1
|
Gallagher CS, Ginsburg GS, Musick A. Biobanking with genetics shapes precision medicine and global health. Nat Rev Genet 2025; 26:191-202. [PMID: 39567741 DOI: 10.1038/s41576-024-00794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Precision medicine provides patients with access to personally tailored treatments based on individual-level data. However, developing personalized therapies requires analyses with substantial statistical power to map genetic and epidemiologic associations that ultimately create models informing clinical decisions. As one solution, biobanks have emerged as large-scale, longitudinal cohort studies with long-term storage of biological specimens and health information, including electronic health records and participant survey responses. By providing access to individual-level data for genotype-phenotype mapping efforts, pharmacogenomic studies, polygenic risk score assessments and rare variant analyses, biobanks support ongoing and future precision medicine research. Notably, due in part to the geographical enrichment of biobanks in Western Europe and North America, European ancestries have become disproportionately over-represented in precision medicine research. Herein, we provide a genetics-focused review of biobanks from around the world that are in pursuit of supporting precision medicine. We discuss the limitations of their designs, ongoing efforts to diversify genomics research and strategies to maximize the benefits of research leveraging biobanks for all.
Collapse
Affiliation(s)
- C Scott Gallagher
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey S Ginsburg
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Anjené Musick
- All of Us Research Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
You J, Osea J, Mendoza S, Shiomi T, Gallego E, Pham B, Kim A, Sinay-Smith A, Zayas Z, Neto AG, Boytard L, Chiriboga L, Cotzia P, Moreira AL. Automated and robust extraction of genomic DNA from various leftover blood samples. Anal Biochem 2023; 678:115271. [PMID: 37543277 DOI: 10.1016/j.ab.2023.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
With the development of genomic technologies, the isolation of genomic DNA (gDNA) from clinical samples is increasingly required for clinical diagnostics and research studies. In this study, we explored the potential of utilizing various leftover blood samples obtained from routine clinical tests as a viable source of gDNA. Using an automated method with optimized pre-treatments, we obtained gDNA from seven types of clinical leftover blood, with average yields of gDNA ranging from 3.11 ± 0.45 to 22.45 ± 4.83 μg. Additionally, we investigated the impact of storage conditions on gDNA recovery, resulting in yields of 8.62-68.08 μg when extracting gDNA from EDTA leftover blood samples stored at 4 °C for up to 13 weeks or -80 °C for up to 78 weeks. Furthermore, we successfully obtained sequenceable gDNA from both Serum Separator Tube and EDTA Tube using a 96-well format extraction, with yields ranging from 0.61 to 71.29 μg and 3.94-215.98 μg, respectively. Our findings demonstrate the feasibility of using automated high-throughput platforms for gDNA extraction from various clinical leftover blood samples with the proper pre-treatments.
Collapse
Affiliation(s)
- Jianlan You
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Jan Osea
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sandra Mendoza
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Tomoe Shiomi
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Estefania Gallego
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Bernice Pham
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Angie Kim
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Abraham Sinay-Smith
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Zasha Zayas
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Antonio G Neto
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ludovic Boytard
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Luis Chiriboga
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Paolo Cotzia
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Andre L Moreira
- Center for Biospecimen Research & Development, New York University Grossman School of Medicine, New York, NY, 10016, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
3
|
Black K, Brenn BR, Gaedigk A, Wanderer JP, Van Driest SL. Pediatric CYP2D6 metabolizer status and post-tonsillectomy nausea and vomiting after ondansetron. Clin Transl Sci 2022; 16:269-278. [PMID: 36350309 PMCID: PMC9926081 DOI: 10.1111/cts.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
The goal of this study was to determine whether CYP2D6 metabolizer status within the ondansetron-treated pediatric tonsillectomy population is associated with risk of postoperative nausea and vomiting (PONV) in the post-anesthesia care unit. We conducted a retrospective cohort study of pediatric patients (<18 years) who underwent tonsillectomy and received ondansetron on the day of the procedure. Data were obtained from BioVU, an institutional biobank that links DNA to de-identified electronic health record data. Subjects were tested for 10 CYP2D6 allelic variants and copy number variation, and genotype data translated into CYP2D6 metabolizer status. The cohort included 652 individuals, 105 (16.1%) of whom had PONV. Rates of PONV were similar across groups: ultrarapid metabolizers (UMs), 1 of 9 (11.1%); normal metabolizers (NMs), 64 of 354 (18.1%); intermediate metabolizers (IMs), 33 of 234 (14.1%); poor metabolizers (PMs), 6 of 39 (15.4%); and ambiguous phenotypes, 1 of 16 (6.3%). In multivariable analysis adjusted for age, sex, and time under anesthesia, CYP2D6 metabolizer status was not associated with PONV, with an odds ratio of 1.37 (95% confidence interval 0.9, 2.1) when comparing PM/IM versus NM/UM. In this large pediatric population, no significant differences were detected for PONV based on CYP2D6 metabolizer status. Further investigation is needed to determine mechanisms for ondansetron inefficacy in children.
Collapse
Affiliation(s)
- Katherine Black
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and NutritionVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - B. Randall Brenn
- Division of Pediatric AnesthesiaShriner's Hospitals for Children‐PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City and Department of PediatricsUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Jonathan P. Wanderer
- Departments of Anesthesiology and Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sara L. Van Driest
- Departments of Pediatrics and Medicine, and the Center for Pediatric Precision MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
4
|
Yu Y, Alvarado R, Petty LE, Bohlender RJ, Shaw DM, Below JE, Bejar N, Ruiz OE, Tandon B, Eisenhoffer GT, Kiss DL, Huff CD, Letra A, Hecht JT. Polygenic risk impacts PDGFRA mutation penetrance in non-syndromic cleft lip and palate. Hum Mol Genet 2022; 31:2348-2357. [PMID: 35147171 PMCID: PMC9307317 DOI: 10.1093/hmg/ddac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common, severe craniofacial malformation that imposes significant medical, psychosocial and financial burdens. NSCL/P is a multifactorial disorder with genetic and environmental factors playing etiologic roles. Currently, only 25% of the genetic variation underlying NSCL/P has been identified by linkage, candidate gene and genome-wide association studies. In this study, whole-genome sequencing and genome-wide genotyping followed by polygenic risk score (PRS) and linkage analyses were used to identify the genetic etiology of NSCL/P in a large three-generation family. We identified a rare missense variant in PDGFRA (c.C2740T; p.R914W) as potentially etiologic in a gene-based association test using pVAAST (P = 1.78 × 10-4) and showed decreased penetrance. PRS analysis suggested that variant penetrance was likely modified by common NSCL/P risk variants, with lower scores found among unaffected carriers. Linkage analysis provided additional support for PRS-modified penetrance, with a 7.4-fold increase in likelihood after conditioning on PRS. Functional characterization experiments showed that the putatively causal variant was null for signaling activity in vitro; further, perturbation of pdgfra in zebrafish embryos resulted in unilateral orofacial clefting. Our findings show that a rare PDGFRA variant, modified by additional common NSCL/P risk variants, have a profound effect on NSCL/P risk. These data provide compelling evidence for multifactorial inheritance long postulated to underlie NSCL/P and may explain some unusual familial patterns.
