1
|
Han Y, Jiang S, Dong X, Dai X, Wang S, Zheng Y, Yan G, Li S, Wu L, Walbot V, Meyers BC, Zhang M. Ribosome binding of phasiRNA precursors accelerates the 24-nt phasiRNA burst in meiotic maize anthers. THE PLANT CELL 2024; 37:koae289. [PMID: 39442012 DOI: 10.1093/plcell/koae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Reproductive phasiRNAs (phased, secondary, small interfering RNAs), produced from numerous PHAS loci, are essential for plant anther development. PHAS transcripts are enriched on endoplasmic reticulum-bound ribosomes in maize (Zea mays), but the impact of ribosome binding on phasiRNA biogenesis remains elusive. Through ribosome profiling of maize anthers at 10 developmental stages, we demonstrated that 24-PHAS transcripts are bound by ribosomes, with patterns corresponding to the timing and abundance of 24-PHAS transcripts. Ribosome binding to 24-PHAS transcripts is conserved among different maize inbred lines, with ribosomes enriched upstream of the miR2275 target sites. We detected short open reading frames (sORFs) in the ribosome-binding regions of some 24-PHAS transcripts and observed a 3-nt periodicity in most sORFs, but mass spectrometry failed to detect peptides corresponding to the sORFs. Deletion of the entire ribosome-binding region of 24PHAS_NO296 locus eliminated ribosome binding and decreased 24-nt phasiRNA production, without affecting 24PHAS_NO296 transcript levels. In contrast, disrupting only the sORFs in 24PHAS_NO296 did not substantially affect the generation of 24-nt phasiRNAs. A newly formed sORF in these mutants may have re-directed ribosome binding to its transcripts. Overall, these findings demonstrate that sORFs facilitate ribosome binding to 24-PHAS transcripts, thereby promoting phasiRNA biogenesis in meiotic anthers.
Collapse
Affiliation(s)
- Yingjia Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Siqi Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xing Dai
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengben Li
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhang L, Teng Y, Song Y, Li J, Zhang Z, Xu Y, Fan D, Wang L, Ren Y, He J, Song S, Xi X, Liu H, Ma C. Assessment of heat tolerance and identification of miRNAs during high-temperature response in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1484892. [PMID: 39502927 PMCID: PMC11534869 DOI: 10.3389/fpls.2024.1484892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
With global warming, heat stress has been recognized as a significant factor limiting grapevine development and fruit quality. MicroRNAs (miRNAs) are a class of small non-coding RNAs known to play crucial regulatory roles in stress resistance. Hence, there is an immediate requirement to cultivate and identify grapevine varieties that are resistant to heat and explore miRNA-mediated heat stress defense mechanisms. In this study, we assessed the thermal resistance of 38 grape germplasm resources and identified a series of miRNAs involved in heat stress resistance. The CK (25°C) and HS (45°C) groups of "Shenyue" cuttings of grapes were used as experimental materials for next-generation sequencing and construct libraries of small RNAs. A total of 177 known and 20 novel miRNAs were detected in the libraries. Differential expression analysis identified 65 differentially expressed miRNAs (DEMs) using the DE-Seq procedure. Furthermore, RT-qPCR validation confirmed complementary expression profiles of eight DEMs and their target genes between the HS and CK groups. Heterologous transformation further identified the function of Vvi-miR3633a downregulated under heat stress in Arabidopsis. In the heterologous expression lines, the survival rate was reduced by high temperature treatment indicating the ability of Vvi-miR3633a to regulate heat resistance. Assessing the heat resistance of grape species and the expression patterns of miRNA in response to high temperatures may reveal the molecular processes of heat resistance regulation mediated by miRNA in grapes under heat stress.
