1
|
Taheri H, Li Y, Huang KM, Ahmed E, Jin Y, Drabison T, Yang Y, Kulp SK, Young NA, Li J, Cheng X, Corps KN, Coss CC, Vaughn JE, Lustberg MB, Sparreboom A, Hu S. OATP1B-type Transport Function Is a Determinant of Aromatase Inhibitor-Associated Arthralgia Susceptibility. CANCER RESEARCH COMMUNICATIONS 2025; 5:496-510. [PMID: 40062557 PMCID: PMC11948302 DOI: 10.1158/2767-9764.crc-24-0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/10/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
SIGNIFICANCE AIs are effective but often discontinued because of arthralgia. This study explores the role of OATP1B transporters in AI-related side effects and the potential usage of transporter biomarkers to predict and reduce the risk of arthralgia associated with AI treatment.
Collapse
Affiliation(s)
- Hanieh Taheri
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Eman Ahmed
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yan Yang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Samuel K. Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Nicholas A. Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Kara N. Corps
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jennifer E. Vaughn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Maryam B. Lustberg
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Principi N, Petropulacos K, Esposito S. Genetic Variations and Antibiotic-Related Adverse Events. Pharmaceuticals (Basel) 2024; 17:331. [PMID: 38543117 PMCID: PMC10974439 DOI: 10.3390/ph17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Antibiotic-related adverse events are common in both adults and children, and knowledge of the factors that favor the development of antibiotic-related adverse events is essential to limit their occurrence and severity. Genetics can condition the development of antibiotic-related adverse events, and the screening of patients with supposed or demonstrated specific genetic mutations may reduce drug-related adverse events. This narrative review discusses which genetic variations may influence the risk of antibiotic-related adverse events and which conclusions can be applied to clinical practice. An analysis of the literature showed that defined associations between genetic variations and specific adverse events are very few and that, at the moment, none of them have led to the implementation of a systematic screening process for patients that must be treated with a given antibiotic in order to select those at risk of specific adverse events. On the other hand, in most of the cases, more than one variation is implicated in the determination of adverse events, and this can be a limitation in planning a systematic screening. Moreover, presently, the methods used to establish whether a patient carries a "dangerous" genetic mutation require too much time and waiting for the result of the test can be deleterious for those patients urgently requiring therapy. Further studies are needed to definitively confirm which genetic variations are responsible for an increased risk of a well-defined adverse event.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
3
|
Arakawa H, Kato Y. Emerging Roles of Uremic Toxins and Inflammatory Cytokines in the Alteration of Hepatic Drug Disposition in Patients with Kidney Dysfunction. Drug Metab Dispos 2023; 51:1127-1135. [PMID: 36854605 DOI: 10.1124/dmd.122.000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Patients with kidney dysfunction exhibit distinct pharmacokinetic profiles compared to those with normal kidney function. Hence, it is desirable to monitor the drug efficacy and toxicity caused by fluctuations in plasma drug concentrations associated with kidney dysfunction. Recently, pharmacokinetic information of drugs excreted mainly through the urine of patients with kidney dysfunction has been reported via drug-labeling information. Pharmacokinetic changes in drugs mainly eliminated by the liver cannot be overlooked as drug metabolism and/or transport activity in the liver may also be altered in patients with kidney dysfunction; however, the underlying mechanisms remain unclear. To plan an appropriate dosage regimen, it is necessary to clarify the underlying processes of functional changes in pharmacokinetic proteins. In recent years, uremic toxins have been shown to reduce the activity and/or expression of renal and hepatic transporters. This inhibitory effect has been reported to be time-dependent. In addition, inflammatory cytokines, such as interleukin-6, released from immune cells activated by uremic toxins and/or kidney injury can reduce the expression levels of drug-metabolizing enzymes and transporters in human hepatocytes. In this mini-review, we have summarized the renal and hepatic pharmacokinetic changes as well as the potential underlying mechanisms in kidney dysfunction, such as the chronic kidney disease and acute kidney injury. SIGNIFICANCE STATEMENT: Patients with kidney dysfunction exhibit distinct pharmacokinetic profiles compared to those with normal kidney function. Increased plasma concentrations of uremic toxins and inflammatory cytokines during kidney disease may potentially affect the activities and/or expression levels of drug-metabolizing enzymes and transporters in the liver and kidneys.
