1
|
Tang H, Wang Z, Li C, Yu J, Huang W, Zhou T, Zhang C, Wen B, Wang C, Zhu X, Wang D, Tao J, Lu J, Ni J, Yao YF. Disruption of sulfur transferase complex increases bacterial intramacrophage persistence. PLoS Pathog 2025; 21:e1013136. [PMID: 40367211 PMCID: PMC12077765 DOI: 10.1371/journal.ppat.1013136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Bacterial persisters contribute significantly to clinical treatment failure and relapse. These cells could resist antibiotic treatment via transient phenotypic and gene expression alterations. We conducted a high-throughput screening of Salmonella Typhimurium transposon mutants to identify key genes for intramacrophage antibiotic persistence. The results show that a sulfur transferase complex encoded by yheM, yheL, yheN, trmU and yhhP are involved in bacterial intramacrophage antibiotic persistence. Salmonella could persist in macrophages by downregulating the expression of the sulfur transferase complex during exposure to high concentrations of antibiotics, and even in a persistent infection mouse model. Mechanistically, deletion of yheM increases reactive nitrogen species (RNS) in the exponential phase, which inhibits bacterial respiration and ATP generation. In contrast, absence of yheM promotes persister formation by elevating (p)ppGpp levels in the stationary phase. Taken together, our data demonstrate that bacteria use the sulfur transferase to coordinate intramacrophage replication and persistence for adaptation to various environmental stresses. These findings reveal the role of the sulfur transferase complex in bacterial intramacrophage persistence and provide a promising target for antibacterial infection therapy.
Collapse
Affiliation(s)
- Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congcong Li
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Huang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanzhen Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bingjie Wen
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyue Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaocen Zhu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
2
|
Gachpazan M, Alashti AA, Jahantigh HR, Moghbeli M, Faezi S, Hosseini SY, Eftekharian MM, Nasimi M, Khiavi FM, Rahimi A, Mianroodi RA, Pakjoo M, Taghizadeh M, Tempesta M, Mahdavi M. Immunization with recombinant HPV16-E7d in fusion with Flagellin as a cancer vaccine: Effect of antigen-adjuvant orientation on the immune response pattern. Immunol Res 2025; 73:50. [PMID: 39939497 DOI: 10.1007/s12026-025-09598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
Human papillomavirus (HPV) is the leading cause of cervical cancer worldwide. The pathogenesis of HPV is mainly dependent on its E7 and E6 proteins. Up to now, different adjuvants have been used to enhance the efficacy of the immune response against these two proteins. In this study, Flagellin (FLA) was used as adjuvant to test adjuvant activity and also see whether its orientation of attachment can affect the immune response pattern. The E7d-FLA and FLA-E7d in pET28a vector were constructed and then the recombinant proteins were expressed in E. coli BL21 (DE3) bacteria under IPTG induction. The expression of recombinant E7d-FLA and FLA-E7d proteins is confirmed by SDS-PAGE and western blot. Then, recombinant fusion proteins were purified using a nickel-nitrilotriacetic acid (Ni-NTA) column. The recombinant proteins were checked for endotoxin contamination and then quantified by Bradford. Eight-to-ten-week-old male Balb/C mice were immunized subcutaneously with 10 µg recombinant E7d-FLA, FLA-E7d and HPV16E7d vaccine on days 0, 14 and 28. In addition, PBS and FLA groups were considered as control group. Then, spleen cells were harvested to assess lymphocyte proliferation and IFN-γ, IL-4 and IL-17 cytokines. In addition, mice sera were used for specific total IgG and IgG1, IgG2a, IgG2b and IgM antibodies assessment by ELISA. The results show that E7d-FLA is more potent in the induction of lymphocyte proliferation, CTL response and specific total IgG, IgG2a and IgG2b response, while the FLA-E7d vaccine was associated with more IFN-γ, and IL-17 cytokine response. The results of this study proved the ability of FLA as an adjuvant in fusion with E7d in the induction of cellular and humoral immune responses. In addition, it also emphasizes that antigen-adjuvant orientation can affect the immune response strength and polarization against HPV E7d vaccine candidate. HIGHLIGHTS: Flagellin is attached to HPV-16 E7d at the C- or N-terminus to create E7d-FLA and FLA-E7d candidate vaccines. The E7d-FLA vaccine showed a significant increase in lymphocyte proliferation, CTL response and IgG response versus FLA-E7d vaccine. The FLA-E7d vaccine is associated with a significant increase in IFN-γ and IL-17 cytokines response versus E7d-FLA vaccine. It seems that that antigen-adjuvant orientation is an important parameter in the strength and polarization of immune response in HPV E7d vaccine candidate.