Collapse
Affiliation(s)
- Lipeng Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Yuanxu Teng
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lujia Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Xi
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Chao Ma
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Zhang X, Wang X, Deng F, Liu Y, Ru L, Yan G, Xu Y, Zhu Z, He Y. Sly-miR398b Mediates Mature Leaf Flattening by Orchestrating Auxin and H 2O 2 Signalling in Tomato. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248305 DOI: 10.1111/pce.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Leaf flattening plays a pivotal role in optimizing light capture and enhancing photosynthesis efficiency. While extensive research has clarified the molecular mechanisms governing the initial stages of leaf flattening, understanding the maintenance of this process in mature leaves remains limited. Our investigation focused on sly-miR398b in tomatoes and revealed its crucial role in maintaining leaf flattening. In situ hybridization experiments indicated predominant expression of sly-miR398b in the abaxial side. Disrupting sly-miR398b using CRISPR/Cas9 relieved its suppression on target gene (Cu/Zn-SOD, SlCSD1), elevating SlCSD1 levels specifically on the abaxial side. Consequently, this asymmetrical expression of SlCSD1 increased hydrogen peroxide (H2O2) levels in the abaxial side, hindering auxin influx genes while promoting auxin efflux gene expression. This shift reduced auxin response gene expression in the abaxial side of mature leaves compared to the adaxial side, leading to leaf epinasty in sly-miR398b mutants. Exogenous H2O2 spraying induced leaf epinasty, downregulating SlGH3.5 and upregulating SlPIN3 and SlPIN4. Remarkably, spraying with 1-naphthalacetic acid (NAA) restored leaf flattening in sly-miR398b mutants. Our findings offer novel insights into mature leaf flattening maintenance via sly-miR398b's regulation of auxin and H2O2 signalling pathways.
Collapse
Affiliation(s)
- Xinshan Zhang
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiujuan Wang
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Fei Deng
- Department of Computer Science and Technology, College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yuanyuan Liu
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Lei Ru
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Guochao Yan
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Yunmin Xu
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Zhujun Zhu
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| | - Yong He
- Discipline of Facility Horticulture, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Cao S, Sawettalake N, Shen L. Gapless genome assembly and epigenetic profiles reveal gene regulation of whole-genome triplication in lettuce. Gigascience 2024; 13:giae043. [PMID: 38991853 PMCID: PMC11238431 DOI: 10.1093/gigascience/giae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Lettuce, an important member of the Asteraceae family, is a globally cultivated cash vegetable crop. With a highly complex genome (∼2.5 Gb; 2n = 18) rich in repeat sequences, current lettuce reference genomes exhibit thousands of gaps, impeding a comprehensive understanding of the lettuce genome. FINDINGS Here, we present a near-complete gapless reference genome for cutting lettuce with high transformability, using long-read PacBio HiFi and Nanopore sequencing data. In comparison to stem lettuce genome, we identify 127,681 structural variations (SVs, present in 0.41 Gb of sequence), reflecting the divergence of leafy and stem lettuce. Interestingly, these SVs are related to transposons and DNA methylation states. Furthermore, we identify 4,612 whole-genome triplication genes exhibiting high expression levels associated with low DNA methylation levels and high N6-methyladenosine RNA modifications. DNA methylation changes are also associated with activation of genes involved in callus formation. CONCLUSIONS Our gapless lettuce genome assembly, an unprecedented achievement in the Asteraceae family, establishes a solid foundation for functional genomics, epigenomics, and crop breeding and sheds new light on understanding the complexity of gene regulation associated with the dynamics of DNA and RNA epigenetics in genome evolution.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Nunchanoke Sawettalake
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
5
|
Ma J, Li C, Gao P, Qiu Y, Zong M, Zhang H, Wang J. Melon shoot organization 1, encoding an AGRONAUTE7 protein, plays a crucial role in plant development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2875-2890. [PMID: 35802144 DOI: 10.1007/s00122-022-04156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A melon gene MSO1 located on chromosome 10 by map-based cloning strategy, which encodes an ARGONAUTE 7 protein, is responsible for the development of shoot organization. Plant endogenous small RNAs (sRNAs) are involved in various plant developmental processes. In Arabidopsis, sRNAs combined with ARGONAUTE (AGO) proteins are incorporated into the RNA-induced silencing complex (RISC), which functions in RNA silencing or biogenesis of trans-acting siRNAs (ta-siRNAs). However, their roles in melon (Cucumis melo L.) are still unclear. Here, the melon shoot organization 1 (mso1) mutant was identified and shown to exhibit pleiotropic phenotypes in leaf morphology and plant architecture. Positional cloning of MSO1 revealed that it encodes a homologue of Arabidopsis AGO7/ZIPPY, which is required for the production of ta-siRNAs. The AG-to-C mutation in the second exon of MSO1 caused a frameshift mutation and significantly reduced its expression. Ectopic expression of MSO1 rescued the Arabidopsis ago7 phenotype. RNA-seq analysis showed that several genes involved in transcriptional regulation and plant hormones were significantly altered in mso1 compared to WT. A total of 304 and 231 miRNAs were identified in mso1 and WT by sRNA sequencing, respectively, and among them, 42 known and ten novel miRNAs were differentially expressed. cme-miR390a significantly accumulated, and the expression levels of the two ta-siRNAs were almost completely abolished in mso1. Correspondingly, their targets, the ARF3 and ARF4 genes, showed dramatically upregulated expression, indicating that the miR390-TAS3-ARF pathway has conserved roles in melon. These findings will help us better understand the molecular mechanisms of MSO1 in plant development in melon.