Collapse
Affiliation(s)
- Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rolando Alvarado
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan J Bohlender
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas M Shaw
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nada Bejar
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Oscar E Ruiz
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bhavna Tandon
- Department of Pediatrics and Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - George T Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel L Kiss
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston 77054, TX, USA
| | - Jacqueline T Hecht
- Department of Pediatrics and Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston 77054, TX, USA
| |
Collapse
|
5
|
Sunthankar SD, Kannankeril PJ, Gaedigk A, Radbill AE, Fish FA, Van Driest SL. Influence of CYP2D6 Genetic Variation on Adverse Events with Propafenone in the Pediatric and Young Adult Population. Clin Transl Sci 2022; 15:1787-1795. [PMID: 35514162 PMCID: PMC9283732 DOI: 10.1111/cts.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
Propafenone is an antiarrhythmic drug metabolized primarily by cytochrome P450 2D6 (CYP2D6). In adults, propafenone adverse events (AEs) are associated with CYP2D6 poor metabolizer status; however, pediatric data are lacking. Subjects were tested for 10 CYP2D6 allelic variants and copy number status, and activity scores assigned to each genotype. Seventy‐six individuals (median 0.3 [range 0–26] years old) were included. Propafenone AEs occurred in 29 (38%); 14 (18%) required drug discontinuation due to AE. The most common AEs were QRS (n = 10) and QTc (n = 6) prolongation. Those with AEs were older at the time of propafenone initiation (1.58 [0.13–9.92] vs. 0.20 [0.08–2.01] years old; p = 0.042). CYP2D6 activity scores were not associated with presence of an AE (odds ratio [OR] 0.48 [0.22–1.03]; p = 0.055) but with the total number of AE (β1 = −0.31 [−0.60, −0.03]; p = 0.029), systemic AEs (OR 0.33 [0.13–0.88]; p = 0.022), and drug discontinuation for systemic AEs (OR 0.28 [0.09–0.83]; p = 0.017). Awareness of CYP2D6 activity score and patient age may aid in determining an individual's risk for an AE with propafenone administration.
Collapse
Affiliation(s)
- Sudeep D Sunthankar
- Thomas P. Graham Jr. Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Pediatric Precision Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Prince J Kannankeril
- Thomas P. Graham Jr. Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Pediatric Precision Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Andrew E Radbill
- Thomas P. Graham Jr. Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank A Fish
- Thomas P. Graham Jr. Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara L Van Driest
- Center for Pediatric Precision Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Division of General Pediatrics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Polikowsky HG, Shaw DM, Petty LE, Chen HH, Pruett DG, Linklater JP, Viljoen KZ, Beilby JM, Highland HM, Levitt B, Avery CL, Mullan Harris K, Jones RM, Below JE, Kraft SJ. Population-based genetic effects for developmental stuttering. HGG ADVANCES 2022; 3:100073. [PMID: 35047858 PMCID: PMC8756529 DOI: 10.1016/j.xhgg.2021.100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Despite a lifetime prevalence of at least 5%, developmental stuttering, characterized by prolongations, blocks, and repetitions of speech sounds, remains a largely idiopathic speech disorder. Family, twin, and segregation studies overwhelmingly support a strong genetic influence on stuttering risk; however, its complex mode of inheritance combined with thus-far underpowered genetic studies contribute to the challenge of identifying and reproducing genes implicated in developmental stuttering susceptibility. We conducted a trans-ancestry genome-wide association study (GWAS) and meta-analysis of developmental stuttering in two primary datasets: The International Stuttering Project comprising 1,345 clinically ascertained cases from multiple global sites and 6,759 matched population controls from the biobank at Vanderbilt University Medical Center (VUMC), and 785 self-reported stuttering cases and 7,572 controls ascertained from The National Longitudinal Study of Adolescent to Adult Health (Add Health). Meta-analysis of these genome-wide association studies identified a genome-wide significant (GWS) signal for clinically reported developmental stuttering in the general population: a protective variant in the intronic or genic upstream region of SSUH2 (rs113284510, protective allele frequency = 7.49%, Z = -5.576, p = 2.46 × 10-8) that acts as an expression quantitative trait locus (eQTL) in esophagus-muscularis tissue by reducing its gene expression. In addition, we identified 15 loci reaching suggestive significance (p < 5 × 10-6). This foundational population-based genetic study of a common speech disorder reports the findings of a clinically ascertained study of developmental stuttering and highlights the need for further research.
Collapse
Affiliation(s)
- Hannah G Polikowsky
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas M Shaw
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dillon G Pruett
- Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Kathryn Z Viljoen
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Janet M Beilby
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandt Levitt
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathleen Mullan Harris
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robin M Jones
- Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shelly Jo Kraft
- Communication Sciences and Disorders, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Chen HH, Petty LE, North KE, McCormick JB, Fisher-Hoch SP, Gamazon ER, Below JE. OUP accepted manuscript. Hum Mol Genet 2022; 31:3191-3205. [PMID: 35157052 PMCID: PMC9476627 DOI: 10.1093/hmg/ddac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes is a complex, systemic disease affected by both genetic and environmental factors. Previous research has identified genetic variants associated with type 2 diabetes risk; however, gene regulatory changes underlying progression to metabolic dysfunction are still largely unknown. We investigated RNA expression changes that occur during diabetes progression using a two-stage approach. In our discovery stage, we compared changes in gene expression using two longitudinally collected blood samples from subjects whose fasting blood glucose transitioned to a level consistent with type 2 diabetes diagnosis between the time points against those who did not with a novel analytical network approach. Our network methodology identified 17 networks, one of which was significantly associated with transition status. This 822-gene network harbors many genes novel to the type 2 diabetes literature but is also significantly enriched for genes previously associated with type 2 diabetes. In the validation stage, we queried associations of genetically determined expression with diabetes-related traits in a large biobank with linked electronic health records. We observed a significant enrichment of genes in our identified network whose genetically determined expression is associated with type 2 diabetes and other metabolic traits and validated 31 genes that are not near previously reported type 2 diabetes loci. Finally, we provide additional functional support, which suggests that the genes in this network are regulated by enhancers that operate in human pancreatic islet cells. We present an innovative and systematic approach that identified and validated key gene expression changes associated with type 2 diabetes transition status and demonstrated their translational relevance in a large clinical resource.
