1
|
Wu J, Shen S, Wang D. 6-PPD quinone at environmentally relevant concentrations induces immunosenescenece by causing immunosuppression during the aging process. CHEMOSPHERE 2024; 368:143719. [PMID: 39522698 DOI: 10.1016/j.chemosphere.2024.143719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
6-PPD quinone (6-PPDQ) could accelerate aging process. However, the underlying mechanism for the acceleration in aging process remains largely unclear. We aimed to examine the role of immunosuppression in 6-PPDQ in causing accelerated aging process in Caenorhabditis elegans. 6-PPDQ (0.1-10 μg/L) could decrease locomotion and increase reactive oxygen species (ROS) generation at both adult day-8 and day-12. 6-PPDQ at adult day-12 induced more severe immunosuppression reflected by decrease in expression of antimicrobial genes (lys-1, lys-7, spp-1, and dod-6) compared to that at adult day-8. Meanwhile, 6-PPDQ (10 μg/L) affected expressions of some transcriptional factor genes during the aging. Among them, at adult day-8, susceptibility to 6-PPDQ toxicity was caused by RNAi of daf-16, bar-1, elt-2, atf-7, skn-1, and nhr-8, and resistance to 6-PPDQ toxicity was induced by RNAi of daf-5, daf-3, and daf-12. Additionally, RNAi of daf-16, bar-1, elt-2, atf-7, skn-1, and nhr-8 caused more severe decrease in lys-1 and lys-7 expressions in 6-PPDQ exposed nematodes, whereas decrease in lys-1 and lys-7 expressions in 6-PPDQ exposed nematodes was inhibited by RNAi of daf-5, daf-3, and daf-12. The 6-PPDQ toxicity and 6-PPDQ induced decrease in lys-1 and lys-7 expressions were further suppressed by RNAi of insulin ligand genes (ins-6, ins-7, and daf-28) and receptor gene daf-2. Therefore, immunosuppression-caused immunosenescenece mediated the acceleration in aging process in 6-PPDQ exposed nematodes, which was under the control of certain transcriptional factors.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Shuhuai Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Golinelli L, Geens E, Irvine A, McCoy CJ, Vandewyer E, Atkinson LE, Mousley A, Temmerman L, Beets I. Global analysis of neuropeptide receptor conservation across phylum Nematoda. BMC Biol 2024; 22:223. [PMID: 39379997 PMCID: PMC11462694 DOI: 10.1186/s12915-024-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans. However, comparative analyses of peptide GPCR conservation between C. elegans and other nematode species are limited, and many nematode GPCRs remain orphan. A phylum-wide perspective on peptide GPCR profiles will benefit functional and applied studies of nematode peptide GPCRs. RESULTS We constructed a pan-phylum resource of C. elegans peptide GPCR orthologs in 125 nematode species using a semi-automated pipeline for analysis of predicted proteome datasets. The peptide GPCR profile varies between nematode species of different phylogenetic clades and multiple C. elegans peptide GPCRs have orthologs across the phylum Nematoda. We identified peptide ligands for two highly conserved orphan receptors, NPR-9 and NPR-16, that belong to the bilaterian galanin/allatostatin A (Gal/AstA) and somatostatin/allatostatin C (SST/AstC) receptor families. The AstA-like NLP-1 peptides activate NPR-9 in cultured cells and are cognate ligands of this receptor in vivo. In addition, we discovered an AstC-type peptide, NLP-99, that activates the AstC-type receptor NPR-16. In our pan-phylum resource, the phylum-wide representation of NPR-9 and NPR-16 resembles that of their cognate ligands more than those of allatostatin-like peptides that do not activate these receptors. CONCLUSIONS The repertoire of C. elegans peptide GPCR orthologs varies across phylogenetic clades and several peptide GPCRs show broad conservation in the phylum Nematoda. Our work functionally characterizes the conserved receptors NPR-9 and NPR-16 as the respective GPCRs for the AstA-like NLP-1 peptides and the AstC-related peptide NLP-99. NLP-1 and NLP-99 are widely conserved in nematodes and their representation matches that of their receptor in most species. These findings demonstrate the conservation of a functional Gal/AstA and SST/AstC signaling system in nematodes. Our dataset of C. elegans peptide GPCR orthologs also lays a foundation for further functional studies of peptide GPCRs in the widely diverse nematode phylum.
Collapse
Affiliation(s)
- Luca Golinelli
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Allister Irvine
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Ciaran J McCoy
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium
| | - Louise E Atkinson
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, School of Biological Sciences, The Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Marogi JG, Murphy CT, Myhrvold C, Gitai Z. Pseudomonas aeruginosa modulates both Caenorhabditis elegans attraction and pathogenesis by regulating nitrogen assimilation. Nat Commun 2024; 15:7927. [PMID: 39256376 PMCID: PMC11387622 DOI: 10.1038/s41467-024-52227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like many animals, C. elegans use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing C. elegans attraction to bacteria and the physiological importance of these compounds to bacteria. Here, we address these questions by investigating the function of a small RNA, P11, in the pathogen, Pseudomonas aeruginosa, that was previously shown to mediate learned pathogen avoidance. We discovered that this RNA also affects the attraction of untrained C. elegans to P. aeruginosa and does so by controlling production of ammonia, a volatile odorant produced during nitrogen assimilation. We describe the complex regulation of P. aeruginosa nitrogen assimilation, which is mediated by a partner-switching mechanism involving environmental nitrates, sensor proteins, and P11. In addition to mediating C. elegans attraction, we demonstrate that nitrogen assimilation mutants perturb bacterial fitness and pathogenesis during C. elegans infection by P. aeruginosa. These studies define ammonia as a major mediator of trans-kingdom signaling, implicate nitrogen assimilation as important for both bacteria and host organisms, and highlight how a bacterial metabolic pathway can either benefit or harm a host in different contexts.