Collapse
Affiliation(s)
- Jian Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Congcong Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanhong Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mei Zong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, China.
| | - Jianshe Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
6
|
Feng X, Yu Q, Zeng J, He X, Liu W. Genome-wide identification and characterization of GATA family genes in wheat. BMC PLANT BIOLOGY 2022; 22:372. [PMID: 35896980 PMCID: PMC9327314 DOI: 10.1186/s12870-022-03733-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Transcription factors GATAs were a member of zinc finger protein, which could bind DNA regulatory regions to control expression of target genes, thus influencing plant growth and development either in normal condition or environmental stresses. Recently, GATA genes have been found and functionally characterized in a number of plant species. However, little information of GATA genes were annotated in wheat. RESULTS In the current study, 79 GATA genes were identified in wheat, which were unevenly located on 21 chromosomes. According to the analysis of phylogenetic tree and functional domain structures, TaGATAs were classified into four subfamilies (I, II, III, and IV), consist of 35, 21, 12, and 11 genes, respectively. Meanwhile, the amino acids of 79 TaGATAs exhibited apparent difference in four subfamilies according to GATA domains comparison, gene structures and conserved motif analysis. We then analyze the gene duplication and synteny between the genomes of wheat and Arabidopsis, rice and barley, which provided insights into evolutionary characteristics. In addition, expression patterns of TaGATAs were analyzed, and they showed obvious difference in diverse tissues and abiotic stresses. CONCLUSION In general, these results provide useful information for future TaGATA gene function analysis, and it helps to better understand molecular breeding and stress response in wheat.
Collapse
Affiliation(s)
- Xue Feng
- College of Agronomy, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Qian Yu
- College of Agronomy, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Xiaoyan He
- College of Agronomy, Qingdao, Agricultural University, Qingdao, 266109, China
| | - Wenxing Liu
- College of Agronomy, Qingdao, Agricultural University, Qingdao, 266109, China.
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, inistry of Education, School of Life Sciences, Shandong University, Shandong Province, Qingdao, 266237, China.
| |
Collapse
|
7
|
Genome-wide identification and function characterization of GATA transcription factors during development and in response to abiotic stresses and hormone treatments in pepper. J Appl Genet 2021; 62:265-280. [PMID: 33624251 DOI: 10.1007/s13353-021-00618-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 01/03/2023]
Abstract
Pepper (Capsicum annuum L.) is an economically important vegetable crop whose production and quality are severely reduced under adverse environmental stress conditions. The GATA transcription factors belonging to type IV zinc-finger proteins, play a significant role in regulating light morphogenesis, nitrate assimilation, and organ development in plants. However, the functional characteristics of GATA gene family during development and in response to environmental stresses have not yet been investigated in pepper. In this study, a total of 28 pepper GATA (CaGATA) genes were identified. To gain an overview of the CaGATAs, we analyzed their chromosomal distribution, gene structure, conservative domains, cis-elements, phylogeny, and evolutionary relationship. We divided 28 CaGATAs into four groups distributed on 10 chromosomes, and identified 7 paralogs in CaGATA family of pepper and 35 orthologous gene pairs between CaGATAs and Arabidopsis GATAs (AtGATAs). The results of promoter cis-element analysis and the quantitative real-time PCR (qRT-PCR) analysis revealed that CaGATA genes were involved in regulating the plant growth and development and the responses to various abiotic stresses and hormone treatments in pepper. Tissue-specific expression analysis showed that most CaGATA genes were preferentially expressed in flower buds, flowers, and leaves. Several CaGATA genes, especially CaGATA14, were significantly regulated under multiple abiotic stresses, and CaGATA21 and CaGATA27 were highly responsive to phytohormone treatments. Taken together, our results lay a foundation for the biological function analysis of GATA gene family in pepper.