Collapse
Affiliation(s)
- Hung-Hsin Chen
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph B McCormick
- The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Brownsville, TX 78520, USA
| | - Susan P Fisher-Hoch
- The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Brownsville, TX 78520, USA
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Clare Hall, University of Cambridge, Cambridgeshire, UK
| | - Jennifer E Below
- To whom correspondence should be addressed. Tel: +1-615-343-1655;
| |
Collapse
|
8
|
Kasperbauer TJ, Halverson C. Adolescent Assent and Reconsent for Biobanking: Recent Developments and Emerging Ethical Issues. Front Med (Lausanne) 2021; 8:686264. [PMID: 34307413 PMCID: PMC8301072 DOI: 10.3389/fmed.2021.686264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Research biobanks that enroll minors face important practical, ethical, and regulatory challenges in reconsenting participants when they reach the age of 18. Federal regulations governing research in the United States provide minimal guidance and allow for a range of practices, including waiving the requirement to obtain reconsent. Some commentators have argued that institutional review boards should indeed grant such waivers, given the low risks of biobank-based research and the impracticality of contacting all participants when they turn 18. There is also significant ethical debate about the age at which adolescents can make authentic, autonomous decisions regarding their research participation. This paper reviews these issues in detail, describes the current state of the ethical discussion, and outlines evidence-based policies for enrolling minors into research biobanks.
Collapse
Affiliation(s)
- T. J. Kasperbauer
- Indiana University Center for Bioethics, Indiana University School of Medicine, Indianapolis, IN, United States
| | | |
Collapse
|
9
|
Stancil SL, Berrios C, Abdel-Rahman S. Adolescent perceptions of pharmacogenetic testing. Pharmacogenomics 2021; 22:335-343. [PMID: 33849282 PMCID: PMC8173518 DOI: 10.2217/pgs-2020-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Despite the expansion of pharmacogenetics (PGx), the views of pediatric patients remain unknown. This study explores adolescents' understanding and perceptions of PGx testing. Methods: Adolescents who had PGx testing were interviewed and their electronic health records were reviewed. Results: Adolescents accurately described reason for testing and most felt the results impacted their current and future care. None perceived risks to securing future employment or insurance. All felt PGx would benefit their peers. Conclusion: Adolescents understand the reasons for PGx and perceive testing to be useful, low risk and applicable to peers. Findings from this study advocate for the inclusion of adolescents in shared decision-making regarding testing and for active engagement in the discussion of results.
Collapse
Affiliation(s)
- Stephani L Stancil
- Division of Adolescent Medicine, Children’s Mercy Kansas City, MO 64108, USA
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO 64108, USA
| | - Courtney Berrios
- Genomic Medicine Center, Children’s Mercy Kansas City, MO 64108, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO 64108, USA
| |
Collapse
|
10
|
Rossow KM, Oshikoya KA, Aka IT, Maxwell-Horn AC, Roden DM, Van Driest SL. Evidence for Pharmacogenomic Effects on Risperidone Outcomes in Pediatrics. J Dev Behav Pediatr 2021; 42:205-212. [PMID: 33759847 PMCID: PMC7995603 DOI: 10.1097/dbp.0000000000000883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the association between genetic variants reported to affect risperidone and adverse events (AEs) in children and adolescents. METHODS Individuals aged 18 years or younger with ≥4 weeks of risperidone exposure in a deidentified DNA biobank were included. The primary outcome was AE frequency as a function of genotype. Individuals were classified according to metabolizer status for CYP2D6, CYP3A4, and CYP3A5; wild type, heterozygote, or homozygote for specific single nucleotide variants for DRD2, DRD3, HTR2A, and HTR2C; and wild type versus nonwild type for multiple uncommon variants in ABCG2, ABCB1, and HTR2C. Tests of association of each classification to AEs were performed using a Fisher exact test and logistic regression, and statistically significant classifications were included in a final logistic regression. RESULTS The final cohort included 257 individuals. AEs were more common in CYP2D6 poor/intermediate metabolizers (PMs/IMs) than normal/rapid/ultrarapid metabolizers (NMs/RMs/UMs) in univariate and multivariate analysis. HTR2A-rs6311 heterozygotes and homozygotes had fewer AEs than wild types in logistic regression but not in univariate analysis. In the final multivariable model adjusting for age, race, sex, and risperidone dose, AEs were associated with CYP2D6 (adjusted odds ratio [AOR] 2.6, 95% CI 1.1-5.5, for PMs/IMs vs. NMs/RMs/UMs) and HTR2A-rs6311 (AOR 0.6, 95% CI 0.4-0.9, for each variant allele), both consistent with previous studies. CONCLUSION Children and adolescents who are CYP2D6 PMs/IMs may have an increased risk for risperidone AEs. Of the genes and variants studied, only CYP2D6 has consistent association and sufficient data for clinical use, whereas HTR2A-rs6311 has limited data and requires further study.
