1
|
Clout AE, Della Pasqua O, Hanna MG, Orlu M, Pitceathly RDS. Drug repurposing in neurological diseases: an integrated approach to reduce trial and error. J Neurol Neurosurg Psychiatry 2019; 90:1270-1275. [PMID: 31171583 DOI: 10.1136/jnnp-2019-320879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Identifying effective disease-modifying therapies for neurological diseases remains an important challenge in drug discovery and development. Drug repurposing attempts to determine new indications for pre-existing compounds and represents a major opportunity to address this clinically unmet need. It is potentially more cost-effective and time-efficient than de novo drug development and has yielded notable successes in neurological disorders. However, across all medical disciplines, only 30% of repurposed drugs, and 10% of novel candidate molecules, gain market approval. One potentially significant contributor towards this limited success rate is an incomplete knowledge of the exposure-response relationships for the compounds of interest, and how these relate to the new indication, prior to commencing a new trial. We provide an overview of the current approach to early-stage drug repurposing and consider the issues contributing to inconclusive, or possibly falsely negative, Phase II and III trial outcomes in neurological diseases by highlighting examples that illustrate the limitations of empirical evidence generation without a strong scientific basis for the dose rationale. We conclude with a framework suggesting a translational, iterative approach, that integrates pharmacological, pharmaceutical and clinical expertise, towards preclinical and early clinical drug development. This ensures appropriate dosing regimen, route of administration and/or formulation are selected for the new indication before their evaluation in prospective clinical trials.
Collapse
Affiliation(s)
| | - Oscar Della Pasqua
- Clinical Pharmacology and Therapeutics Group, UCL School of Pharmacy, London, UK.,Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Uxbridge, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK .,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
2
|
Bocan TM, Panchal RG, Bavari S. Applications of in vivo imaging in the evaluation of the pathophysiology of viral and bacterial infections and in development of countermeasures to BSL3/4 pathogens. Mol Imaging Biol 2015; 17:4-17. [PMID: 25008802 PMCID: PMC4544652 DOI: 10.1007/s11307-014-0759-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While preclinical and clinical imaging have been applied to drug discovery/development and characterization of disease pathology, few examples exist where imaging has been used to evaluate infectious agents or countermeasures to biosafety level (BSL)3/4 threat agents. Viruses engineered with reporter constructs, i.e., enzymes and receptors, which are amenable to detection by positron emission tomography (PET), single photon emission tomography (SPECT), or magnetic resonance imaging (MRI) have been used to evaluate the biodistribution of viruses containing specific therapeutic or gene transfer payloads. Bioluminescence and nuclear approaches involving engineered reporters, direct labeling of bacteria with radiotracers, or tracking bacteria through their constitutively expressed thymidine kinase have been utilized to characterize viral and bacterial pathogens post-infection. Most PET, SPECT, CT, or MRI approaches have focused on evaluating host responses to the pathogens such as inflammation, brain neurochemistry, and structural changes and on assessing the biodistribution of radiolabeled drugs. Imaging has the potential when applied preclinically to the development of countermeasures against BSL3/4 threat agents to address the following: (1) presence, biodistribution, and time course of infection in the presence or absence of drug; (2) binding of the therapeutic to the target; and (3) expression of a pharmacologic effect either related to drug mechanism, efficacy, or safety. Preclinical imaging could potentially provide real-time dynamic tools to characterize the pathogen and animal model and for developing countermeasures under the U.S. FDA Animal Rule provision with high confidence of success and clinical benefit.
Collapse
Affiliation(s)
- Thomas M Bocan
- Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Ft. Detrick, MD, 21702, USA,
| | | | | |
Collapse
|
3
|
Stewart SB, Koller JM, Campbell MC, Black KJ. Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI. PeerJ 2014; 2:e687. [PMID: 25538867 PMCID: PMC4266850 DOI: 10.7717/peerj.687] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/16/2014] [Indexed: 11/30/2022] Open
Abstract
A carefully controlled study allowed us to compare the sensitivity of ASL (arterial spin labeling) and BOLD (blood oxygen level dependent) fMRI for detecting the effects of the adenosine A2a antagonist tozadenant in Parkinson disease. The study compared the effect of drug directly or the interaction of the drug with a cognitive task. Only ASL detected the direct effect of tozadenant. BOLD was more sensitive to the cognitive task, which (unlike most drugs) allows on–off comparisons over short periods of time. Neither ASL nor BOLD could detect a cognitive-pharmacological interaction. These results are consistent with the known relative advantages of each fMRI method, and suggest that for drug development, directly imaging pharmacodynamic effects with ASL may have advantages over cognitive-pharmacological interaction BOLD, which has hitherto been the more common approach to pharmacological fMRI.