Collapse
Affiliation(s)
- Jacob G Marogi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Zhou R, Yu Y, Li C. Revealing neural dynamical structure of C. elegans with deep learning. iScience 2024; 27:109759. [PMID: 38711456 PMCID: PMC11070340 DOI: 10.1016/j.isci.2024.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Caenorhabditis elegans serves as a common model for investigating neural dynamics and functions of biological neural networks. Data-driven approaches have been employed in reconstructing neural dynamics. However, challenges remain regarding the curse of high-dimensionality and stochasticity in realistic systems. In this study, we develop a deep neural network (DNN) approach to reconstruct the neural dynamics of C. elegans and study neural mechanisms for locomotion. Our model identifies two limit cycles in the neural activity space: one underpins basic pirouette behavior, essential for navigation, and the other introduces extra Ω turns. The combination of two limit cycles elucidates predominant locomotion patterns in neural imaging data. The corresponding energy landscape explains the switching strategies between two limit cycles, quantitatively, and provides testable predictions on neural functions and circuit roles. Our work provides a general approach to study neural dynamics by combining imaging data and stochastic modeling.
Collapse
Affiliation(s)
- Ruisong Zhou
- School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Yuguo Yu
- Research Institute of Intelligent and Complex Systems, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Chunhe Li
- School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Shu C, Ge L, Li Z, Chen B, Liao S, Lu L, Wu Q, Jiang X, An Y, Wang Z, Qu M. Antibacterial activity of cinnamon essential oil and its main component of cinnamaldehyde and the underlying mechanism. Front Pharmacol 2024; 15:1378434. [PMID: 38529191 PMCID: PMC10961361 DOI: 10.3389/fphar.2024.1378434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Background: Plant essential oils have long been regarded as repositories of antimicrobial agents. In recent years, they have emerged as potential alternatives or supplements to antimicrobial drugs. Although literature reviews and previous studies have indicated that cinnamon essential oil (CIEO) and its major component, cinnamaldehyde (CID), possess potent antibacterial activities, their antibacterial mechanisms, especially the in vivo antibacterial mechanisms, remain elusive. Methods: In this study, we utilized the in vivo assessment system of Caenorhabditis elegans (C. elegans) to investigate the effects and mechanisms of high dose (100 mg/L) and low dose (10 mg/L) CIEO and CID in inhibiting Pseudomonas aeruginosa (P. aeruginosa). In addition, we also examined the in vitro antibacterial abilities of CIEO and CID against other common pathogens including P. aeruginosa and 4 other strains. Results: Our research revealed that both high (100 mg/L) and low doses (10 mg/L) of CIEO and CID treatment significantly alleviated the reduction in locomotion behavior, lifespan, and accumulation of P. aeruginosa in C. elegans infected with the bacteria. During P. aeruginosa infection, the transcriptional expression of antimicrobial peptide-related genes (lys-1 and lys-8) in C. elegans was upregulated with low-dose CIEO and CID treatment, while this trend was suppressed at high doses. Further investigation suggested that the PMK-1 mediated p38 signaling pathway may be involved in the regulation of CIEO and CID during nematode defense against P. aeruginosa infection. Furthermore, in vitro experimental results also revealed that CIEO and CID exhibit good antibacterial effects, which may be associated with their antioxidant properties. Conclusion: Our results indicated that low-dose CIEO and CID treatment could activate the p38 signaling pathway in C. elegans, thereby regulating antimicrobial peptides, and achieving antimicrobial effects. Meanwhile, high doses of CIEO and CID might directly participate in the internal antimicrobial processes of C. elegans. Our study provides research basis for the antibacterial properties of CIEO and CID both in vivo and in vitro.
Collapse
Affiliation(s)
- Chengjie Shu
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Ling Ge
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Zhuohang Li
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Bin Chen
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Shengliang Liao
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Lu Lu
- Natural Daily Chemical Research Laboratory, Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Qinlin Wu
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Xinyi Jiang
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Yuhan An
- School of Public Health, Yangzhou University, Yangzhou, China
| | - Zongde Wang
- School of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Man Qu
- School of Public Health, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Otarigho B, Butts AF, Aballay A. Neuronal NPR-15 modulates molecular and behavioral immune responses via the amphid sensory neuron-intestinal axis in C. elegans. eLife 2024; 12:RP90051. [PMID: 38446031 PMCID: PMC10942643 DOI: 10.7554/elife.90051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
The survival of hosts during infections relies on their ability to mount effective molecular and behavioral immune responses. Despite extensive research on these defense strategies in various species, including the model organism Caenorhabditis elegans, the neural mechanisms underlying their interaction remain poorly understood. Previous studies have highlighted the role of neural G-protein-coupled receptors (GPCRs) in regulating both immunity and pathogen avoidance, which is particularly dependent on aerotaxis. To address this knowledge gap, we conducted a screen of mutants in neuropeptide receptor family genes. We found that loss-of-function mutations in npr-15 activated immunity while suppressing pathogen avoidance behavior. Through further analysis, NPR-15 was found to regulate immunity by modulating the activity of key transcription factors, namely GATA/ELT-2 and TFEB/HLH-30. Surprisingly, the lack of pathogen avoidance of npr-15 mutant animals was not influenced by oxygen levels. Moreover, our studies revealed that the amphid sensory neuron ASJ is involved in mediating the immune and behavioral responses orchestrated by NPR-15. Additionally, NPR-15 was found to regulate avoidance behavior via the TRPM (transient receptor potential melastatin) gene, GON-2, which may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance. Our study contributes to a broader understanding of host defense strategies and mechanisms underlining the interaction between molecular and behavioral immune responses.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Anna Frances Butts
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealthHoustonUnited States
| |
Collapse
|
8
|
Otarigho B, Butts AF, Aballay A. Neuronal NPR-15 modulates molecular and behavioral immune responses via the amphid sensory neuron-intestinal axis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.27.550570. [PMID: 37546751 PMCID: PMC10402133 DOI: 10.1101/2023.07.27.550570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The survival of hosts during infections relies on their ability to mount effective molecular and behavioral immune responses. Despite extensive research on these defense strategies in various species, including the model organism Caenorhabditis elegans, the neural mechanisms underlying their interaction remain poorly understood. Previous studies have highlighted the role of neural G protein-coupled receptors (GPCRs) in regulating both immunity and pathogen avoidance, which is particularly dependent on aerotaxis. To address this knowledge gap, we conducted a screen of mutants in neuropeptide receptor family genes. We found that loss-of-function mutations in npr-15 activated immunity while suppressing pathogen avoidance behavior. Through further analysis, NPR-15 was found to regulate immunity by modulating the activity of key transcription factors, namely GATA/ELT-2 and TFEB/HLH-30. Surprisingly, the lack of pathogen avoidance of npr-15 mutant animals was not influenced by oxygen levels. Moreover, our studies revealed that the amphid sensory neuron ASJ is involved in mediating the immune and behavioral responses orchestrated by NPR-15. Additionally, NPR-15 was found to regulate avoidance behavior via the TRPM gene, GON-2, which may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance. Our study contributes to a broader understanding of host defense strategies and mechanisms underlining the interaction between molecular and behavioral immune responses.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anna Frances Butts
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alejandro Aballay
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, TX
| |
Collapse
|
9
|
Pu L, Wang J, Lu Q, Nilsson L, Philbrook A, Pandey A, Zhao L, Schendel RV, Koh A, Peres TV, Hashi WH, Myint SL, Williams C, Gilthorpe JD, Wai SN, Brown A, Tijsterman M, Sengupta P, Henriksson J, Chen C. Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in C. elegans. Nat Commun 2023; 14:8410. [PMID: 38110404 PMCID: PMC10728192 DOI: 10.1038/s41467-023-44177-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.