Collapse
Affiliation(s)
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
5
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
6
|
Interaction of Antifungal Drugs with CYP3A- and OATP1B-Mediated Venetoclax Elimination. Pharmaceutics 2022; 14:pharmaceutics14040694. [PMID: 35456528 PMCID: PMC9025810 DOI: 10.3390/pharmaceutics14040694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Venetoclax, a BCL-2 inhibitor used to treat certain hematological cancers, exhibits low oral bioavailability and high interpatient pharmacokinetic variability. Venetoclax is commonly administered with prophylactic antifungal drugs that may result in drug interactions, of which the underlying mechanisms remain poorly understood. We hypothesized that antifungal drugs may increase venetoclax exposure through inhibition of both CYP3A-mediated metabolism and OATP1B-mediated transport. Pharmacokinetic studies were performed in wild-type mice and mice genetically engineered to lack all CYP3A isoforms, or OATP1B2 that received venetoclax alone or in combination with ketoconazole or micafungin. In mice lacking all CYP3A isoforms, venetoclax AUC was increased by 1.8-fold, and pretreatment with the antifungal ketoconazole further increased venetoclax exposure by 1.6-fold, despite the absence of CYP3A. Ensuing experiments demonstrated that the deficiency of OATP1B-type transporters is also associated with increases in venetoclax exposure, and that many antifungal drugs, including micafungin, posaconazole, and isavuconazole, are inhibitors of this transport mechanism both in vitro and in vivo. These studies have identified OATP1B-mediated transport as a previously unrecognized contributor to the elimination of venetoclax that is sensitive to inhibition by various clinically-relevant antifungal drugs. Additional consideration is warranted when venetoclax is administered together with agents that inhibit both CYP3A-mediated metabolism and OATP1B-mediated transport.
Collapse
|
7
|
Yu X, Chu Z, Li J, He R, Wang Y, Cheng C. Pharmacokinetic Drug-drug Interaction of Antibiotics Used in Sepsis Care in China. Curr Drug Metab 2021; 22:5-23. [PMID: 32990533 DOI: 10.2174/1389200221666200929115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many antibiotics have a high potential for interactions with drugs, as a perpetrator and/or victim, in critically ill patients, and particularly in sepsis patients. METHODS The aim of this review is to summarize the pharmacokinetic drug-drug interaction (DDI) of 45 antibiotics commonly used in sepsis care in China. Literature search was conducted to obtain human pharmacokinetics/ dispositions of the antibiotics, their interactions with drug-metabolizing enzymes or transporters, and their associated clinical drug interactions. Potential DDI is indicated by a DDI index ≥ 0.1 for inhibition or a treatedcell/ untreated-cell ratio of enzyme activity being ≥ 2 for induction. RESULTS The literature-mined information on human pharmacokinetics of the identified antibiotics and their potential drug interactions is summarized. CONCLUSION Antibiotic-perpetrated drug interactions, involving P450 enzyme inhibition, have been reported for four lipophilic antibacterials (ciprofloxacin, erythromycin, trimethoprim, and trimethoprim-sulfamethoxazole) and three antifungals (fluconazole, itraconazole, and voriconazole). In addition, seven hydrophilic antibacterials (ceftriaxone, cefamandole, piperacillin, penicillin G, amikacin, metronidazole, and linezolid) inhibit drug transporters in vitro. Despite no clinical PK drug interactions with the transporters, caution is advised in the use of these antibacterials. Eight hydrophilic antibiotics (all β-lactams; meropenem, cefotaxime, cefazolin, piperacillin, ticarcillin, penicillin G, ampicillin, and flucloxacillin), are potential victims of drug interactions due to transporter inhibition. Rifampin is reported to perpetrate drug interactions by inducing CYP3A or inhibiting OATP1B; it is also reported to be a victim of drug interactions, due to the dual inhibition of CYP3A4 and OATP1B by indinavir. In addition, three antifungals (caspofungin, itraconazole, and voriconazole) are reported to be victims of drug interactions because of P450 enzyme induction. Reports for other antibiotics acting as victims in drug interactions are scarce.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zixuan Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rongrong He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaya Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
