1
|
Li Y, Ma Y, Liu Y, Tang N, Zhang W, Huo J, Zhang D. Role of differentiated embryo-chondrocyte expressed gene 2 in immunity. Front Immunol 2024; 15:1335473. [PMID: 38533496 PMCID: PMC10963606 DOI: 10.3389/fimmu.2024.1335473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Differentiated embryo-chondrocyte expressed gene 2 (DEC2) is a member of the basic helix-loop-helix (bHLH) subfamily of transcription factors. DEC2 is implicated in tumor immunotherapy, immune system function regulation, and autoimmune diseases. DEC2 enhances Th2 cell differentiation by regulating the IL-2 and IL-4 signaling pathways and mediates the growth of B-1a cells, thereby promoting the occurrence and development of inflammatory responses. In this study, we review the reported roles of DEC2, including the regulation of immune cell differentiation and cytokine production in various cells in humans, and discuss its potential in treating autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Yujing Li
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yinan Ma
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Na Tang
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenzhu Zhang
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingru Huo
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Di Zhang
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Oras A, Kallionpää H, Suomi T, Koskinen S, Laiho A, Elo LL, Knip M, Lahesmaa R, Aints A, Uibo R. Profiling of peripheral blood B-cell transcriptome in children who developed coeliac disease in a prospective study. Heliyon 2023; 9:e13147. [PMID: 36718152 PMCID: PMC9883278 DOI: 10.1016/j.heliyon.2023.e13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Background In coeliac disease (CoD), the role of B-cells has mainly been considered to be production of antibodies. The functional role of B-cells has not been analysed extensively in CoD. Methods We conducted a study to characterize gene expression in B-cells from children developing CoD early in life using samples collected before and at the diagnosis of the disease. Blood samples were collected from children at risk at 12, 18, 24 and 36 months of age. RNA from peripheral blood CD19+ cells was sequenced and differential gene expression was analysed using R package Limma. Findings Overall, we found one gene, HNRNPL, modestly downregulated in all patients (logFC -0·7; q = 0·09), and several others downregulated in those diagnosed with CoD already by the age of 2 years. Interpretation The data highlight the role of B-cells in CoD development. The role of HNRPL in suppressing enteroviral replication suggests that the predisposing factor for both CoD and enteroviral infections is the low level of HNRNPL expression. Funding EU FP7 grant no. 202063, EU Regional Developmental Fund and research grant PRG712, The Academy of Finland Centre of Excellence in Molecular Systems Immunology and Physiology Research (SyMMyS) 2012-2017, grant no. 250114) and, AoF Personalized Medicine Program (grant no. 292482), AoF grants 292335, 294337, 319280, 31444, 319280, 329277, 331790) and grants from the Sigrid Jusélius Foundation (SJF).
Collapse
Affiliation(s)
- Astrid Oras
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | - Henna Kallionpää
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Satu Koskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland,InFLAMES Research Flagship Center, University of Turku, Turku, Finland,Institute of Biomedicine, University of Turku, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Alar Aints
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia,Corresponding author. Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, EE50411, Tartu, Estonia.
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | | |
Collapse
|
3
|
Liu C, Omilusik K, Toma C, Kurd NS, Chang JT, Goldrath AW, Wang W. Systems-level identification of key transcription factors in immune cell specification. PLoS Comput Biol 2022; 18:e1010116. [PMID: 36156073 PMCID: PMC9536753 DOI: 10.1371/journal.pcbi.1010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/06/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Transcription factors (TFs) are crucial for regulating cell differentiation during the development of the immune system. However, the key TFs for orchestrating the specification of distinct immune cells are not fully understood. Here, we integrated the transcriptomic and epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that span the immune cell differentiation pathways. We constructed the cell-type-specific transcriptional regulatory network and assessed the global importance of TFs based on the Taiji framework, which is a method we have previously developed that can infer the global impact of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and human systems. We have also identified TF combinations that play important roles in specific developmental stages. Furthermore, we validated the functions of predicted novel TFs in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have developed a bioinformatic approach that provides a global picture of the regulatory mechanisms that govern cellular differentiation in the immune system and aids the discovery of novel mechanisms in cell fate decisions.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nadia S. Kurd
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ananda W. Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Garikipati VNS, Arakelyan A, Blakely EA, Chang PY, Truongcao MM, Cimini M, Malaredy V, Bajpai A, Addya S, Bisserier M, Brojakowska A, Eskandari A, Khlgatian MK, Hadri L, Fish KM, Kishore R, Goukassian DA. Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells 2021; 10:387. [PMID: 33668521 PMCID: PMC7917872 DOI: 10.3390/cells10020387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Compared to low doses of gamma irradiation (γ-IR), high-charge-and-energy (HZE) particle IR may have different biological response thresholds in cardiac tissue at lower doses, and these effects may be IR type and dose dependent. Three- to four-month-old female CB6F1/Hsd mice were exposed once to one of four different doses of the following types of radiation: γ-IR 137Cs (40-160 cGy, 0.662 MeV), 14Si-IR (4-32 cGy, 260 MeV/n), or 22Ti-IR (3-26 cGy, 1 GeV/n). At 16 months post-exposure, animals were sacrificed and hearts were harvested and archived as part of the NASA Space Radiation Tissue Sharing Forum. These heart tissue samples were used in our study for RNA isolation and microarray hybridization. Functional annotation of twofold up/down differentially expressed genes (DEGs) and bioinformatics analyses revealed the following: (i) there were no clear lower IR thresholds for HZE- or γ-IR; (ii) there were 12 common DEGs across all 3 IR types; (iii) these 12 overlapping genes predicted various degrees of cardiovascular, pulmonary, and metabolic diseases, cancer, and aging; and (iv) these 12 genes revealed an exclusive non-linear DEG pattern in 14Si- and 22Ti-IR-exposed hearts, whereas two-thirds of γ-IR-exposed hearts revealed a linear pattern of DEGs. Thus, our study may provide experimental evidence of excess relative risk (ERR) quantification of low/very low doses of full-body space-type IR-associated degenerative disease development.
Collapse
Affiliation(s)
- Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M Davis Heart and Lung Research Institute, Wexner Medical School, The Ohio State University, Columbus, OH 43210, USA;
| | - Arsen Arakelyan
- Bioinformatics Group, The Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia;
- PathVerse, Yerevan 0014, Armenia
| | | | | | - May M. Truongcao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Vandana Malaredy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Anamika Bajpai
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Sankar Addya
- Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Agnieszka Brojakowska
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Abrisham Eskandari
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Mary K. Khlgatian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Kenneth M. Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - David. A. Goukassian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| |
Collapse
|
5
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
6
|
Wang X, Ye C, Lin X, Ma K, Xiao F, Dong L, Lu L. New insights into the significance of the BCR repertoire in B-1 cell development and function. Cell Mol Immunol 2019; 16:772-773. [PMID: 31197257 DOI: 10.1038/s41423-019-0249-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023] Open
Affiliation(s)
- Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Cong Ye
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Lin
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Kongyang Ma
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|