Collapse
Affiliation(s)
- Longjun Pu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jing Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Qiongxuan Lu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lars Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alison Philbrook
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Anjali Pandey
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Lina Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan Koh
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Tanara V Peres
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Weheliye H Hashi
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Si Lhyam Myint
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andre Brown
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Piali Sengupta
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Johan Henriksson
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden.
| | - Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
10
|
Marogi JG, Murphy CT, Myhrvold C, Gitai Z. P. aeruginosa controls both C. elegans attraction and pathogenesis by regulating nitrogen assimilation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569279. [PMID: 38077073 PMCID: PMC10705433 DOI: 10.1101/2023.11.29.569279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like most animals, C. elegans use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing C. elegans attraction to bacteria and the physiological importance of these compounds to bacteria. Here, we address these questions by investigating the function of a small RNA, P11, in the pathogen, Pseudomonas aeruginosa, that was previously shown to mediate learned pathogen avoidance. We discovered that this RNA also affects the attraction of untrained C. elegans to P. aeruginosa and does so by controlling production of ammonia, a volatile odorant produced during nitrogen assimilation. We untangle the complex regulation of P. aeruginosa nitrogen assimilation, which is mediated by a partner-switching mechanism involving environmental nitrates, sensor proteins, and P11. In addition to mediating C. elegans attraction, nitrogen assimilation is important for bacterial fitness and pathogenesis during C. elegans infection by P. aeruginosa . These studies define ammonia as a major mediator of trans-kingdom signaling, reveal the physiological importance of nitrogen assimilation for both bacteria and host organisms, and highlight how a bacterial metabolic pathway can either benefit or harm a host in different contexts.
Collapse
|
11
|
Zhang L, Wang Y, Wang D. Paeoniflorin increases the survival of Pseudomonas aeruginosa infected Caenorhabditis elegans at the immunosuppression stage by activating PMK-1, BAR-1, and EGL-1 signals. Arch Pharm Res 2023; 46:616-628. [PMID: 37535304 DOI: 10.1007/s12272-023-01459-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Paeoniflorin is the major active compound of total glycoside of paeony in Paeonia lactiflora Pall. Although several aspects of beneficial effects of paeoniflorin have been described, whether the paeoniflorin treatment is helpful for inhibiting the pathogen infection-induced immunosuppression remains largely unclear. Using the immunosuppression model in Caenorhabditis elegans induced by Pseudomonas aeruginosa infection, we here examined the beneficial effect of paeoniflorin treatment against the immunosuppression induced by bacterial pathogen infection. In this immunosuppression model, we observed that the survival rate of P. aeruginosa infected nematodes at the immunosuppression stage could be significantly increased by 25-100 mg/L paeoniflorin treatment. P. aeruginosa accumulation in intestinal lumen of nematodes at the immunosuppression stage was reduced by paeoniflorin treatment. Paeoniflorin could activate the expressions of antimicrobial genes (lys-1 and lys-8) in nematodes at the immunosuppression stage. Moreover, at the immunosuppression stage, paeoniflorin treatment increased the expressions of bar-1, pmk-1, and egl-1 required for the control of innate immunity against bacterial infection. Meanwhile, RNAi of bar-1, pmk-1, and egl-1 inhibited the beneficial effect of paeoniflorin treatment in increasing the survival, reducing the P. aeruginosa accumulation in intestinal lumen, and activating the expressions of antimicrobial genes (lys-1 and lys-8) in nematodes at the immunosuppression stage. Therefore, paeoniflorin treatment could effectively inhibit the immunosuppression induced by bacterial pathogen infection in the hosts.
Collapse
Affiliation(s)
- Le Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuxing Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Wang Y, Zhang L, Yuan X, Wang D. Treatment with paeoniflorin increases lifespan of Pseudomonas aeruginosa infected Caenorhabditis elegans by inhibiting bacterial accumulation in intestinal lumen and biofilm formation. Front Pharmacol 2023; 14:1114219. [PMID: 37050896 PMCID: PMC10083309 DOI: 10.3389/fphar.2023.1114219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Paeoniflorin is one of the important components in Paeoniaceae plants. In this study, we used Caenorhabditis elegans as a model host and Pseudomonas aeruginosa as a bacterial pathogen to investigate the possible role of paeoniflorin treatment against P. aeruginosa infection in the host and the underlying mechanisms. Posttreatment with 1.25–10 mg/L paeoniflorin could significantly increase the lifespan of P. aeruginosa infected nematodes. After the infection, the P. aeruginosa colony-forming unit (CFU) and P. aeruginosa accumulation in intestinal lumen were also obviously reduced by 1.25–10 mg/L paeoniflorin treatment. The beneficial effects of paeoniflorin treatment in increasing lifespan in P. aeruginosa infected nematodes and in reducing P. aeruginosa accumulation in intestinal lumen could be inhibited by RNAi of pmk-1, egl-1, and bar-1. In addition, paeoniflorin treatment suppressed the inhibition in expressions of pmk-1, egl-1, and bar-1 caused by P. aeruginosa infection in nematodes, suggesting that paeoniflorin could increase lifespan of P. aeruginosa infected nematode by activating PMK-1, EGL-1, and BAR-1. Moreover, although treatment with 1.25–10 mg/L paeoniflorin did not show obvious anti-P. aeruginosa activity, the P. aeruginosa biofilm formation and expressions of related virulence genes (pelA, pelB, phzA, lasB, lasR, rhlA, and rhlC) were significantly inhibited by paeoniflorin treatment. Treatment with 1.25–10 mg/L paeoniflorin could further decrease the levels of related virulence factors of pyocyanin, elastase, and rhamnolipid. In addition, 2.5–10 mg/L paeoniflorin treatment could inhibit the swimming, swarming, and twitching motility of P. aeruginosa, and treatment with 2.5–10 mg/L paeoniflorin reduced the cyclic-di-GMP (c-di-GMP) level. Therefore, paeoniflorin treatment has the potential to extend lifespan of P. aeruginosa infected hosts by reducing bacterial accumulation in intestinal lumen and inhibiting bacterial biofilm formation.