8
|
Hussaarts KGAM, van Doorn L, Eechoute K, Damman J, Fu Q, van Doorn N, Eisenmann ED, Gibson AA, Oomen-de Hoop E, de Bruijn P, Baker SD, Koolen SLW, van Gelder T, van Leeuwen RWF, Mathijssen RHJ, Sparreboom A, Bins S. Influence of Probenecid on the Pharmacokinetics and Pharmacodynamics of Sorafenib. Pharmaceutics 2020; 12:pharmaceutics12090788. [PMID: 32825359 PMCID: PMC7559746 DOI: 10.3390/pharmaceutics12090788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
Prior studies have demonstrated an organic anion transporter 6 (OAT6)-mediated accumulation of sorafenib in keratinocytes. The OAT6 inhibitor probenecid decreases sorafenib uptake in skin and might, therefore, decrease sorafenib-induced cutaneous adverse events. Here, the influence of probenecid on sorafenib pharmacokinetics and toxicity was investigated. Pharmacokinetic sampling was performed in 16 patients on steady-state sorafenib treatment at days 1 and 15 of the study. Patients received sorafenib (200–800 mg daily) in combination with probenecid (500 mg two times daily (b.i.d.)) on days 2–15. This study was designed to determine bioequivalence with geometric mean Area under the curve from zero to twelve hours (AUC0–12 h) as primary endpoint. During concomitant probenecid, sorafenib plasma AUC0–12 h decreased by 27% (90% CI: −38% to −14%; P < 0.01). Furthermore, peak and trough levels of sorafenib, as well as sorafenib concentrations in skin, decreased to a similar extent in the presence of probenecid. The metabolic ratio of sorafenib-glucuronide to parent drug increased (+29%) in the presence of probenecid. A decrease in systemic sorafenib concentrations during probenecid administration seems to have influenced cutaneous concentrations. Since sorafenib-glucuronide concentrations increased compared with sorafenib and sorafenib-N-oxide, probenecid may have interrupted enterohepatic circulation of sorafenib by inhibition of the organic anion transporting polypeptides 1B1 (OATP1B1). Sorafenib treatment with probenecid is, therefore, not bioequivalent to sorafenib monotherapy. A clear effect of probenecid on sorafenib toxicity could not be identified in this study.
Collapse
Affiliation(s)
- Koen G. A. M. Hussaarts
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
| | - Karel Eechoute
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
| | - Jeffrey Damman
- Department of Pathology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Qiang Fu
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (Q.F.); (E.D.E.); (A.A.G.); (S.D.B.); (A.S.)
| | - Nadia van Doorn
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
| | - Eric D. Eisenmann
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (Q.F.); (E.D.E.); (A.A.G.); (S.D.B.); (A.S.)
| | - Alice A. Gibson
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (Q.F.); (E.D.E.); (A.A.G.); (S.D.B.); (A.S.)
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
| | - Sharyn D. Baker
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (Q.F.); (E.D.E.); (A.A.G.); (S.D.B.); (A.S.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
- Department of Hospital Pharmacy, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Roelof W. F. van Leeuwen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
- Department of Hospital Pharmacy, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (Q.F.); (E.D.E.); (A.A.G.); (S.D.B.); (A.S.)
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands; (K.G.A.M.H.); (L.v.D.); (K.E.); (N.v.D.); (E.O.-d.H.); (P.d.B.); (S.L.W.K.); (R.W.F.v.L.); (R.H.J.M.)