Collapse
Affiliation(s)
| | | | | | | | - Dan M Roden
- Departments of Pediatrics
- Medicine, and
- Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
| | | |
Collapse
|
11
|
Developing an Implementation Strategy for Systematic Measurement of Patient-Reported Outcomes at an Academic Health Center. J Healthc Manag 2020; 65:15-28. [PMID: 31913235 DOI: 10.1097/jhm-d-18-00279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
EXECUTIVE SUMMARY Patient-reported outcome measures (PROMs) are used in research and have the potential to improve clinical care. We sought to develop a strategy for integrating PROMs into routine clinical care at an academic health center. The implementation strategy consisted of three phases. The first, exploratory phase, focused on engaging leadership and conducting an inventory of current efforts to collect PROMs. The inventory revealed 87 patient-reported outcome efforts, 47 of which used validated PROMs (62% for research, 21% for clinical care, 17% for quality). In the second, preparatory phase, we identified three pilot implementation sites chosen with facilitators determined in the exploratory phase. Using data from local needs assessments at the pilot sites, we constructed a timeline for inclusion of PROM efforts across the clinical enterprise. In the third phase, we adapted a technology platform for capturing PROMs using the electronic health record and began implementing this platform at the pilot sites. We found that integrating PROMs into routine clinical practice is highly complex. This complexity necessitates change management at the enterprise level.
Collapse
|
12
|
Rossow KM, Aka IT, Maxwell-Horn AC, Roden DM, Van Driest SL. Pharmacogenetics to Predict Adverse Events Associated With Antidepressants. Pediatrics 2020; 146:peds.2020-0957. [PMID: 33234666 PMCID: PMC7786826 DOI: 10.1542/peds.2020-0957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To determine the association between cytochrome P450 2C19 (CYP2C19) metabolizer status and risk for escitalopram and citalopram, collectively termed (es)citalopram, and sertraline adverse events (AEs) in children. METHODS In this retrospective cohort study, we used deidentified electronic health records linked to DNA. The cohort included children ≤18 years with ≥2 days of (es)citalopram or ≥7 days of sertraline exposure. The primary outcome was AEs assessed by manual chart review. CYP2C19 was genotyped for functional variants (*2, *3, *4, *6, *8, and *17), and individuals were assigned metabolizer status. Association between AEs and metabolizer status was determined by using Cox regression adjusting for age, race, ethnicity, dose, and concomitant CYP2C19-inhibiting medications. RESULTS The cohort included 249 sertraline-exposed and 458 (es)citalopram-exposed children, with a median age of 14.2 years (interquartile range 11.2-16.2) and 13.4 years (interquartile range 10.1-15.9), respectively. Sertraline AEs were more common in normal metabolizers (NMs) compared to poor metabolizers (PMs) or intermediate metabolizers (IMs) (hazard ratio [HR] 1.8; 95% confidence interval [CI] 1.01-3.2; P = .047) in unadjusted analysis and after adjustment (HR 1.9; CI 1.04-3.4; P = .04). For (es)citalopram, more AEs were observed in NMs than PMs and IMs without statistically significant differences (unadjusted HR 1.6; CI 0.95-2.6; P = .08; adjusted HR 1.6; CI 0.95-2.6; P = .08). CONCLUSIONS In contrast to adults, in our pediatric cohort, CYP2C19 NMs experienced increased sertraline AEs than PMs and IMs. (Es)citalopram AEs were not associated with CYP2C19 status in the primary analysis. The mechanism underlying this pediatric-specific finding is unknown but may be related to physiologic differences of adolescence. Further research is required to inform genotype-guided prescribing for these drugs in children.
Collapse
Affiliation(s)
| | - Ida T. Aka
- Departments of Pediatrics,,Contributed equally as co-first authors
| | | | - Dan M. Roden
- Medicine,,Pharmacology, and,Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
13
|
Joo J, Hobbs BD, Cho MH, Himes BE. Trait Insights Gained by Comparing Genome-Wide Association Study Results using Different Chronic Obstructive Pulmonary Disease Definitions. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2020; 2020:278-287. [PMID: 32477647 PMCID: PMC7233028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biobanks have facilitated the conduct of large-scale genomics studies, but they are challenged by the difficulty of validating some phenotypes, particularly for complex traits that represent heterogeneous groups ofpatients. The guideline definition of COPD, based on objective spirometry measures, has been preferred in genome-wide association studies (GWAS) conducted with epidemiological cohorts, but spirometry measures are seldom available for biobank participants. Defining COPD based on International Classification of Disease (ICD) codes or self-reported measures is highly feasible in biobanks, but it remains unclear whether the misclassification inherent in these definitions prevent the discovery of genetic variants that contribute to COPD. We found that while there was poor agreement in classification of UK Biobank participants as having COPD based on ICD diagnosis codes, self-reported doctor diagnosis or spirometry measures, contrasting GWAS results for these definitions provided insights into what patient characteristics each trait may capture.
Collapse
Affiliation(s)
- Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Wells QS, Gupta DK, Smith JG, Collins SP, Storrow AB, Ferguson J, Smith ML, Pulley JM, Collier S, Wang X, Roden DM, Gerszten RE, Wang TJ. Accelerating Biomarker Discovery Through Electronic Health Records, Automated Biobanking, and Proteomics. J Am Coll Cardiol 2020; 73:2195-2205. [PMID: 31047008 DOI: 10.1016/j.jacc.2019.01.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Circulating biomarkers can facilitate diagnosis and risk stratification for complex conditions such as heart failure (HF). Newer molecular platforms can accelerate biomarker discovery, but they require significant resources for data and sample acquisition. OBJECTIVES The purpose of this study was to test a pragmatic biomarker discovery strategy integrating automated clinical biobanking with proteomics. METHODS Using the electronic health record, the authors identified patients with and without HF, retrieved their discarded plasma samples, and screened these specimens using a DNA aptamer-based proteomic platform (1,129 proteins). Candidate biomarkers were validated in 3 different prospective cohorts. RESULTS In an automated manner, plasma samples from 1,315 patients (31% with HF) were collected. Proteomic analysis of a 96-patient subset identified 9 candidate biomarkers (p < 4.42 × 10-5). Two proteins, angiopoietin-2 and thrombospondin-2, were associated with HF in 3 separate validation cohorts. In an emergency department-based registry of 852 dyspneic patients, the 2 biomarkers improved discrimination of acute HF compared with a clinical score (p < 0.0001) or clinical score plus B-type natriuretic peptide (p = 0.02). In a community-based cohort (n = 768), both biomarkers predicted incident HF independent of traditional risk factors and N-terminal pro-B-type natriuretic peptide (hazard ratio per SD increment: 1.35 [95% confidence interval: 1.14 to 1.61; p = 0.0007] for angiopoietin-2, and 1.37 [95% confidence interval: 1.06 to 1.79; p = 0.02] for thrombospondin-2). Among 30 advanced HF patients, concentrations of both biomarkers declined (80% to 84%) following cardiac transplant (p < 0.001 for both). CONCLUSIONS A novel strategy integrating electronic health records, discarded clinical specimens, and proteomics identified 2 biomarkers that robustly predict HF across diverse clinical settings. This approach could accelerate biomarker discovery for many diseases.