Collapse
|
13
|
Tang M, Ding G, Lu X, Huang Q, Du H, Xiao G, Wang D. Exposure to Nanoplastic Particles Enhances Acinetobacter Survival, Biofilm Formation, and Serum Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234222. [PMID: 36500844 PMCID: PMC9735686 DOI: 10.3390/nano12234222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 05/04/2023]
Abstract
The interaction between nanoplastics and bacteria remains still largely unclear. In this study, we determined the effect of nanopolystyrene particle (NP) on a bacterial pathogen of Acinetobacter johnsonii AC15. Scanning electron microscopy (SEM) analysis indicated the aggregation of NPs from 10 μg/L to 100 μg/L on surface of A. johnsonii AC15, suggesting that A. johnsonii AC15 acted as the vector for NPs. Exposure to 100−1000 μg/L NPs increased the growth and colony-forming unit (CFU) of A. johnsonii AC15. In addition, exposure to 100−1000 μg/L NPs enhanced the amount of formed biofilm of A. johnsonii AC15. Alterations in expressions of 3 survival-related (zigA, basD, and zur), 5 biofilm formation-related (ompA, bap, adeG, csuC, and csuD), and 3 serum resistance-related virulence genes (lpxC, lpxL, and pbpG) were observed after exposure to 1000 μg/L NPs. Moreover, both CFU and survival rate of A. johnsonii AC15 in normal human serum (NHS) were significantly increased by 1−1000 μg/L NPs, suggesting the enhancement in serum resistance of Acinetobacter pathogen by NPs. In the NHS, expressions of 3 survival-related (zigA, basD, and zur), 9 biofilm formation-related (ompA, bap, adeF, adeG, csuA/B, csuC, csuD, csuE, and hlyD), and 3 serum resistance-related virulence genes (lpxC, lpxL, and pbpG) were affected by 1000 μg/L NPs. Expressions of 1 survival-related (zigA), 5 biofilm formation-related (bap, adeG, csuC, csuD, and csuE), and 3 serum resistance-related virulence genes (lpxC, lpxL, and pbpG) were also altered by 10 μg/L NPs after the addition of NHS. Therefore, exposure to NPs in the range of μg/L has the potential to enhance bacterial virulence by increasing their growth, biofilm formation, and serum resistance.
Collapse
Affiliation(s)
- Mingfeng Tang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Guoying Ding
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Xiaoyu Lu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
- Correspondence: (G.X.); (D.W.)
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (G.X.); (D.W.)
| |
Collapse
|
14
|
Zhang L, Wang Y, Cao C, Zhu Y, Huang W, Yang Y, Qiu H, Liu S, Wang D. Beneficial effect of Xuebijing against Pseudomonas aeruginosa infection in Caenorhabditis elegans. Front Pharmacol 2022; 13:949608. [PMID: 36120363 PMCID: PMC9470999 DOI: 10.3389/fphar.2022.949608] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
In the clinical intensive care units (ICU), the traditional Chinese medicine (TCM) formulation of Xuebijing has been frequently used for treating sepsis. Nevertheless, the underlying pharmacological mechanisms of Xuebijing remain largely unclear. Caenorhabditis elegans is an important experimental host for bacterial infections. Using C. elegans as an animal model, we here examined the potential of Xuebijing treatment against bacterial infection and the underlying mechanisms. Xuebijing treatment could inhibit the reduction tendency of lifespan caused by Pseudomonas aeruginosa infection. For the cellular mechanisms of this antibacterial infection property, we found that Xuebijing treatment rescued C. elegans lifespan to be against P. aeruginosa infection by inhibiting Pseudomonas colonization in the intestinal lumen. Meanwhile, the increase in the expression of antimicrobial genes induced by Pseudomonas infection was also suppressed by Xuebijing treatment. Moreover, the beneficial effect of Xuebijing against Pseudomonas infection depended on insulin, p38 MAPK, Wnt, DBL-1/TGF-β, ELT-2, and programmed cell death (PCD)-related signals. Although Xuebijing did not show obvious antibacterial activity, Xuebijing (100%) treatment could inhibit the Pseudomonas biofilm formation and decrease the expression of virulence genes (lasA, lasB, rhlA, rhlC, phzA, phzM, phzH, and phzS) and quorum sensing (QS)-related genes (lasI, lasR, rhlI, rhlR, pqsA, and pqsR). Our results support the potential role of Xuebijing treatment against bacterial infection in hosts.