- Correspondence: ; Tel.: +31-10-704-07-04; Fax: +31-10-704-10-03
| |
Collapse
|
9
|
Stocco G, Lucafò M, Decorti G. Pharmacogenomics of Antibiotics. Int J Mol Sci 2020; 21:5975. [PMID: 32825180 PMCID: PMC7504675 DOI: 10.3390/ijms21175975] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Although the introduction of antibiotics in medicine has resulted in one of the most successful events and in a major breakthrough to reduce morbidity and mortality caused by infectious disease, response to these agents is not always predictable, leading to differences in their efficacy, and sometimes to the occurrence of adverse effects. Genetic variability, resulting in differences in the pharmacokinetics and pharmacodynamics of antibiotics, is often involved in the variable response, of particular importance are polymorphisms in genes encoding for drug metabolizing enzymes and membrane transporters. In addition, variations in the human leukocyte antigen (HLA) class I and class II genes have been associated with different immune mediated reactions induced by antibiotics. In recent years, the importance of pharmacogenetics in the personalization of therapies has been recognized in various clinical fields, although not clearly in the context of antibiotic therapy. In this review, we make an overview of antibiotic pharmacogenomics and of its potential role in optimizing drug therapy and reducing adverse reactions.
Collapse
Affiliation(s)
- Gabriele Stocco
- Department of Life Sciences, University of Trieste, I-34128 Trieste, Italy;
| | - Marianna Lucafò
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, I-34137 Trieste, Italy;
| | - Giuliana Decorti
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, I-34137 Trieste, Italy;
- Department of Medicine, Surgery and Health Sciences, University of Trieste, I-34149 Trieste, Italy
| |
Collapse
|
10
|
Egeland EJ, Witczak BJ, Zaré HK, Christensen H, Åsberg A, Robertsen I. Chronic Inhibition of CYP3A is Temporarily Reduced by Each Hemodialysis Session in Patients With End-Stage Renal Disease. Clin Pharmacol Ther 2020; 108:866-873. [PMID: 32356565 DOI: 10.1002/cpt.1875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022]
Abstract
Drug dosing is challenging in patients with end-stage renal disease. Not only is renal drug elimination reduced, but nonrenal clearance pathways are also altered. Increasing evidence suggest that uremia impacts drug metabolizing enzymes and transporters leading to changes in nonrenal clearance. However, the exact mechanisms are not yet fully understood, and the acute effects of dialysis are inadequately investigated. We prospectively phenotyped cytochrome P450 3A (CYP3A; midazolam) and P-glycoprotein (P-gp)/organic anion-transporting proteins (OATP; fexofenadine) in 12 patients on chronic intermittent hemodialysis; a day after ("clean") and a day prior to ("dirty") dialysis. Unbound midazolam clearance decreased with time after dialysis; median (range) reduction of 14% (-3% to 41%) from "clean" to "dirty" day (P = 0.001). Fexofenadine clearance was not affected by time after dialysis (P = 0.68). In conclusion, changes in uremic milieu between dialysis sessions induce a small, direct inhibitory effect on CYP3A activity, but do not alter P-gp/OATP activity.
Collapse
Affiliation(s)
- Erlend Johannessen Egeland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Anderson JT, Hu S, Fu Q, Baker SD, Sparreboom A. Role of equilibrative nucleoside transporter 1 (ENT1) in the disposition of cytarabine in mice. Pharmacol Res Perspect 2019; 7:e00534. [PMID: 31832201 PMCID: PMC6887677 DOI: 10.1002/prp2.534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022] Open
Abstract
Cytarabine (Ara-C) is a nucleoside analog used in the treatment of acute myeloid leukemia (AML). Despite the many years of clinical use, the identity of the transporter(s) involved in the disposition of Ara-C remains poorly studied. Previous work demonstrated that concurrent administration of Ara-C with nitrobenzylmercaptopurine ribonucleoside (NBMPR) causes an increase in Ara-C plasma levels, suggesting involvement of one or more nucleoside transporters. Here, we confirmed the presence of an NMBPR-mediated interaction with Ara-C resulting in a 2.5-fold increased exposure. The interaction was unrelated to altered blood cell distribution, and subsequent studies indicated that the disposition of Ara-C was unaffected in mice with a deficiency of postulated candidate transporters, including ENT1, OCTN1, OATP1B2, and MATE1. These studies indicate the involvement of an unknown NBMPR-sensitive Ara-C transporter that impacts the pharmacokinetic properties of this clinically important agent.