Collapse
|
8
|
Chen Q, Deng B, Gao J, Zhao Z, Chen Z, Song S, Wang L, Zhao L, Xu W, Zhang C, Wang S, Ma C. Comparative Analysis of miRNA Abundance Revealed the Function of Vvi-miR828 in Fruit Coloring in Root Restriction Cultivation Grapevine ( Vitis vinifera L.). Int J Mol Sci 2019; 20:ijms20164058. [PMID: 31434233 PMCID: PMC6720769 DOI: 10.3390/ijms20164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 11/22/2022] Open
Abstract
Root restriction cultivation leads to early maturation and quality improvement, especially in the anthocyanin content in grapevine. However, the molecular mechanisms that underlie these changes have not been thoroughly elucidated. In this study, four small RNA libraries were constructed, which included the green soft stage (GS) and ripe stage (RS) of ‘Muscat’ (Vitis vinifera L.) grape berries that were grown under root restriction (RR) and in traditional cultivation (no root restriction, CK). A total of 162 known miRNAs and 14 putative novel miRNAs were detected from the four small RNA libraries by high-throughput sequencing. An analysis of differentially expressed miRNAs (DEMs) revealed that 13 miRNAs exhibited significant differences in expression between RR and CK at the GS and RS stages, respectively. For different developmental stages of fruit, 23 and 34 miRNAs showed expression differences between the GS and RS stages in RR and CK, respectively. The expression patterns of the eight DEMs and their targets were verified by qRT-PCR, and the expression profiles of target genes were confirmed to be complementary to the corresponding miRNAs in RR and CK. The function of Vvi-miR828, which showed the down regulated expression in the RS stage under root restriction, was identified by gene transformation in Arabidopsis. The anthocyanin content significantly decreased in transgenic lines, which indicates the regulatory capacity of Vvi-miR828 in fruit coloration. The miRNA expression pattern comparison between RR and CK might provide a means of unraveling the miRNA-mediated molecular process regulating grape berry development under root restricted cultivation.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bohan Deng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zili Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Agro-Food Science and Technology/Key Laboratory of Agro-Products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Deng P, Muhammad S, Cao M, Wu L. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:965-975. [PMID: 29327403 PMCID: PMC5902766 DOI: 10.1111/pbi.12882] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 05/02/2023]
Abstract
Several varieties of small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are generated in plants to regulate development, genome stability and response to adverse environments. Phased siRNA (phasiRNA) is a type of secondary siRNA that is processed from a miRNA-mediated cleavage of RNA transcripts, increasing silencing efficiency or simultaneously suppressing multiple target genes. Trans-acting siRNAs (ta-siRNAs) are a particular class of phasiRNA produced from noncoding transcripts that silence targets in trans. It was originally thought that 'one-hit' and 'two-hit' models were essential for processing distinct TAS precursors; however, a single hit event was recently shown to be sufficient at triggering all types of ta-siRNAs. This review discusses the findings about biogenesis, targeting modes and regulatory networks of plant ta-siRNAs. We also summarize recent advances in the generation of other phasiRNAs and their possible biological benefits to plants.
Collapse
Affiliation(s)
- Pingchuan Deng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Sajid Muhammad
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Min Cao
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Liang Wu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Shi J, Dong J, Xue J, Wang H, Yang Z, Jiao Y, Xu L, Huang H. Model for the role of auxin polar transport in patterning of the leaf adaxial-abaxial axis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:469-480. [PMID: 28849614 DOI: 10.1111/tpj.13670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 05/27/2023]
Abstract
Leaf adaxial-abaxial polarity refers to the two leaf faces, which have different types of cells performing distinct biological functions. In 1951, Ian Sussex reported that when an incipient leaf primordium was surgically isolated by an incision across the vegetative shoot apical meristem (SAM), a radialized structure without an adaxial domain would form. This led to the proposal that a signal, now called the Sussex signal, is transported from the SAM to emerging primordia to direct leaf adaxial-abaxial patterning. It was recently proposed that instead of the Sussex signal, polar transport of the plant hormone auxin is critical in leaf polarity formation. However, how auxin polar transport functions in the process is unknown. Through live imaging, we established a profile of auxin polar transport in and around young leaf primordia. Here we show that auxin polar transport in lateral regions of an incipient primordium forms auxin convergence points. We demonstrated that blocking auxin polar transport in the lateral regions of the incipient primordium by incisions abolished the auxin convergence points and caused abaxialized leaves to form. The lateral incisions also blocked the formation of leaf middle domain and margins and disrupted expression of the middle domain/margin-associated marker gene WUSCHEL-RELATED HOMEOBOX 1 (SlWOX1). Based on these results we propose that the auxin convergence points are required for the formation of leaf middle domain and margins, and the functional middle domain and margins ensure leaf adaxial-abaxial polarity. How middle domain and margins function in the process is discussed.