Collapse
Affiliation(s)
- Meysam Gachpazan
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center Academic Center for Education, Culture and Research (ACECR)Vanak Sq, Motamed Cancer Institute, South Gandi Ave, P.O. BOX, Tehran, 15179/64311, NO.146, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, 16 Azar St, P. O. Box: 1316943551, Tehran, 14174, Iran
- Department of Biology, Islamic Azad University of Damghan Branch, Damghan, Iran
| | - Ali Ahmadnia Alashti
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center Academic Center for Education, Culture and Research (ACECR)Vanak Sq, Motamed Cancer Institute, South Gandi Ave, P.O. BOX, Tehran, 15179/64311, NO.146, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, 16 Azar St, P. O. Box: 1316943551, Tehran, 14174, Iran
| | - Hamid Reza Jahantigh
- Department of Pathology, Faculty of Medicine, Emory University, Atlanta, GA, 30033, USA
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Majid Moghbeli
- Department of Biology, Islamic Azad University of Damghan Branch, Damghan, Iran
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Nasimi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Motavalli Khiavi
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Etemad Zadeh Street, Fatemi-Gharbi Street, Tehran, Iran
| | - Alireza Rahimi
- Department of Recombinant Products, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Arabi Mianroodi
- Department of Research and Development, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Pakjoo
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center Academic Center for Education, Culture and Research (ACECR)Vanak Sq, Motamed Cancer Institute, South Gandi Ave, P.O. BOX, Tehran, 15179/64311, NO.146, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, 16 Azar St, P. O. Box: 1316943551, Tehran, 14174, Iran
| | - Morteza Taghizadeh
- Department of Medical Vaccine, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran.
| | - Maria Tempesta
- Department of Veterinary Medicine, Animal Health and Zoonosis PhD Course, University of Bari, Bari, Italy
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center Academic Center for Education, Culture and Research (ACECR)Vanak Sq, Motamed Cancer Institute, South Gandi Ave, P.O. BOX, Tehran, 15179/64311, NO.146, Iran.
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, 16 Azar St, P. O. Box: 1316943551, Tehran, 14174, Iran.
| |
Collapse
|
3
|
Recombinant Domain of Flagellin Promotes In Vitro a Chemotactic Inflammatory Profile in Human Immune Cells Independently of a Dendritic Cell Phenotype. Molecules 2023; 28:molecules28052394. [PMID: 36903639 PMCID: PMC10005431 DOI: 10.3390/molecules28052394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Flagellin is the major component of the flagellum in gram-positive and -negative bacteria and is also the ligand for the Toll-like receptor 5 (TLR5). The activation of TLR5 promotes the expression of proinflammatory cytokines and chemokines and the subsequent activation of T cells. This study evaluated a recombinant domain from the amino-terminus D1 domain (rND1) of flagellin from Vibrio anguillarum, a fish pathogen, as an immunomodulator in human peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MoDCs). We demonstrated that rND1 induced an upregulation of proinflammatory cytokines in PBMCs, characterized at the transcriptional level by an expression peak of 220-fold for IL-1β, 20-fold for IL-8, and 65-fold for TNF-α. In addition, at the protein level, 29 cytokines and chemokines were evaluated in the supernatant and were correlated with a chemotactic signature. MoDCs treated with rND1 showed low levels of co-stimulatory and HLA-DR molecules and kept an immature phenotype with a decreased phagocytosis of dextran. We probed that rND1 from a non-human pathogen promotes modulation in human cells, and it may be considered for further studies in adjuvant therapies based on pathogen-associated patterns (PAMPs).