Collapse
Affiliation(s)
- Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skane University Hospital, Lund, Sweden
| | - Sean P Collins
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jane Ferguson
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maya Landenhed Smith
- Department of Cardiothoracic Surgery, Clinical Sciences, Lund University and Skane University Hospital, Lund, Sweden
| | - Jill M Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah Collier
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiaoming Wang
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dan M Roden
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Thomas J Wang
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
15
|
Bernal CJ, Aka I, Carroll RJ, Coco JR, Lima JJ, Acra SA, Roden DM, Van Driest SL. CYP2C19 Phenotype and Risk of Proton Pump Inhibitor-Associated Infections. Pediatrics 2019; 144:e20190857. [PMID: 31699831 PMCID: PMC6889971 DOI: 10.1542/peds.2019-0857] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Proton pump inhibitors (PPIs) are often used in pediatrics to treat common gastrointestinal disorders, and there are growing concerns for infectious adverse events. Because CYP2C19 inactivates PPIs, genetic variants that increase CYP2C19 function may decrease PPI exposure and infections. We tested the hypothesis that CYP2C19 metabolizer phenotypes are associated with infection event rates in children exposed to PPIs. METHODS This retrospective biorepository cohort study included individuals aged 0 to 36 months at the time of PPI exposure. Respiratory tract and gastrointestinal tract infection events were identified by using International Classification of Diseases codes in the year after the first PPI mention. Variants defining CYP2C19 *2, *3, *4, *8, *9, and *17 were genotyped, and all individuals were classified as CYP2C19 poor or intermediate, normal metabolizers (NMs), or rapid or ultrarapid metabolizers (RM/UMs). Infection rates were compared by using univariate and multivariate analyses. RESULTS In all, 670 individuals were included (median age 7 months; 44% girls). CYP2C19 NMs (n = 267; 40%) had a higher infection rate than RM/UMs (n = 220; 33%; median 2 vs 1 infections per person per year; P = .03). There was no difference between poor or intermediate (n = 183; 27%) and NMs. In multivariable analysis of NMs and RM/UMs adjusting for age, sex, PPI dose, and comorbidities, CYP2C19 metabolizer status remained a significant risk factor for infection events (odds ratio 0.70 [95% confidence interval 0.50-0.97] for RM/UMs versus NMs). CONCLUSIONS PPI therapy is associated with higher infection rates in children with normal CYP2C19 function than in those with increased CYP2C19 function, highlighting this adverse effect of PPI therapy and the relevance of CYP2C19 genotypes to PPI therapeutic decision-making.
Collapse
Affiliation(s)
| | | | | | | | - John J Lima
- Center for Pharmacogenomics and Translational Research, Nemours Children's Health System, Jacksonville, Florida
| | | | - Dan M Roden
- Biomedical Informatics
- Medicine, and Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | | |
Collapse
|
16
|
Challa AP, Lavieri RR, Lewis JT, Zaleski NM, Shirey-Rice JK, Harris PA, Aronoff DM, Pulley JM. Systematically Prioritizing Candidates in Genome-Based Drug Repurposing. Assay Drug Dev Technol 2019; 17:352-363. [PMID: 31769998 PMCID: PMC6921094 DOI: 10.1089/adt.2019.950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Drug repurposing is the application of approved drugs to treat diseases separate and distinct from their original indications. Herein, we define the scope of all practical precision drug repurposing using DrugBank, a publicly available database of pharmacological agents, and BioVU, a large, de-identified DNA repository linked to longitudinal electronic health records at Vanderbilt University Medical Center. We present a method of repurposing candidate prioritization through integration of pharmacodynamic and marketing variables from DrugBank with quality control thresholds for genomic data derived from the DNA samples within BioVU. Through the synergy of delineated "target-action pairs," along with target genomics, we identify ∼230 "pairs" that represent all practical opportunities for genomic drug repurposing. From this analysis, we present a pipeline of 14 repurposing candidates across 7 disease areas that link to our repurposability platform and present high potential for randomized controlled trial startup in upcoming months.
Collapse
Affiliation(s)
- Anup P. Challa
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert R. Lavieri
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judith T. Lewis
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicole M. Zaleski
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jana K. Shirey-Rice
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul A. Harris
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jill M. Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
17
|
Oshikoya KA, Neely KM, Carroll RJ, Aka IT, Maxwell-Horn AC, Roden DM, Van Driest SL. CYP2D6 genotype and adverse events to risperidone in children and adolescents. Pediatr Res 2019; 85:602-606. [PMID: 30661084 PMCID: PMC6435416 DOI: 10.1038/s41390-019-0305-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/11/2018] [Accepted: 01/13/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND There are few and conflicting data on the role of cytochrome P450 2D6 (CYP2D6) polymorphisms in relation to risperidone adverse events (AEs) in children. This study assessed the association between CYP2D6 metabolizer status and risk for risperidone AEs in children. METHODS Children ≤18 years with at least 4 weeks of risperidone exposure were identified using BioVU, a de-identified DNA biobank linked to electronic health record data. The primary outcome of this study was AEs. After DNA sequencing, individuals were classified as CYP2D6 poor, intermediate, normal, or ultrarapid CYP2D6 metabolizers. RESULTS For analysis, the 257 individuals were grouped as poor/intermediate metabolizers (n = 33, 13%) and normal/ultrarapid metabolizers (n = 224, 87%). AEs were more common in poor/intermediate vs. normal/ultrarapid metabolizers (15/33, 46% vs. 61/224, 27%, P = 0.04). In multivariate analysis adjusting for age, sex, race, and initial dose, poor/intermediate metabolizers had increased AE risk (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.1, P = 0.03). CONCLUSION Children with CYP2D6 poor or intermediate metabolizer phenotypes are at greater risk for risperidone AEs. Pre-prescription genotyping could identify this high-risk subset for an alternate therapy, risperidone dose reduction, and/or increased monitoring for AEs.