Collapse
Affiliation(s)
- Jianmin Shi
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jiaqiang Dong
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jingshi Xue
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yuling Jiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
11
|
Guan C, Wu B, Yu T, Wang Q, Krogan NT, Liu X, Jiao Y. Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis. Curr Biol 2017; 27:2940-2950.e4. [PMID: 28943086 DOI: 10.1016/j.cub.2017.08.042] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022]
Abstract
The flattening of leaves to form broad blades is an important adaptation that maximizes photosynthesis. However, the molecular mechanism underlying this process remains unclear. The WUSCHEL-RELATED HOMEOBOX (WOX) genes WOX1 and PRS are expressed in the leaf marginal domain to enable leaf flattening, but the nature of WOX expression establishment remains elusive. Here, we report that adaxial-expressed MONOPTEROS (MP) and abaxial-enriched auxin together act as positional cues for patterning the WOX domain. MP directly binds to the WOX1 and PRS promoters and activates their expression. Furthermore, redundant abaxial-enriched ARF repressors suppress WOX1 and PRS expression, also through direct binding. In particular, we show that ARF2 is redundantly required with ARF3 and ARF4 to maintain the abaxial identity. Taken together, these findings explain how adaxial-abaxial polarity patterns the mediolateral axis and subsequent lateral expansion of leaves.
Collapse
Affiliation(s)
- Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Binbin Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingqing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naden T Krogan
- Department of Biology, American University, Washington, DC 20016, USA
| | - Xigang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Qi J, Wu B, Feng S, Lü S, Guan C, Zhang X, Qiu D, Hu Y, Zhou Y, Li C, Long M, Jiao Y. Mechanical regulation of organ asymmetry in leaves. NATURE PLANTS 2017; 3:724-733. [PMID: 29150691 DOI: 10.1038/s41477-017-0008-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 07/28/2017] [Indexed: 05/08/2023]
Abstract
How appendages, such as plant leaves or animal limbs, develop asymmetric shapes remains a fundamental question in biology. Although ongoing research has revealed the genetic regulation of organ pattern formation, how gene activity ultimately directs organ shape remains unclear. Here, we show that leaf dorsoventral (adaxial-abaxial) polarity signals lead to mechanical heterogeneity of the cell wall, related to the methyl-esterification of cell-wall pectins in tomato and Arabidopsis. Numerical simulations predicate that mechanical heterogeneity is sufficient to produce the asymmetry seen in planar leaves. Experimental tests that alter pectin methyl-esterification, and therefore cell wall mechanical properties, support this model and lead to polar changes in gene expression, suggesting the existence of a feedback mechanism for mechanical signals in morphogenesis. Thus, mechanical heterogeneity within tissue may underlie organ shape asymmetry.
Collapse
Affiliation(s)
- Jiyan Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
| | - Binbin Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shiliang Feng
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shouqin Lü
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
| | - Xiao Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Dengli Qiu
- Bruker Nano Surfaces Business, 100081, Beijing, China
| | - Yingchun Hu
- College of Life Sciences, Peking University, 100871, Beijing, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mian Long
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
13
|
Li D, Liu Z, Gao L, Wang L, Gao M, Jiao Z, Qiao H, Yang J, Chen M, Yao L, Liu R, Kan Y. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L. PLoS One 2016; 11:e0153168. [PMID: 27082634 PMCID: PMC4833412 DOI: 10.1371/journal.pone.0153168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7–2 collected 4–6, 7–9, 12–14, and 18–23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12–14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18–23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation.