Collapse
|
4
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
5
|
Abstract
INTRODUCTION Bacterial flagellin, as a pathogen-associated molecular pattern (PAMP), can activate both innate and adaptive immunity. Its unique structural characteristics endow an effective and flexible adjuvant activity, which allow the design of different types of vaccine strategies to prevent various diseases. This review will discuss recent progress in the mechanism of action of flagellin and its prospects for use as a vaccine adjuvant. AREAS COVERED Herein we summarize various types of information related to flagellin adjuvants from PubMed, including structures, signaling pathways, natural immunity, and extensive applications in vaccines, and it discusses the immunogenicity, safety, and efficacy of flagellin-adjuvanted vaccines in clinical trials. EXPERT COMMENTARY It is widely accepted that as an adjuvant, flagellin can induce an enhanced antigen-specific immune response. Flagellin adjuvants will allow more effective flagellin-based vaccines to enter clinical trials. Furthermore, vaccine formulations containing PAMPs are crucial to exert the maximum potential of vaccine antigens. Therefore, combinations of flagellin-adjuvanted vaccines with other adjuvants that act in a synergistic manner, particularly TLR ligands, represent a promising method for tailoring targeted vaccines to meet specific requirements.
Collapse
Affiliation(s)
- Baofeng Cui
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Xinsheng Liu
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yuzhen Fang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Peng Zhou
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yongguang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yonglu Wang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| |
Collapse
|
6
|
Li Q, Peng O, Wu T, Xu Z, Huang L, Zhang Y, Xue C, Wen Z, Zhou Q, Cao Y. PED subunit vaccine based on COE domain replacement of flagellin domain D3 improved specific humoral and mucosal immunity in mice. Vaccine 2018; 36:1381-1388. [PMID: 29426660 DOI: 10.1016/j.vaccine.2018.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Porcine epidemic diarrhea (PED) is an important re-emergent infectious disease and inflicts huge economic losses to the swine industry worldwide. To meet the pressing need of developing a safe and cost-efficient PED maternal vaccine, we generated three PED subunit vaccine candidates, using recombined Salmonella flagellin (rSF) as a mucosal molecular adjuvant. Domain D3 in rSF was replaced with COE domain of PEDV to generate rSF-COE-3D. COE fused to the flanking C'/N' terminal of rSF yielded rSF-COE-C and rSF-COE-N. As a result, rSF-COE-3D could significantly improve COE specific antibody production including serum IgG, serum IgA, mucosal IgA and PEDV neutralizing antibody. Furthermore, rSF-COE-3D elicited more CD3+CD8+ T cell and cytokine production of IFN-γ and IL-4 in mouse splenocytes. In summary, our data showed that rSF-COE-3D could improve specific humoral and mucosal immunity in mice, thus suggesting that rSF-COE-3D could be applied as a novel efficient maternal PED vaccine.
Collapse
Affiliation(s)
- Qianniu Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingting Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Licheng Huang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhifen Wen
- Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China
| | - Qingfeng Zhou
- Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China.
| |
Collapse
|
7
|
Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annu Rev Immunol 2018; 36:435-459. [PMID: 29400984 DOI: 10.1146/annurev-immunol-041015-055700] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The initiation and maintenance of adaptive immunity require multifaceted modes of communication between different types of immune cells, including direct intercellular contact, secreted soluble signaling molecules, and extracellular vesicles (EVs). EVs can be formed as microvesicles directly pinched off from the plasma membrane or as exosomes secreted by multivesicular endosomes. Membrane receptors guide EVs to specific target cells, allowing directional transfer of specific and complex signaling cues. EVs are released by most, if not all, immune cells. Depending on the type and status of their originating cell, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive immune responses. This review focusses on EVs from professional antigen-presenting cells, their demonstrated and speculated roles, and their potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Marthe F S Lindenbergh
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands;
| | - Willem Stoorvogel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands;
| |
Collapse
|
8
|
Faezi S, Bahrmand AR, Mahdavi M, Siadat SD, Sardari S, Nikokar I, Khanaki K, Mirzajani E, Goudarzi G. Preparation of Pseudomonas aeruginosa alginate-flagellin immunoconjugate. Biologicals 2017; 47:11-17. [DOI: 10.1016/j.biologicals.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022] Open
|
9
|
Sun W, Jiao C, Xiao Y, Wang L, Yu C, Liu J, Yu Y, Wang L. Salt-Dependent Aggregation and Assembly of E coli-Expressed Ferritin. Dose Response 2016; 14:1559325816632102. [PMID: 26977139 PMCID: PMC4773902 DOI: 10.1177/1559325816632102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ferritin, with the primary function of iron storage, is a nearly ubiquitous protein found in most living organisms. Our recent investigations suggest that ferritin can assemble nanoparticles. So we use ferritin as a novel type of delivery vehicle for recombinant epitope vaccines. And, we found that ferritin form nonnative aggregates depended sensitively on NaCl concentrations. Here, we report that ferritin is an ion-sensitive protein and has the attribute of salt-dependent aggregation. Our results indicate that recombinant ferritin can be released as a soluble form from Escherichia coli at low NaCl concentrations (≤50 mmol/L). Moreover, this result affords us to confirm a proper self-assembling solution for soluble ferritin or other ferritin-based fusion proteins to assemble nanoparticles.