Collapse
Affiliation(s)
- Stephanie B Stewart
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St Louis, MO , USA
| | - Jonathan M Koller
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA
| | - Meghan C Campbell
- Department of Neurology, Washington University School of Medicine , St Louis, MO , USA ; Department of Radiology, Washington University School of Medicine , St Louis, MO , USA
| | - Kevin J Black
- Department of Psychiatry, Washington University School of Medicine , St Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St Louis, MO , USA ; Department of Radiology, Washington University School of Medicine , St Louis, MO , USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine , St Louis, MO , USA ; Division of Biology and Biomedical Sciences, Washington University School of Medicine , St Louis, MO , USA
| |
Collapse
|
4
|
English BA, Thomas K, Johnstone J, Bazih A, Gertsik L, Ereshefsky L. Use of translational pharmacodynamic biomarkers in early-phase clinical studies for schizophrenia. Biomark Med 2014; 8:29-49. [PMID: 24325223 DOI: 10.2217/bmm.13.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a severe mental disorder characterized by cognitive deficits, and positive and negative symptoms. The development of effective pharmacological compounds for the treatment of schizophrenia has proven challenging and costly, with many compounds failing during clinical trials. Many failures occur due to disease heterogeneity and lack of predictive preclinical models and biomarkers that readily translate to humans during early characterization of novel antipsychotic compounds. Traditional early-phase trials consist of single- or multiple-dose designs aimed at determining the safety and tolerability of an investigational compound in healthy volunteers. However, by incorporating a translational approach employing methodologies derived from preclinical studies, such as EEG measures and imaging, into the traditional Phase I program, critical information regarding a compound's dose-response effects on pharmacodynamic biomarkers can be acquired. Furthermore, combined with the use of patients with stable schizophrenia in early-phase clinical trials, significant 'de-risking' and more confident 'go/no-go' decisions are possible.
Collapse
|
5
|
Henry ME, Lauriat TL, Lowen SB, Churchill JH, Hodgkinson CA, Goldman D, Renshaw PF. Effects of citalopram and escitalopram on fMRI response to affective stimuli in healthy volunteers selected by serotonin transporter genotype. Psychiatry Res 2013; 213:217-24. [PMID: 23845563 PMCID: PMC4681447 DOI: 10.1016/j.pscychresns.2013.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/19/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n=11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques.
Collapse
Affiliation(s)
- Michael E. Henry
- St. Elizabeth’s Medical Center, Department of Psychiatry, Boston, MA 02135 USA,McLean Hospital, McLean Imaging Center, Belmont, MA 02478, USA,Corresponding author. Present address: Massachusetts General Hospital, Department of Psychiatry, Bipolar Clinic and Research Program, 50 Staniford Street, Suite 580, Boston, MA 02114, USA. Tel.: +1 6177244820. , (M.E. Henry)
| | - Tara L. Lauriat
- St. Elizabeth’s Medical Center, Department of Psychiatry, Boston, MA 02135 USA,McLean Hospital, McLean Imaging Center, Belmont, MA 02478, USA
| | - Steven B. Lowen
- McLean Hospital, McLean Imaging Center, Belmont, MA 02478, USA
| | | | - Colin A. Hodgkinson
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neurogenetics, Rockville, MD 20852, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neurogenetics, Rockville, MD 20852, USA
| | - Perry F. Renshaw
- University of Utah, Brain Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Becerra L, Upadhyay J, Chang PC, Bishop J, Anderson J, Baumgartner R, Schwarz AJ, Coimbra A, Wallin D, Nutile L, George E, Maier G, Sunkaraneni S, Iyengar S, Evelhoch JL, Bleakman D, Hargreaves R, Borsook D. Parallel buprenorphine phMRI responses in conscious rodents and healthy human subjects. J Pharmacol Exp Ther 2013; 345:41-51. [PMID: 23370795 DOI: 10.1124/jpet.112.201145] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pharmacological magnetic resonance imaging (phMRI) is one method by which a drug's pharmacodynamic effects in the brain can be assessed. Although phMRI has been frequently used in preclinical and clinical settings, the extent to which a phMRI signature for a compound translates between rodents and humans has not been systematically examined. In the current investigation, we aimed to build on recent clinical work in which the functional response to 0.1 and 0.2 mg/70 kg i.v. buprenorphine (partial µ-opioid receptor agonist) was measured in healthy humans. Here, we measured the phMRI response to 0.04 and 0.1 mg/kg i.v. buprenorphine in conscious, naive rats to establish the parallelism of the phMRI signature of buprenorphine across species. PhMRI of 0.04 and 0.1 mg/kg i.v. buprenorphine yielded dose-dependent activation in a brain network composed of the somatosensory cortex, cingulate, insula, striatum, thalamus, periaqueductal gray, and cerebellum. Similar dose-dependent phMRI activation was observed in the human phMRI studies. These observations indicate an overall preservation of pharmacodynamic responses to buprenorphine between conscious, naive rodents and healthy human subjects, particularly in brain regions implicated in pain and analgesia. This investigation further demonstrates the usefulness of phMRI as a translational tool in neuroscience research that can provide mechanistic insight and guide dose selection in drug development.
Collapse
Affiliation(s)
- Lino Becerra
- Imaging Consortium for Drug Development, P.A.I.N. Group, Harvard Medical School, Children’s Hospital of Boston, Waltham, Massachusetts 02453, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|