Collapse
Affiliation(s)
- Le Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yuxing Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Chang Cao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Yike Zhu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
- Department of Critical Care Medicine, Zhongda Hospital, Nanjing, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
- Department of Critical Care Medicine, Zhongda Hospital, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
- Department of Critical Care Medicine, Zhongda Hospital, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
- Department of Critical Care Medicine, Zhongda Hospital, Nanjing, China
| | - Songqiao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
- Department of Critical Care Medicine, Zhongda Hospital, Nanjing, China
- *Correspondence: Songqiao Liu, ; Dayong Wang,
| | - Dayong Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Songqiao Liu, ; Dayong Wang,
| |
Collapse
|
15
|
Crooks BA, Mckenzie D, Cadd LC, McCoy CJ, McVeigh P, Marks NJ, Maule AG, Mousley A, Atkinson LE. Pan-phylum In Silico Analyses of Nematode Endocannabinoid Signalling Systems Highlight Novel Opportunities for Parasite Drug Target Discovery. Front Endocrinol (Lausanne) 2022; 13:892758. [PMID: 35846343 PMCID: PMC9283691 DOI: 10.3389/fendo.2022.892758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid signalling (ECS) system is a complex lipid signalling pathway that modulates diverse physiological processes in both vertebrate and invertebrate systems. In nematodes, knowledge of endocannabinoid (EC) biology is derived primarily from the free-living model species Caenorhabditis elegans, where ECS has been linked to key aspects of nematode biology. The conservation and complexity of nematode ECS beyond C. elegans is largely uncharacterised, undermining the understanding of ECS biology in nematodes including species with key importance to human, veterinary and plant health. In this study we exploited publicly available omics datasets, in silico bioinformatics and phylogenetic analyses to examine the presence, conservation and life stage expression profiles of EC-effectors across phylum Nematoda. Our data demonstrate that: (i) ECS is broadly conserved across phylum Nematoda, including in therapeutically and agriculturally relevant species; (ii) EC-effectors appear to display clade and lifestyle-specific conservation patterns; (iii) filarial species possess a reduced EC-effector complement; (iv) there are key differences between nematode and vertebrate EC-effectors; (v) life stage-, tissue- and sex-specific EC-effector expression profiles suggest a role for ECS in therapeutically relevant parasitic nematodes. To our knowledge, this study represents the most comprehensive characterisation of ECS pathways in phylum Nematoda and inform our understanding of nematode ECS complexity. Fundamental knowledge of nematode ECS systems will seed follow-on functional studies in key nematode parasites to underpin novel drug target discovery efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
16
|
A single chemosensory GPCR is required for a concentration-dependent behavioral switching in C. elegans. Curr Biol 2021; 32:398-411.e4. [PMID: 34906353 DOI: 10.1016/j.cub.2021.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Animals detect and discriminate countless environmental chemicals for their well-being and survival. Although a single chemical can trigger opposing behavioral responses depending on its concentration, the mechanisms underlying such a concentration-dependent switching remain poorly understood. Here, we show that C. elegans exhibits either attraction or avoidance of the bacteria-derived volatile chemical dimethyl trisulfide (DMTS) depending on its concentration. This behavioral switching is mediated by two different types of chemosensory neurons, both of which express the DMTS-sensitive seven-transmembrane G protein-coupled receptor (GPCR) SRI-14. These two sensory neurons share downstream interneurons that process and translate DMTS signals via distinct glutamate receptors to generate the appropriate behavioral outcome. Thus, our results present one mechanism by which an animal connects two distinct types of chemosensory neurons detecting a common ligand to alternate downstream circuitry, thus efficiently switching between specific behavioral programs based on ligand concentration.
Collapse
|
17
|
Deng Y, Du H, Tang M, Wang Q, Huang Q, He Y, Cheng F, Zhao F, Wang D, Xiao G. Biosafety assessment of Acinetobacter strains isolated from the Three Gorges Reservoir region in nematode Caenorhabditis elegans. Sci Rep 2021; 11:19721. [PMID: 34611259 PMCID: PMC8492797 DOI: 10.1038/s41598-021-99274-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter has been frequently detected in backwater areas of the Three Gorges Reservoir (TGR) region. We here employed Caenorhabditis elegans to perform biosafety assessment of Acinetobacter strains isolated from backwater area in the TGR region. Among 21 isolates and 5 reference strains of Acinetobacter, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii ATCC 19606T, A. junii NH88-14, and A. lwoffii DSM 2403T resulted in significant decrease in locomotion behavior and reduction in lifespan of Caenorhabditis elegans. In nematodes, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii, A. junii and A. lwoffii also resulted in significant reactive oxygen species (ROS) production. Moreover, exposure to Acinetobacter isolates of AC1, AC15, AC18, and AC21 led to significant increase in expressions of both SOD-3::GFP and some antimicrobial genes (lys-1, spp-12, lys-7, dod-6, spp-1, dod-22, lys-8, and/or F55G11.4) in nematodes. The Acinetobacter isolates of AC1, AC15, AC18, and AC21 had different morphological, biochemical, phylogenetical, and virulence gene properties. Our results suggested that exposure risk of some Acinetobacter strains isolated from the TGR region exists for environmental organisms and human health. In addition, C. elegans is useful to assess biosafety of Acinetobacter isolates from the environment.
Collapse
Affiliation(s)
- Yunjia Deng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Mingfeng Tang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qilong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Ying He
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Fei Cheng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Dayong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
| |
Collapse
|
18
|
Radeke LJ, Herman MA. Take a Walk to the Wild Side of Caenorhabditis elegans-Pathogen Interactions. Microbiol Mol Biol Rev 2021; 85:e00146-20. [PMID: 33731489 PMCID: PMC8139523 DOI: 10.1128/mmbr.00146-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microbiomes form intimate functional associations with their hosts. Much has been learned from correlating changes in microbiome composition to host organismal functions. However, in-depth functional studies require the manipulation of microbiome composition coupled with the precise interrogation of organismal physiology-features available in few host study systems. Caenorhabditis elegans has proven to be an excellent genetic model organism to study innate immunity and, more recently, microbiome interactions. The study of C. elegans-pathogen interactions has provided in depth understanding of innate immune pathways, many of which are conserved in other animals. However, many bacteria were chosen for these studies because of their convenience in the lab setting or their implication in human health rather than their native interactions with C. elegans In their natural environment, C. elegans feed on a variety of bacteria found in rotting organic matter, such as rotting fruits, flowers, and stems. Recent work has begun to characterize the native microbiome and has identified a common set of bacteria found in the microbiome of C. elegans While some of these bacteria are beneficial to C. elegans health, others are detrimental, leading to a complex, multifaceted understanding of bacterium-nematode interactions. Current research on nematode-bacterium interactions is focused on these native microbiome components, both their interactions with each other and with C. elegans We will summarize our knowledge of bacterial pathogen-host interactions in C. elegans, as well as recent work on the native microbiome, and explore the incorporation of these bacterium-nematode interactions into studies of innate immunity and pathogenesis.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
19
|
Willis AR, Zhao W, Sukhdeo R, Wadi L, El Jarkass HT, Claycomb JM, Reinke AW. A parental transcriptional response to microsporidia infection induces inherited immunity in offspring. SCIENCE ADVANCES 2021; 7:7/19/eabf3114. [PMID: 33952520 PMCID: PMC8099193 DOI: 10.1126/sciadv.abf3114] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/17/2021] [Indexed: 05/05/2023]
Abstract
Parental infection can result in the production of offspring with enhanced immunity phenotypes. Critically, the mechanisms underlying inherited immunity are poorly understood. Here, we show that Caenorhabditis elegans infected with the intracellular microsporidian parasite N. parisii produce progeny that are resistant to microsporidia infection. We determine the kinetics of the response and show that intergenerational immunity prevents host-cell invasion by Nematocida parisii and enhances survival to the bacterial pathogen Pseudomonas aeruginosa We demonstrate that immunity is induced by the parental transcriptional response to infection, which can be mimicked through maternal somatic depletion of PALS-22 and the retinoblastoma protein ortholog, LIN-35. We find that other biotic and abiotic stresses (viral infection and cadmium exposure) that induce a similar transcriptional response as microsporidia also induce immunity in progeny. Together, our results reveal how a parental transcriptional signal can be induced by distinct stimuli and protect offspring against multiple classes of pathogens.