Collapse
Affiliation(s)
- Wei Sun
- Department of Molecular Biology, College of Basic Medicine, Jilin University, Changchun, China
| | - Chengfeng Jiao
- Department of Molecular Biology, College of Basic Medicine, Jilin University, Changchun, China
| | - Yue Xiao
- Department of Molecular Biology, College of Basic Medicine, Jilin University, Changchun, China
| | - Luowei Wang
- Department of Molecular Biology, College of Basic Medicine, Jilin University, Changchun, China
| | - Cheng Yu
- Department of Molecular Biology, College of Basic Medicine, Jilin University, Changchun, China
| | - Jialin Liu
- Department of Molecular Biology, College of Basic Medicine, Jilin University, Changchun, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medicine, Jilin University, Changchun, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhang L, Pan Z, Kang X, Yang Y, Kang H, Zhang N, Rosati JM, Jiao X. Amino acids 89-96 of Salmonella typhimurium flagellin represent the major domain responsible for TLR5-independent adjuvanticity in the humoral immune response. Cell Mol Immunol 2014; 12:625-32. [PMID: 25195514 DOI: 10.1038/cmi.2014.76] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/19/2014] [Accepted: 07/22/2014] [Indexed: 11/09/2022] Open
Abstract
Toll-like receptor 5 (TLR5) signaling in response to flagellin is dispensable for inducing humoral immunity, but alterations of aa 89-96, the TLR5 binding site, significantly reduced the adjuvanticity of flagellin. These observations indicate that the underlying mechanism remains incompletely understood. Here, we found that the native form of Salmonella typhimurium aa 89-96-mutant flagellin extracted from flagella retains some TLR5 recognition activity, indicating that aa 89-96 is the primary, but not the only site that imparts TLR5 activity. Additionally, this mutation impaired the production of IL-1β and IL-18. Using TLR5KO mice, we found that aa 89-96 is critical for the humoral adjuvant effect, but this effect was independent of TLR5 activation triggered by this region of flagellin. In summary, our findings suggest that aa 89-96 of flagellin is not only the crucial site responsible for TLR5 recognition, but is also important for humoral immune adjuvanticity through a TLR5-independent pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Yun Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Heekap Kang
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Na Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - James M Rosati
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
The role of airway epithelial cells in response to mycobacteria infection. Clin Dev Immunol 2012; 2012:791392. [PMID: 22570668 PMCID: PMC3337601 DOI: 10.1155/2012/791392] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 02/15/2012] [Indexed: 12/18/2022]
Abstract
Airway epithelial cells (AECs) are part of the frontline defense against infection of pathogens by providing both a physical barrier and immunological function. The role of AECs in the innate and adaptive immune responses, through the production of antimicrobial molecules and proinflammatory factors against a variety of pathogens, has been well established. Tuberculosis (TB), a contagious disease primarily affecting the lungs, is caused by the infection of various strains of mycobacteria. In response to mycobacteria infection, epithelial expression of Toll-like receptors and surfactant proteins plays the most prominent roles in the recognition and binding of the pathogen, as well as the initiation of the immune response. Moreover, the antimicrobial substances, proinflammatory factors secreted by AECs, composed a major part of the innate immune response and mediation of adaptive immunity against the pathogen. Thus, a better understanding of the role and mechanism of AECs in response to mycobacteria will provide insight into the relationship of epithelial cells and lung immunocytes against TB, which may facilitate our understanding of the pathogenesis and immunological mechanism of pulmonary tuberculosis disease.
Collapse
|