Collapse
Affiliation(s)
- Jason T. Anderson
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Shuiying Hu
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Qiang Fu
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Sharyn D. Baker
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Alex Sparreboom
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
12
|
Nie Y, Yang J, Liu S, Sun R, Chen H, Long N, Jiang R, Gui C. Genetic polymorphisms of human hepatic OATPs: functional consequences and effect on drug pharmacokinetics. Xenobiotica 2019; 50:297-317. [DOI: 10.1080/00498254.2019.1629043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingmin Nie
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingjie Yang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuai Liu
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ruiqi Sun
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huihui Chen
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Nan Long
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Rui Jiang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Fu Q, Chen M, Anderson JT, Sun X, Hu S, Sparreboom A, Baker SD. Interaction Between Sex and Organic Anion-Transporting Polypeptide 1b2 on the Pharmacokinetics of Regorafenib and Its Metabolites Regorafenib-N-Oxide and Regorafenib-Glucuronide in Mice. Clin Transl Sci 2019; 12:400-407. [PMID: 30955241 PMCID: PMC6662550 DOI: 10.1111/cts.12630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/02/2019] [Indexed: 12/27/2022] Open
Abstract
Regorafenib, a multikinase inhibitor used in the treatment of various solid tumors, undergoes extensive uridine 5′‐diphosphate glucuronosyltransferase (Ugt)1a9‐mediated glucuronidation to form regorafenib‐N‐β‐glucuronide (M7; RG), but the contribution of hepatic uptake transporters, such as organic anion‐transporting polypeptide (Oatp)1b2, to the pharmacokinetics of regorafenib remains poorly understood. Using NONMEM‐based, population‐based, parent‐metabolite modeling, we found that Oatp1b2 and sex strongly impact the systemic exposure to RG in mice receiving oral regorafenib. Metabolic studies revealed that the liver microsomal expression of cytochrome P450 (Cyp)3a11 is twofold lower in female mice, whereas Ugt1a9 levels and function are not sex dependent. This finding is consistent with the metabolism of regorafenib occurring via two competing pathways, and the lack of Oatp1b2 results in decreased clearance of RG. The described model provides mechanistic insights into the in vivo disposition of regorafenib.
Collapse
Affiliation(s)
- Qiang Fu
- Division of Pharmaceutics and Pharmaceutical Chemistry and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmaceutical Chemistry and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jason T Anderson
- Division of Pharmaceutics and Pharmaceutical Chemistry and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Xinxin Sun
- Division of Pharmaceutics and Pharmaceutical Chemistry and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmaceutical Chemistry and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmaceutical Chemistry and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 2018; 27:164-167. [PMID: 28146011 DOI: 10.1097/fpc.0000000000000270] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Berlin S, Wallstabe S, Scheuch E, Oswald S, Hasan M, Wegner D, Grube M, Venner M, Ullrich A, Siegmund W. Intestinal and hepatic contributions to the pharmacokinetic interaction between gamithromycin and rifampicin after single-dose and multiple-dose administration in healthy foals. Equine Vet J 2017; 50:525-531. [PMID: 29239016 DOI: 10.1111/evj.12796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 12/02/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Standard treatment of foals with severe abscessing lung infection caused by Rhodococcus equi using rifampicin and a macrolide antibiotic can be compromised by extensive inhibition and/or induction of drug metabolising enzymes (e.g. CYP3A4) and transport proteins (e.g. P-glycoprotein), as has been shown for rifampicin and clarithromycin. The combination of rifampicin with the new, poorly metabolised gamithromycin, a long-acting analogue of azithromycin and tulathromycin with lower pharmacokinetic interaction potential, might be a suitable alternative. OBJECTIVES To evaluate the pharmacokinetic interactions and pulmonary distribution of rifampicin and