Collapse
Affiliation(s)
- Kazeem A Oshikoya
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Katelyn M Neely
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J Carroll
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ida T Aka
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela C Maxwell-Horn
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sara L Van Driest
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
18
|
Oshikoya KA, Carroll R, Aka I, Roden DM, Van Driest SL. Adverse Events Associated with Risperidone Use in Pediatric Patients: A Retrospective Biobank Study. Drugs Real World Outcomes 2019; 6:59-71. [PMID: 30919267 PMCID: PMC6520321 DOI: 10.1007/s40801-019-0151-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Although risperidone is increasingly used for behavioral indications in children, the associated adverse events (AEs) are not well defined in this population. Objective We determined the incidence of and risk factors for AEs among children treated with risperidone at our institution, an academic medical center with inpatient, outpatient, generalist, and specialist pediatric care. Methods The study included children aged ≤ 18 years with ≥ 4 weeks of risperidone exposure. Data were obtained using de-identified electronic health records. AEs were defined as any untoward event attributed to risperidone reported by the patient, parent/guardian, or physician or detected following a laboratory investigation. Associations between AEs and clinical variables were determined using univariate and multivariate analyses. Results The study cohort included 371 individuals (median age 7.8 years [interquartile range 5.9–10.2]; 271 [73.0%] male). The two most common primary diagnoses were attention-deficit/hyperactivity disorder (160 [43.1%]) and autism (102 [27.5%]). The most frequent indications for risperidone were aggression (166 [44.7%]) and behavioral problems (114 [30.7%]). Altogether, 110 (29.6%) individuals had 156 AEs. Weight gain (32 [20.5%]) and extrapyramidal symptoms (23 [14.7%]) were the most common AEs. Aggression, irritability, and self-injurious behavior were positively associated with AEs, and concomitant analgesics and antibiotics were negatively associated. In multivariate analysis, associations remained significant for self-injurious behavior (adjusted odds ratio [aOR] 3.1; 95% confidence interval [CI] 1.7–5.4) and concomitant antibiotics (aOR 0.2; 95% CI 0.1–0.9). Conclusions Nearly one in three children treated with risperidone for ≥ 1 month experienced one or more AEs. Particular vigilance is warranted for children with self-injurious behavior. Electronic supplementary material The online version of this article (10.1007/s40801-019-0151-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazeem A Oshikoya
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert Carroll
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ida Aka
- Department of Pediatrics, Vanderbilt University School of Medicine, 8232 DOT, 2200 Children's Way, Nashville, TN, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sara L Van Driest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Pediatrics, Vanderbilt University School of Medicine, 8232 DOT, 2200 Children's Way, Nashville, TN, USA.
| |
Collapse
|
19
|
Jerome RN, Pulley JM, Roden DM, Shirey-Rice JK, Bastarache LA, R Bernard G, B Ekstrom L, Lancaster WJ, Denny JC. Using Human 'Experiments of Nature' to Predict Drug Safety Issues: An Example with PCSK9 Inhibitors. Drug Saf 2018; 41:303-311. [PMID: 29185237 DOI: 10.1007/s40264-017-0616-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION When a new drug enters the market, its full array of side effects remains to be defined. Current surveillance approaches targeting these effects remain largely reactive. There is a need for development of methods to predict specific safety events that should be sought for a given new drug during development and postmarketing activities. OBJECTIVE We present here a safety signal identification approach applied to a new set of drug entities, inhibitors of the serine protease proprotein convertase subtilisin/kexin type 9 (PCSK9). METHODS Using phenome-wide association study (PheWAS) methods, we analyzed available genotype and clinical data from 29,722 patients, leveraging the known effects of changes in PCSK9 to identify novel phenotypes in which this protein and its inhibitors may have impact. RESULTS PheWAS revealed a significantly reduced risk of hypercholesterolemia (odds ratio [OR] 0.68, p = 7.6 × 10-4) in association with a known loss-of-function variant in PCSK9, R46L. Similarly, laboratory data indicated significantly reduced beta mean low-density lipoprotein cholesterol (- 14.47 mg/dL, p = 2.58 × 10-23) in individuals carrying the R46L variant. The R46L variant was also associated with an increased risk of spina bifida (OR 5.90, p = 2.7 × 10-4), suggesting that further investigation of potential connections between inhibition of PCSK9 and neural tube defects may be warranted. CONCLUSION This novel methodology provides an opportunity to put in place new mechanisms to assess the safety and long-term tolerability of PCSK9 inhibitors specifically, and other new agents in general, as they move into human testing and expanded clinical use.
Collapse
Affiliation(s)
- Rebecca N Jerome
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Jill M Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Office of Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jana K Shirey-Rice
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa A Bastarache
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gordon R Bernard
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Office of Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leeland B Ekstrom
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Nashville Biosciences, Nashville, TN, USA
| | - William J Lancaster
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
20
|
Jose R, Rooney R, Nagisetty N, Davis R, Hains D. Biorepository and integrative genomics initiative: designing and implementing a preliminary platform for predictive, preventive and personalized medicine at a pediatric hospital in a historically disadvantaged community in the USA. EPMA J 2018; 9:225-234. [PMID: 30174759 PMCID: PMC6107450 DOI: 10.1007/s13167-018-0141-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Current healthcare is evolving to emphasize cost-effective care by leveraging results and outcomes of genomic and other advanced research efforts in clinical care and preventive health planning. Through a collaborative effort between the University of Tennessee Health Science Center (UTHSC) and Le Bonheur Children's Hospital (LBCH), the Biorepository and Integrative Genomics (BIG) Initiative was established to set up a pediatric-based DNA biorepository that can serve as a foundation for successful development of delivery platforms for predictive, preventive, and personalized medical services in Memphis, Tennessee, a historically disadvantaged community in the USA. In this paper, we describe the steps that were followed to establish the biorepository. We focused on domains that are essential for implementation of a biorepository for genomic research as an initial goal and identified patient consent, DNA extraction, storage and dissemination, and governance as essential components. Specific needs in each of these domains were addressed by respective solutions developed by multidisciplinary teams under the guidance of a governance model that involved experts from multiple hospital arenas and community members. The end result was the successful launch of a large-scale DNA biorepository, with patient consent greater than 75% in the first year. Our experience highlights the importance of performing pre-design research, needs assessment, and designing an ethically vetted plan that is cost-effective, easy to implement, and inclusive of the community that is served. We believe this biorepository model, with appropriate tailoring according to organizational needs and available resources, can be adopted and successfully applied by other small- to mid-sized healthcare organizations.