Collapse
Affiliation(s)
- Alexandra R Willis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ronesh Sukhdeo
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Abstract
Although Caenorhabditis elegans has been used as a model host for studying host-pathogen interactions for more than 20 years, the mechanisms by which it identifies pathogens are not well understood. This is largely due to its lack of most known pattern recognition receptors (PRRs) that recognize pathogen-derived molecules. Recent behavioral research in C. elegans indicates that its nervous system plays a major role in microbe sensing. With the increasing integration of neurobiology in immunological research, future studies may find that neuronal detection of pathogens is an integral part of C. elegans-pathogen interactions. Similar to that of mammals, the C. elegans nervous system regulates its immune system to maintain immunological homeostasis. Studies in the nematode have revealed unprecedented details regarding the molecules, cells, and signaling pathways involved in neural regulation of immunity. Notably, some of the studies indicate that some neuroimmune regulatory circuits need not be "activated" by pathogen infection because they are tonically active and that there could be a predetermined set point for internal immunity, around which the nervous system adjusts immune responses to internal or external environmental changes. Here, we review recent progress on the roles of the C. elegans nervous system in pathogen detection and immune regulation. Because of its advantageous characteristics, we expect that the C. elegans model will be critical for deciphering complex neuroimmune signaling mechanisms that integrate and process multiple sensory cues.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- Genomics Core, Washington State University, Spokane, Washington, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
22
|
Yang Y, Dong W, Wu Q, Wang D. Induction of Protective Response Associated with Expressional Alterations in Neuronal G Protein-Coupled Receptors in Polystyrene Nanoparticle Exposed Caenorhabditis elegans. Chem Res Toxicol 2021; 34:1308-1318. [PMID: 33650869 DOI: 10.1021/acs.chemrestox.0c00501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, the association of expressional alterations in neuronal G protein-coupled receptors (GPCRs) with induction of protective response to polystyrene nanoparticles (PS-NPs) was investigated in Caenorhabditis elegans. On the basis of both phenotypic analysis and expression levels, the alterations in expressions of NPR-1, NPR-4, NPR-8, NPR-9, NPR-12, DCAR-1, GTR-1, DOP-2, SER-4, and DAF-37 in neuronal cells mediated the protective response to PS-NPs exposure. In neuronal cells, NPR-9, NPR-12, DCAR-1, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting JNK-1/JNK MAPK signaling. Neuronal NPR-8, NPR-9, DCAR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting MPK-1/ERK MAPK signaling. Neuronal NPR-4, NPR-8, NPR-9, NPR-12, GTR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting DBL-1/TGF-β signaling. Neuronal NPR-1, NPR-4, NPR-12, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting DAF-7/TGF-β signaling. Our data provides an important neuronal basis for induction of protective response to PS-NPs in C. elegans.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Wenting Dong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.,College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China
| |
Collapse
|
23
|
Venkatesh SR, Singh V. G protein-coupled receptors: The choreographers of innate immunity in Caenorhabditis elegans. PLoS Pathog 2021; 17:e1009151. [PMID: 33476324 PMCID: PMC7819600 DOI: 10.1371/journal.ppat.1009151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Siddharth R. Venkatesh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
24
|
Sun L, Li H, Zhao L, Liao K. Regulation of Innate Immune Response to Fungal Infection in Caenorhabditis elegans by SHN-1/SHANK. J Microbiol Biotechnol 2020; 30:1626-1639. [PMID: 32958730 PMCID: PMC9728204 DOI: 10.4014/jmb.2006.06025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
In Caenorhabditis elegans, SHN-1 is the homologue of SHANK, a scaffolding protein. In this study, we determined the molecular basis for SHN-1/SHANK in the regulation of innate immune response to fungal infection. Mutation of shn-1 increased the susceptibility to Candida albicans infection and suppressed the innate immune response. After C. albicans infection for 6, 12, or 24 h, both transcriptional expression of shn-1 and SHN-1::GFP expression were increased, implying that the activated SHN-1 may mediate a protection mechanism for C. elegans against the adverse effects from fungal infection. SHN-1 acted in both the neurons and the intestine to regulate the innate immune response to fungal infection. In the neurons, GLR-1, an AMPA ionotropic glutamate receptor, was identified as the downstream target in the regulation of innate immune response to fungal infection. GLR-1 further positively affected the function of SER-7-mediated serotonin signaling and antagonized the function of DAT-1-mediated dopamine signaling in the regulation of innate immune response to fungal infection. Our study suggests the novel function of SHN-1/SHANK in the regulation of innate immune response to fungal infection. Moreover, our results also denote the crucial role of neurotransmitter signals in mediating the function of SHN-1/SHANK in regulating innate immune response to fungal infection.