gamithromycin in healthy foals, and to investigate the cellular uptake of gamithromycin in vitro. STUDY DESIGN Controlled, four-period, consecutive, single-dose and multiple-dose study. METHODS Pharmacokinetics and lung distribution of rifampicin (10 mg/kg) and gamithromycin (6 mg/kg) were measured in nine healthy foals using LC-MS/MS. Enzyme induction was confirmed using the 4β-OH-cholesterol/cholesterol ratio. Affinity of gamithromycin to drug transport proteins was evaluated in vitro using equine hepatocytes and MDCKII-cells stably transfected with human OATP1B1, OATP1B3 and OATP2B1. RESULTS Rifampicin significantly (P<0.05) increased the plasma exposure of gamithromycin (16.2 ± 4.77 vs. 8.57 ± 3.10 μg × h/mL) by decreasing the total body clearance. Otherwise, gamithromycin significantly lowered plasma exposure of single- and multiple-dose rifampicin (83.8 ± 35.3 and 112 ± 43.1 vs. 164 ± 96.7 μg × h/mL) without a change in metabolic ratio and half-life. Gamithromycin was identified as an inhibitor of human OATP1B1, OATP1B3 and OATP2B1 and as a substrate of OATP2B1. In addition, it was extracted by equine hepatocytes via a mechanism which could be inhibited by rifampicin. MAIN LIMITATIONS Influence of gamithromycin on pulmonary distribution of rifampicin was not evaluated. CONCLUSION The plasma exposure of gamithromycin is significantly increased by co-administration of rifampicin which is most likely caused by inhibition of hepatic elimination.
Collapse
Affiliation(s)
- S Berlin
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | - E Scheuch
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - S Oswald
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - M Hasan
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - D Wegner
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - M Grube
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - M Venner
- Veterinary Clinic for Horses, Destedt, Germany
| | - A Ullrich
- PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany
| | - W Siegmund
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
17
|
Burt HJ, Riedmaier AE, Harwood MD, Crewe HK, Gill KL, Neuhoff S. Abundance of Hepatic Transporters in Caucasians: A Meta-Analysis. Drug Metab Dispos 2016; 44:1550-61. [PMID: 27493152 PMCID: PMC5034697 DOI: 10.1124/dmd.116.071183] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022] Open
Abstract
This study aimed to derive quantitative abundance values for key hepatic transporters suitable for in vitro-in vivo extrapolation within a physiologically based pharmacokinetic modeling framework. A meta-analysis was performed whereby data on abundance measurements, sample preparation methods, and donor demography were collated from the literature. To define values for a healthy Caucasian population, a subdatabase was created whereby exclusion criteria were applied to remove samples from non-Caucasian individuals, those with underlying disease, or those with subcellular fractions other than crude membrane. Where a clinically relevant active genotype was known, only samples from individuals with an extensive transporter phenotype were included. Authors were contacted directly when additional information was required. After removing duplicated samples, the weighted mean, geometric mean, standard deviation, coefficient of variation, and between-study homogeneity of transporter abundances were determined. From the complete database containing 24 transporters, suitable abundance data were available for 11 hepatic transporters from nine studies after exclusion criteria were applied. Organic anion transporting polypeptides OATP1B1 and OATP1B3 showed the highest population abundance in healthy adult Caucasians. For several transporters, the variability in abundance was reduced significantly once the exclusion criteria were applied. The highest variability was observed for OATP1B3 > OATP1B1 > multidrug resistance protein 2 > multidrug resistance gene 1. No relationship was found between transporter expression and donor age. To our knowledge, this study provides the first in-depth analysis of current quantitative abundance data for a wide range of hepatic transporters, with the aim of using these data for in vitro-in vivo extrapolation, and highlights the significance of investigating the background of tissue(s) used in quantitative transporter proteomic studies. Similar studies are now warranted for other ethnicities.