Collapse
Affiliation(s)
- Rony Jose
- Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health Science Center, 50 N Dunlap, Room 487R, Memphis, TN 38103 USA
| | - Robert Rooney
- Department of Pediatrics, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 50 N. Dunlap, Room 366R, Memphis, TN 38103 USA
| | - Naga Nagisetty
- Department of Pediatrics, University of Tennessee Health Science Center, 50 N Dunlap, Room 301R, Memphis, TN 38103 USA
| | - Robert Davis
- Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health Science Center, 50 N Dunlap, Room 487R, Memphis, TN 38103 USA
| | - David Hains
- Department of Pediatrics, University of Tennessee Health Science Center, Center for Innate Immunity Translational Research, Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, 50 N Dunlap, Room 365R, Memphis, TN 38103 USA
- Present Address: Division of Pediatric Nephrology, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
21
|
Shelton EL, Singh GK, Nichols CG. Novel drug targets for ductus arteriosus manipulation: Looking beyond prostaglandins. Semin Perinatol 2018; 42:221-227. [PMID: 29880312 PMCID: PMC6064654 DOI: 10.1053/j.semperi.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Forty years ago, non-steroidal anti-inflammatory drugs were first reported to decrease systemic prostaglandin levels and promote ductus arteriosus (DA) closure. And yet, prolonged patency of the DA (PDA) remains a significant clinical problem, complicated by imperfect therapies and wide variations in treatment strategy. There are few pharmacology-based tools available for treating PDA (indomethacin, ibuprofen, and acetaminophen), or for maintaining DA patency (PGE1) as is needed to facilitate corrective surgery for ductus-dependent congenital heart defects. Unfortunately, all of these treatments are inefficient and are associated with concerning adverse effects. This review highlights novel potential DA drug targets that may expand our therapeutic repertoire beyond the prostaglandin pathway.
Collapse
Affiliation(s)
- Elaine L. Shelton
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University
Medical Center, Nashville, Tennessee,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Gautam K. Singh
- Department of Pediatrics, Washington University School of Medicine, Saint Louis Children's Hospital, Saint
Louis, Missouri
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
22
|
Kraft SA, Cho MK, Gillespie K, Halley M, Varsava N, Ormond KE, Luft HS, Wilfond BS, Soo-Jin Lee S. Beyond Consent: Building Trusting Relationships With Diverse Populations in Precision Medicine Research. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2018; 18:3-20. [PMID: 29621457 PMCID: PMC6173191 DOI: 10.1080/15265161.2018.1431322] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
With the growth of precision medicine research on health data and biospecimens, research institutions will need to build and maintain long-term, trusting relationships with patient-participants. While trust is important for all research relationships, the longitudinal nature of precision medicine research raises particular challenges for facilitating trust when the specifics of future studies are unknown. Based on focus groups with racially and ethnically diverse patients, we describe several factors that influence patient trust and potential institutional approaches to building trustworthiness. Drawing on these findings, we suggest several considerations for research institutions seeking to cultivate long-term, trusting relationships with patients: (1) Address the role of history and experience on trust, (2) engage concerns about potential group harm, (3) address cultural values and communication barriers, and (4) integrate patient values and expectations into oversight and governance structures.
Collapse
|
23
|
Development of the Precision Link Biobank at Boston Children's Hospital: Challenges and Opportunities. J Pers Med 2017; 7:jpm7040021. [PMID: 29244735 PMCID: PMC5748633 DOI: 10.3390/jpm7040021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022] Open
Abstract
Increasingly, biobanks are being developed to support organized collections of biological specimens and associated clinical information on broadly consented, diverse patient populations. We describe the implementation of a pediatric biobank, comprised of a fully-informed patient cohort linking specimens to phenotypic data derived from electronic health records (EHR). The Biobank was launched after multiple stakeholders’ input and implemented initially in a pilot phase before hospital-wide expansion in 2016. In-person informed consent is obtained from all participants enrolling in the Biobank and provides permission to: (1) access EHR data for research; (2) collect and use residual specimens produced as by-products of routine care; and (3) share de-identified data and specimens outside of the institution. Participants are recruited throughout the hospital, across diverse clinical settings. We have enrolled 4900 patients to date, and 41% of these have an associated blood sample for DNA processing. Current efforts are focused on aligning the Biobank with other ongoing research efforts at our institution and extending our electronic consenting system to support remote enrollment. A number of pediatric-specific challenges and opportunities is reviewed, including the need to re-consent patients when they reach 18 years of age, the ability to enroll family members accompanying patients and alignment with disease-specific research efforts at our institution and other pediatric centers to increase cohort sizes, particularly for rare diseases.
Collapse
|
24
|
Goodloe R, Farber-Eger E, Boston J, Crawford DC, Bush WS. Reducing Clinical Noise for Body Mass Index Measures Due to Unit and Transcription Errors in the Electronic Health Record. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2017; 2017:102-111. [PMID: 28815116 PMCID: PMC5543370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Body mass index (BMI) is an important outcome and covariate adjustment for many clinical association studies. Accurate assessment of BMI, therefore, is a critical part of many study designs. Electronic health records (EHRs) are a growing source of clinical data for research purposes, and have proven useful for identifying and replicating genetic associations. EHR-based data collected for clinical and billing purposes have several unique properties, including a high degree of heterogeneity or "clinical noise." In this work, we propose a new method for reducing the problems of transcription and recording error for height and weight and apply these methods to a subset of the Vanderbilt University Medical Center biorepository known as EAGLE BioVU (n=15,863). After processing, we show that the distribution of BMI from EAGLE BioVU closely matches population-based estimates from the National Health and Nutrition Examination Surveys (NHANES), and that our approach retains far more data points than traditional outlier detection methods.
