATIONALE Typical users of 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") are polydrug users, combining MDMA with alcohol or cannabis [most active compound: delta-9-tetrahydrocannabinol (THC)]. OBJECTIVES The aim of the present study was to investigate whether co-administration of alcohol or THC with MDMA differentially affects ongoing electroencephalogram (EEG) oscillations compared to the administration of each drug alone. METHODS In two separate experiments, 16 volunteers received four different drug conditions: (1) MDMA (100 mg); (2) alcohol clamp (blood alcohol concentration = 0.6‰) or THC (inhalation of 4, 6 and 6 mg, interval of 1.5 h); (3) MDMA in combination with alcohol or THC; and (4) placebo. Before and after drug administration, electroencephalography was recorded during an eyes closed resting state. RESULTS Theta and alpha power increased after alcohol intake compared to placebo and reduced after MDMA intake. No interaction between alcohol and MDMA was found. Significant MDMA x THC effects for theta and lower-1-alpha power indicated that the power attenuation after the combined intake of MDMA and THC was less than the sum of each drug alone. For the lower-2-alpha band, the intake of MDMA or THC alone did not significantly affect power, but the intake of combined MDMA and THC significantly decreased lower-2-alpha power. CONCLUSIONS The present findings indicate that the combined intake of MDMA and THC, but not of MDMA and alcohol, affects ongoing EEG oscillations differently than the sum of either one drug alone. Changes in ongoing EEG oscillations may be related to the impaired task performance that has often been reported after drug intake.
Collapse
Affiliation(s)
- Marieke M. Lansbergen
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Glenn J. H. Dumont
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands ,Moleman Psychopharmacology, Amerongen, the Netherlands
| | | | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands ,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Robbert-Jan Verkes
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
36
|
Favrod-Coune T, Broers B. The Health Effect of Psychostimulants: A Literature Review. Pharmaceuticals (Basel) 2010; 3:2333-2361. [PMID: 27713356 PMCID: PMC4036656 DOI: 10.3390/ph3072333] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/21/2010] [Indexed: 12/13/2022] Open
Abstract
Prevalence of psychostimulant use is high, and raising in several countries. Nicotine is the legal stimulant causing the most important public health impact. Cocaine ranks among the most used illicit substances after cannabis. Stimulant medications are frequently misused. Psychostimulants can lead to addiction, have physical, psychological and social health consequences and can induce a great disease burden. The aim of the present article is to provide a literature review on the health effects of stimulants as potential drugs of abuse. It will cover essentially cocaine, amphetamines and its derivatives (including methamphetamines and 3-4-methylenedioxymethamphetamine, ecstasy), nicotine, caffeine and khat, and touch upon the issues of prescribed substances (anti-depressants, weight control medications, attention-deficit hyperactivity disorder medications, hypersomniac disorder). Their pharmacology, addictive potential, health consequences and treatment will be discussed. We used Medline for the literature review from 1990 to the date of this review, and mention the findings of human and animal studies (the latter only if they are of clinical relevance).
Collapse
Affiliation(s)
- Thierry Favrod-Coune
- Division of Primary Care Medicine, Geneva University Hospitals 4, Rue Gabrielle-Perret-Gentil,1211 Geneva 14, Switzerland.
| | - Barbara Broers
- Division of Primary Care Medicine, Geneva University Hospitals 4, Rue Gabrielle-Perret-Gentil,1211 Geneva 14, Switzerland.
| |
Collapse
|
37
|
Sterling JA. Recent Publications on Medications and Pharmacy. Hosp Pharm 2009. [DOI: 10.1310/hpj4410-917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hospital Pharmacy presents this feature to keep pharmacists abreast of new publications in the medical/pharmacy literature. Articles of interest regarding a broad scope of topics are abstracted monthly.
Collapse
|