Collapse
Affiliation(s)
- Howard J Burt
- Simcyp Limited (a Certara Company), Sheffield, United Kingdom
| | | | | | - H Kim Crewe
- Simcyp Limited (a Certara Company), Sheffield, United Kingdom
| | | | - Sibylle Neuhoff
- Simcyp Limited (a Certara Company), Sheffield, United Kingdom
| |
Collapse
|
18
|
Walsh DR, Nolin TD, Friedman PA. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins. Pharmacol Rev 2015; 67:656-80. [PMID: 26092975 PMCID: PMC4485015 DOI: 10.1124/pr.115.010728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na(+)/H(+) exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development.
Collapse
Affiliation(s)
- Dustin R Walsh
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Thomas D Nolin
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Peter A Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| |
Collapse
|
19
|
Velenosi TJ, Urquhart BL. Pharmacokinetic considerations in chronic kidney disease and patients requiring dialysis. Expert Opin Drug Metab Toxicol 2014; 10:1131-43. [PMID: 24961255 DOI: 10.1517/17425255.2014.931371] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic kidney disease (CKD) is the progressive decline in renal function over time. Patients with end-stage renal disease require renal replacement therapy such as hemodialysis to support life. Hemodialysis patients require several medications to treat a variety of comorbid conditions. Polypharmacy accompanied by alterations in the pharmacokinetics of medications places hemodialysis patients at increased risk of drug accumulation and adverse events. AREAS COVERED We review alterations in the pharmacokinetics of drugs in hemodialysis patients. The major areas of pharmacokinetics, absorption, distribution, metabolism and excretion, are covered and, where appropriate, differences between dialysis patients and non-dialysis CKD patients are compared. In addition, we review the importance of drug dialyzability and its potential impact on drug efficacy. Finally, we describe important clinical examples demonstrating nonrenal drug clearance is significantly altered in CKD. EXPERT OPINION Decreases in renal drug excretion experienced by hemodialysis patients have been known for years. Recent animal and human clinical pharmacokinetic studies have highlighted that nonrenal clearance of drugs is also substantially decreased in CKD. Clinical pharmacokinetic studies are required to determine the optimal dosage of drugs in CKD and hemodialysis patients in order to decrease the incidence of adverse medication events in these patient populations.
Collapse
Affiliation(s)
- Thomas J Velenosi
- Western University, Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology , London, Ontario , Canada
| | | |
Collapse
|
20
|
Inhibition of OATP1B1 by tyrosine kinase inhibitors: in vitro-in vivo correlations. Br J Cancer 2014; 110:894-8. [PMID: 24398510 PMCID: PMC3929889 DOI: 10.1038/bjc.2013.811] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Several tyrosine kinase inhibitors (TKIs) can decrease docetaxel clearance in patients by an unknown mechanism. We hypothesised that these interactions are mediated by the hepatic uptake transporter OATP1B1. METHODS The influence of 16 approved TKIs on transport was studied in vitro using HEK293 cells expressing OATP1B1 or its mouse equivalent Oatp1b2. Pharmacokinetic studies were performed with Oatp1b2-knockout and OATP1B1-transgenic mice. RESULTS All docetaxel-interacting TKIs, including sorafenib, were identified as potent inhibitors of OATP1B1 in vitro. Although Oatp1b2 deficiency in vivo was associated with increased docetaxel exposure, single- or multiple-dose sorafenib did not influence docetaxel pharmacokinetics. CONCLUSION These findings highlight the importance of identifying proper preclinical models for verifying and predicting TKI-chemotherapy interactions involving transporters.