Collapse
Affiliation(s)
- Robert Goodloe
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Farber-Eger
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Boston
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana C. Crawford
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - William S. Bush
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
25
|
Rouchka EC, Chariker JH, Harrison BJ. Proceedings of the Fourteenth Annual UT- KBRIN Bioinformatics Summit 2015. BMC Bioinformatics 2015; 16 Suppl 15:I1-P21. [PMID: 26510995 PMCID: PMC4625115 DOI: 10.1186/1471-2105-16-s15-i1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Crawford DC, Goodloe R, Farber-Eger E, Boston J, Pendergrass SA, Haines JL, Ritchie MD, Bush WS. Leveraging Epidemiologic and Clinical Collections for Genomic Studies of Complex Traits. Hum Hered 2015. [PMID: 26201699 DOI: 10.1159/000381805] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIMS Present-day limited resources demand DNA and phenotyping alternatives to the traditional prospective population-based epidemiologic collections. METHODS To accelerate genomic discovery with an emphasis on diverse populations, we--as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study--accessed all non-European American samples (n = 15,863) available in BioVU, the Vanderbilt University biorepository linked to de-identified electronic medical records, for genomic studies as part of the larger Population Architecture using Genomics and Epidemiology (PAGE) I study. Given previous studies have cautioned against the secondary use of clinically collected data compared with epidemiologically collected data, we present here a characterization of EAGLE BioVU, including the billing and diagnostic (ICD-9) code distributions for adult and pediatric patients as well as comparisons made for select health metrics (body mass index, glucose, HbA1c, HDL-C, LDL-C, and triglycerides) with the population-based National Health and Nutrition Examination Surveys (NHANES) linked to DNA samples (NHANES III, n = 7,159; NHANES 1999-2002, n = 7,839). RESULTS Overall, the distributions of billing and diagnostic codes suggest this clinical sample is a mixture of healthy and sick patients like that expected for a contemporary American population. CONCLUSION Little bias is observed among health metrics, suggesting this clinical collection is suitable for genomic studies along with traditional epidemiologic cohorts.
Collapse
Affiliation(s)
- Dana C Crawford
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Given a history of atrocities and violations of ethical principles, several documents and regulations have been issued by a wide variety of organizations. They aim at ensuring that health care and clinical research adhere to defined ethical principles. A fundamental component was devised to ensure that the individual has been provided the necessary information to make an informed decision regarding health care or participation in clinical research. This article summarizes the history and regulations for informed consent and discusses suggested components for adequate consent forms for daily clinical practice in surgery as well as clinical research.
Collapse
Affiliation(s)
- Hernando Abaunza
- Asociación Colombiana de Cirugía, Calle 100 # 14-63 of. 502, Bogotá, Colombia,
| | | |
Collapse
|
28
|
Phenotype-Driven Plasma Biobanking Strategies and Methods. J Pers Med 2015; 5:140-52. [PMID: 26110578 PMCID: PMC4493492 DOI: 10.3390/jpm5020140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
Biobank development and integration with clinical data from electronic medical record (EMR) databases have enabled recent strides in genomic research and personalized medicine. BioVU, Vanderbilt's DNA biorepository linked to de-identified clinical EMRs, has proven fruitful in its capacity to extensively appeal to numerous areas of biomedical and clinical research, supporting the discovery of genotype-phenotype interactions. Expanding on experiences in BioVU creation and development, we have recently embarked on a parallel effort to collect plasma in addition to DNA from blood specimens leftover after routine clinical testing at Vanderbilt. This initiative offers expanded utility of BioVU by combining proteomic and metabolomic approaches with genomics and/or clinical outcomes, widening the breadth for potential research and subsequent future impact on clinical care. Here, we describe the considerations and components involved in implementing a plasma biobank program from a feasibility assessment through pilot sample collection.
Collapse
|
29
|
Bowton E, Field JR, Wang S, Schildcrout JS, Van Driest SL, Delaney JT, Cowan J, Weeke P, Mosley JD, Wells QS, Karnes JH, Shaffer C, Peterson JF, Denny JC, Roden DM, Pulley JM. Biobanks and electronic medical records: enabling cost-effective research. Sci Transl Med 2014; 6:234cm3. [PMID: 24786321 DOI: 10.1126/scitranslmed.3008604] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of electronic medical record data linked to biological specimens in health care settings is expected to enable cost-effective and rapid genomic analyses. Here, we present a model that highlights potential advantages for genomic discovery and describe the operational infrastructure that facilitated multiple simultaneous discovery efforts.
Collapse
Affiliation(s)
- Erica Bowton
- Institute for Clinical and Translational Research, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Secondary use of clinical data: the Vanderbilt approach. J Biomed Inform 2014; 52:28-35. [PMID: 24534443 DOI: 10.1016/j.jbi.2014.02.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/21/2013] [Accepted: 02/04/2014] [Indexed: 01/04/2023]
Abstract
The last decade has seen an exponential growth in the quantity of clinical data collected nationwide, triggering an increase in opportunities to reuse the data for biomedical research. The Vanderbilt research data warehouse framework consists of identified and de-identified clinical data repositories, fee-for-service custom services, and tools built atop the data layer to assist researchers across the enterprise. Providing resources dedicated to research initiatives benefits not only the research community, but also clinicians, patients and institutional leadership. This work provides a summary of our approach in the secondary use of clinical data for research domain, including a description of key components and a list of lessons learned, designed to assist others assembling similar services and infrastructure.
Collapse
|
31
|
Rosenbloom ST, Madison JL, Brothers KB, Bowton EA, Clayton EW, Malin BA, Roden DM, Pulley J. Ethical and practical challenges to studying patients who opt out of large-scale biorepository research. J Am Med Inform Assoc 2013; 20:e221-5. [PMID: 23886923 DOI: 10.1136/amiajnl-2013-001937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Large-scale biorepositories that couple biologic specimens with electronic health records containing documentation of phenotypic expression can accelerate scientific research and discovery. However, differences between those subjects who participate in biorepository-based research and the population from which they are drawn may influence research validity. While an opt-out approach to biorepository-based research enhances inclusiveness, empirical research evaluating voluntariness, risk, and the feasibility of an opt-out approach is sparse, and factors influencing patients' decisions to opt out are understudied. Determining why patients choose to opt out may help to improve voluntariness, however there may be ethical and logistical challenges to studying those who opt out. In this perspective paper, the authors explore what is known about research based on the opt-out model, describe a large-scale biorepository that leverages the opt-out model, and review specific ethical and logistical challenges to bridging the research gaps that remain.
Collapse
Affiliation(s)
- S Trent Rosenbloom
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|