Collapse
Affiliation(s)
- Lingmei Sun
- Department of Pharmacology, Medical School of Southeast University, Nanjing 20009, P.R. China,Corresponding authors L.Sun Phone: +86-25-83272525 E-mail:
| | - Huirong Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 10009, P.R. China
| | - Li Zhao
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 10009, P.R. China
| | - Kai Liao
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing 210009, P.R. China,K.Liao E-mail:
| |
Collapse
|
25
|
Prahlad V. The discovery and consequences of the central role of the nervous system in the control of protein homeostasis. J Neurogenet 2020; 34:489-499. [PMID: 32527175 PMCID: PMC7736053 DOI: 10.1080/01677063.2020.1771333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Organisms function despite wide fluctuations in their environment through the maintenance of homeostasis. At the cellular level, the maintenance of proteins as functional entities at target expression levels is called protein homeostasis (or proteostasis). Cells implement proteostasis through universal and conserved quality control mechanisms that surveil and monitor protein conformation. Recent studies that exploit the powerful ability to genetically manipulate specific neurons in C. elegans have shown that cells within this metazoan lose their autonomy over this fundamental survival mechanism. These studies have uncovered novel roles for the nervous system in controlling how and when cells activate their protein quality control mechanisms. Here we discuss the conceptual underpinnings, experimental evidence and the possible consequences of such a control mechanism. PRELUDE: Whether the detailed examination of parts of the nervous system and their selective perturbation is sufficient to reconstruct how the brain generates behavior, mental disease, music and religion remains an open question. Yet, Sydney Brenner's development of C. elegans as an experimental organism and his faith in the bold reductionist approach that 'the understanding of wild-type behavior comes best after the discovery and analysis of mutations that alter it', has led to discoveries of unexpected roles for neurons in the biology of organisms.
Collapse
Affiliation(s)
- Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
26
|
Li D, Deng Y, Wang S, Du H, Xiao G, Wang D. Assessment of nanopolystyrene toxicity under fungal infection condition in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110625. [PMID: 32302863 DOI: 10.1016/j.ecoenv.2020.110625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Due to the potential of release and accumulation in the environment, nanoplastics have attracted an increasing attention. In this study, we investigated the effect of exposure to nanopolystyrene (30 nm) in nematode Caenorhabditis elegans after the fungal infection. After Candida albicans infection, exposure to nanopolystyrene (10 and 100 μg/L) for 24-h could cause the more severe toxicity on lifespan and locomotion behavior compared with fungal infection alone. The more severe activation of oxidative stress and suppression of SOD-3:GFP expression and mitochondrial unfolded protein response (mt UPR) were associated with this observed toxicity enhancement induced by nanopolystyrene exposure. Moreover, the more severe C. albicans colony formation and suppression of innate immune response as indicated by the alteration in expression of anti-microbial genes (abf-2, cnc-4, cnc-7, and fipr-22/23) further contributed to the formation of this toxicity enhancement induced by nanopolystyrene exposure. Our results demonstrated that short-term exposure to nanopolystyrene in the range of μg/L potentially enhances the adverse effects of fungal infection on organisms.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Yunjia Deng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Shuting Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
27
|
Qiu Y, Luo L, Yang Y, Kong Y, Li Y, Wang D. Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135918. [PMID: 31837847 DOI: 10.1016/j.scitotenv.2019.135918] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 05/21/2023]
Abstract
In the environment, nanoplastic particles, such as nanopolystyrene, potentially cause toxicity on organisms at various aspects. We here employed endpoints of lifespan and aging-related phenotypes to further investigate the possible long-term effects of nanopolystyrene (100 nm) in Caenorhabditis elegans. After exposure from L1-larvae to adult day-3, nanopolystyrene at high concentrations (100 and 1000 μg/L) reduced the lifespan. Although nanopolystyrene (1 or 10 μg/L) did not affect the lifespan, nanopolystyrene (1 or 10 μg/L) could induce the more severe intestinal reactive oxygen species (ROS) production and decrease in locomotion behavior during the aging process compared with control. Moreover, nanopolystyrene exposure could cause the severe decrease in expressions of some immune response genes, hsp-6 gene, and genes encoding manganese-superoxide dismutases (Mn-SODs) during aging process, suggesting the severe suppression in innate immune response, inhibition in antioxidation defense system, and suppression in mitochondrial unfolded protein response (mt UPR) by nanopolystyrene. Our results highlight the potential of long-term nanopolystyrene exposure in reducing longevity and in affecting health state during the aging process in environmental organisms.
Collapse
Affiliation(s)
- Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Medical School, Southeast University, Nanjing 210009, China
| | - Libo Luo
- Changzhou No. 7 People's Hospital, Changzhou 213011, China
| | - Yanhua Yang
- Changzhou No. 7 People's Hospital, Changzhou 213011, China
| | - Yan Kong
- Medical School, Southeast University, Nanjing 210009, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
28
|
Singh J, Aballay A. Neural control of behavioral and molecular defenses in C. elegans. Curr Opin Neurobiol 2019; 62:34-40. [PMID: 31812835 DOI: 10.1016/j.conb.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/14/2019] [Indexed: 01/22/2023]
Abstract
The nervous and immune systems use bi-directional communication to control host responses against microbial pathogens. Recent studies at the interface of the two systems have highlighted important roles of the nervous system in the regulation of both microbicidal pathways and pathogen avoidance behaviors. Studies on the neural circuits in the simple model host Caenorhabditis elegans have significantly improved our understanding of the roles of conserved neural mechanisms in controlling innate immunity. Moreover, behavioral studies have advanced our understanding of how the nervous system may sense potential pathogens and consequently elicit pathogen avoidance, reducing the risk of infection. In this review, we discuss the neural circuits that regulate both behavioral immunity and molecular immunity in C. elegans.
Collapse
Affiliation(s)
- Jogender Singh
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
29
|
The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. Nat Commun 2019; 10:3042. [PMID: 31316054 PMCID: PMC6637209 DOI: 10.1038/s41467-019-10759-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Stress resistance and longevity are positively correlated but emerging evidence indicates that they are physiologically distinct. Identifying factors with distinctive roles in these processes is challenging because pro-longevity genes often enhance stress resistance. We demonstrate that TCER-1, the Caenorhabditis elegans homolog of human transcription elongation and splicing factor, TCERG1, has opposite effects on lifespan and stress resistance. We previously showed that tcer-1 promotes longevity in germline-less C. elegans and reproductive fitness in wild-type animals. Surprisingly, tcer-1 mutants exhibit exceptional resistance against multiple stressors, including infection by human opportunistic pathogens, whereas, TCER-1 overexpression confers immuno-susceptibility. TCER-1 inhibits immunity only during fertile stages of life. Elevating its levels ameliorates the fertility loss caused by infection, suggesting that TCER-1 represses immunity to augment fecundity. TCER-1 acts through repression of PMK-1 as well as PMK-1-independent factors critical for innate immunity. Our data establish key roles for TCER-1 in coordinating immunity, longevity and fertility, and reveal mechanisms that distinguish length of life from functional aspects of aging. Resistance to stress is often associated with increased longevity. Using the model organism C. elegans the authors here show that TCER-1 enhances lifespan while at the same time increasing sensitivity to a number of biotic and abiotic stressors.