Collapse
|
21
|
Walker AL, Lancaster CS, Finkelstein D, Ware RE, Sparreboom A. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics. Am J Physiol Cell Physiol 2013; 305:C1223-9. [PMID: 23986199 PMCID: PMC3882360 DOI: 10.1152/ajpcell.00232.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022]
Abstract
Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assessing the role of OATP1B transporters in modulating hydroxyurea PK. Using wild-type and Oatp1b knockout (Oatp1b(-/-)) mice, hydroxyurea PK was analyzed in vivo by measuring [(14)C]hydroxyurea distribution in plasma, kidney, liver, urine, or the exhaled (14)CO2 metabolite. Plasma levels were significantly reduced by 20% in Oatp1b(-/-) mice compared with wild-type (area under the curve of 38.64 or 48.45 μg·h(-1)·ml(-1), respectively) after oral administration, whereas no difference was observed between groups following intravenous administration. Accumulation in the kidney was significantly decreased by twofold in Oatp1b(-/-) mice (356.9 vs. 748.1 pmol/g), which correlated with a significant decrease in urinary excretion. Hydroxyurea accumulation in the liver was also decreased (136.6 vs. 107.3 pmol/g in wild-type or Oatp1b(-/-) mice, respectively) correlating with a decrease in exhaled (14)CO2. These findings illustrate that deficiency of Oatp1b transporters alters the absorption, distribution, and elimination of hydroxyurea thus providing the first in vivo evidence that cell membrane transporters may play a significant role in modulating hydroxyurea PK. Future studies to investigate other transporters and their role in hydroxyurea disposition are warranted for understanding the sources of variation in hydroxyurea's PK.
Collapse
Affiliation(s)
- Aisha L Walker
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | |
Collapse
|
22
|
Cytochrome P450-3A phenotyping using midazolam is not altered by OATP1B1 polymorphisms. Clin Pharmacol Ther 2013; 93:388. [PMID: 23549145 DOI: 10.1038/clpt.2013.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, Sparreboom A, Baker SD. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res 2013; 19:1458-66. [PMID: 23340295 DOI: 10.1158/1078-0432.ccr-12-3306] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Many tyrosine kinase inhibitors (TKI) undergo extensive hepatic metabolism, but mechanisms of their hepatocellular uptake remain poorly understood. We hypothesized that liver uptake of TKIs is mediated by the solute carriers OATP1B1 and OATP1B3. EXPERIMENTAL DESIGN Transport of crizotinib, dasatinib, gefitinib, imatinib, nilotinib, pazopanib, sorafenib, sunitinib, vandetanib, and vemurafenib was studied in vitro using artificial membranes (PAMPA) and HEK293 cell lines stably transfected with OATP1B1, OATP1B3, or the ortholog mouse transporter, Oatp1b2. Pharmacokinetic studies were conducted with Oatp1b2-knockout mice and humanized OATP1B1- or OATP1B3-transgenic mice. RESULTS All 10 TKIs were identified as substrates of OATP1B1, OATP1B3, or both. Transport of sorafenib was investigated further, as its diffusion was particularly low in the PAMPA assay (<4%) than other TKIs that were transported by both OATP1B1 and OATP1B3. Whereas Oatp1b2 deficiency in vivo had minimal influence on parent and active metabolite N-oxide drug exposure, plasma levels of the glucuronic acid metabolite of sorafenib (sorafenib-glucuronide) were increased more than 8-fold in Oatp1b2-knockout mice. This finding was unrelated to possible changes in intrinsic metabolic capacity for sorafenib-glucuronide formation in hepatic or intestinal microsomes ex vivo. Ensuing experiments revealed that sorafenib-glucuronide was itself a transported substrate of Oatp1b2 (17.5-fold vs. control), OATP1B1 (10.6-fold), and OATP1B3 (6.4-fold), and introduction of the human transporters in Oatp1b2-knockout mice provided partial restoration of function. CONCLUSIONS These findings signify a unique role for OATP1B1 and OATP1B3 in the elimination of sorafenib-glucuronide and suggest a role for these transporters in the in vivo handling of glucuronic acid conjugates of drugs.
Collapse
Affiliation(s)
- Eric I Zimmerman
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|