Collapse
|
30
|
Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservior in the quiet season in Caenorhabditis elegans. Sci Rep 2018; 8:14102. [PMID: 30237459 PMCID: PMC6148280 DOI: 10.1038/s41598-018-32296-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
We here employed a model animal of Caenorhabditis elegans to perform toxicity assessment of original surface water samples collected from Three Gorges Reservoir (TGR) in the quiet season in Wanzhou, Chongqing. Using some sublethal endpoints, including lifespan, body length, locomotion behavior, brood size, and intestinal reactive oxygen species (ROS) induction, we found that the examined five original surface water samples could not cause toxicity on wild-type nematodes. Nevertheless, the surface water sample collected from backwater area induced the significant increase in expressions of genes (sod-2 and sod-3) encoding Mn-SODs in wild-type nematodes. Among the examined five original surface water samples, exposure to the original surface water sample collected from backwater area could further cause the toxicity in decreasing locomotion behavior and in inducing intestinal ROS production in sod-3 mutant nematodes. Moreover, the solid phase of surface water sample collected from backwater area might mainly contribute to the observed toxicity in sod-3 mutant nematodes. Our results are helpful for understanding the potential effects of surface water in the TGR region in the quiet season on environmental organisms.
Collapse
|
31
|
Lee K, Mylonakis E. An Intestine-Derived Neuropeptide Controls Avoidance Behavior in Caenorhabditis elegans. Cell Rep 2018; 20:2501-2512. [PMID: 28877481 DOI: 10.1016/j.celrep.2017.08.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Adjusting to a continuously changing environment is a key feature of life. For metazoans, environmental changes include alterations in the gut microbiota, which can affect both memory and behavior. The bacteriovorous nematode Caenorhabditis elegans discriminates between pathogenic and non-pathogenic food sources, avoiding the consumption of pathogens. Here, we demonstrate the role of the intestine in regulating C. elegans avoidance to Pseudomonas aeruginosa by an insulin-like neuropeptide encoded by ins-11. The transcriptional expression of ins-11 is controlled through transcription factor hlh-30 and the p38 mitogen-activated protein kinase (MAPK) pathway. ins-11 negatively controls signal pathways in neurons that regulate aversive learning behavior. Attenuation of ins-11 increased avoidance behavior and survival on pathogenic bacteria but decreased opportunities to find a food source as well as lowered energy storage and the number of viable progeny. Our findings support a role for the intestine in avoidance and identify an advantageous role for negative feedback that allows C. elegans to actively balance noxious and favorable environments.
Collapse
Affiliation(s)
- Kiho Lee
- Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Eleftherios Mylonakis
- Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
32
|
mir-355 Functions as An Important Link between p38 MAPK Signaling and Insulin Signaling in the Regulation of Innate Immunity. Sci Rep 2017; 7:14560. [PMID: 29109437 PMCID: PMC5673931 DOI: 10.1038/s41598-017-15271-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023] Open
Abstract
We performed a systematic identification of microRNAs (miRNAs) involved in the control of innate immunity. We identified 7 novel miRNA mutants with altered survival, colony forming in the body, and expression pattern of putative antimicrobial genes after Pseudomonas aeruginosa infection. Loss-of-function mutation of mir-45, mir-75, mir-246, mir-256, or mir-355 induced resistance to P. aeruginosa infection, whereas loss-of-function mutation of mir-63 or mir-360 induced susceptibility to P. aeruginosa infection. DAF-2 in the insulin signaling pathway acted as a target for intestinal mir-355 to regulate innate immunity. mir-355 functioned as an important link between p38 MAPK signaling pathway and insulin signaling pathway in the regulation of innate immunity. Our results provide an important molecular basis for further elucidation of the functions of various miRNAs in the regulation of innate immunity.
Collapse
|
33
|
Zhi L, Yu Y, Li X, Wang D, Wang D. Molecular Control of Innate Immune Response to Pseudomonas aeruginosa Infection by Intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 2017; 13:e1006152. [PMID: 28095464 PMCID: PMC5271417 DOI: 10.1371/journal.ppat.1006152] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/27/2017] [Accepted: 12/26/2016] [Indexed: 01/10/2023] Open
Abstract
The microRNA (miRNA) let-7 is an important miRNA identified in Caenorhabditis elegans and has been shown to be involved in the control of innate immunity. The underlying molecular mechanisms for let-7 regulation of innate immunity remain largely unclear. In this study, we investigated the molecular basis for intestinal let-7 in the regulation of innate immunity. Infection with Pseudomonas aeruginosa PA14 decreased let-7::GFP expression. Intestine- or neuron-specific activity of let-7 was required for its function in the regulation of innate immunity. During the control of innate immune response to P. aeruginosa PA14 infection, SDZ-24 was identified as a direct target for intestinal let-7. SDZ-24 was found to be predominantly expressed in the intestine, and P. aeruginosa PA14 infection increased SDZ-24::GFP expression. Intestinal let-7 regulated innate immune response to P. aeruginosa PA14 infection by suppressing both the expression and the function of SDZ-24. Knockout or RNA interference knockdown of sdz-24 dampened the resistance of let-7 mutant to P. aeruginosa PA14 infection. Intestinal overexpression of sdz-24 lacking 3'-UTR inhibited the susceptibility of nematodes overexpressing intestinal let-7 to P. aeruginosa PA14 infection. In contrast, we could observed the effects of intestinal let-7 on innate immunity in P. aeruginosa PA14 infected transgenic strain overexpressing sdz-24 containing 3'-UTR. In the intestine, certain SDZ-24-mediated signaling cascades were formed for nematodes against the P. aeruginosa PA14 infection. Our results highlight the crucial role of intestinal miRNAs in the regulation of the innate immune response to pathogenic infection.
Collapse
Affiliation(s)
- Lingtong Zhi
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yonglin Yu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Xueying Li
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Daoyong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|