Collapse
Affiliation(s)
- Dandan Li
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Zongcai Liu
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Lei Gao
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Lifang Wang
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Meijuan Gao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Zhujin Jiao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Jianwei Yang
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Min Chen
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Lunguang Yao
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- * E-mail: (RYL); (YCK)
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Libratory of insect biology, Nanyang Normal University, Nanyang, Henan, China
- * E-mail: (RYL); (YCK)
| |
Collapse
|
14
|
Ma J, Guo TL, Wang QL, Wang KB, Sun RR, Zhang BH. Expression profiles of miRNAs in Gossypium raimondii. J Zhejiang Univ Sci B 2015; 16:296-303. [PMID: 25845363 DOI: 10.1631/jzus.b1400277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
miRNAs are a class of conserved, small, endogenous, and non-protein-coding RNA molecules with 20-24 nucleotides (nt) in length that function as post-transcriptional modulators of gene expression in eukaryotic cells. Functional studies have demonstrated that plant miRNAs are involved in the regulation of a wide range of plant developmental processes. To date, however, no research has been carried out to study the expression profiles of miRNAs in Gossypium raimondii, a model cotton species. We selected 16 miRNAs to profile their tissue-specific expression patterns in G. raimondii four different tissues, and these miRNAs are reported to play important roles in plant growth and development. Our results showed that the expression levels of these miRNAs varied significantly from one to another in a tissue-dependent manner. Eight miRNAs, including miR-159, miR-162, miR-164, miR-172, miR-390, miR-395, miR-397, and miR-398, exhibited exclusively high expression levels in flower buds, suggesting that these miRNAs may play significant roles in floral development. The expression level of miR-164 was relatively high in shoots beside flower buds, implying that the function of miR-164 is not only limited to floral development but it may also play an important role in shoot development. Certain miRNAs such as miR-166 and miR-160 were extremely highly expressed in all of the four tissues tested compared with other miRNAs investigated, suggesting that they may play regulatory roles at multiple development stages. This study will contribute to future studies on the functional characterization of miRNAs in cotton.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, East Carolina University, Greenville, NC 27858, USA; Heze Academy of Agricultural Sciences, Heze 274000, China; Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China; Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | | | | | | | | | | |
Collapse
|
15
|
Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S, Nelissen H, Inzé D. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biol 2015; 16:168. [PMID: 26357925 PMCID: PMC4566308 DOI: 10.1186/s13059-015-0735-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND To sustain the global requirements for food and renewable resources, unraveling the molecular networks underlying plant growth is becoming pivotal. Although several approaches to identify genes and networks involved in final organ size have been proven successful, our understanding remains fragmentary. RESULTS Here, we assessed variation in 103 lines of the Zea mays B73xH99 RIL population for a set of final leaf size and whole shoot traits at the seedling stage, complemented with measurements capturing growth dynamics, and cellular measurements. Most traits correlated well with the size of the division zone, implying that the molecular basis of final leaf size is already defined in dividing cells of growing leaves. Therefore, we searched for association between the transcriptional variation in dividing cells of the growing leaf and final leaf size and seedling biomass, allowing us to identify genes and processes correlated with the specific traits. A number of these genes have a known function in leaf development. Additionally, we illustrated that two independent mechanisms contribute to final leaf size, maximal growth rate and the duration of growth. CONCLUSIONS Untangling complex traits such as leaf size by applying in-depth phenotyping allows us to define the relative contributions of the components and their mutual associations, facilitating dissection of the biological processes and regulatory networks underneath.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dorota Herman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Jolien De Block
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Bram Slabbinck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Hilde Nelissen
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
16
|
Reichel M, Li Y, Li J, Millar AA. Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:915-26. [PMID: 25600074 DOI: 10.1111/pbi.12327] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 05/20/2023]
Abstract
Elucidation of microRNA (miRNA) function through a loss-of-function approach has proven difficult due to extensive genetic redundancy among most plant and animal miRNA families. Consequently, miRNA decoy technologies such as target MIMICs (MIMs) and short tandem target MIMICs (STTMs) in plants or molecular SPONGEs (SPs) in animals have been developed to generate loss-of-function phenotypes by perturbing endogenous miRNA activity. To test whether SPs can inhibit plant miRNA activity, synthetic SP transgenes containing multiple miRNA binding sites targeting different Arabidopsis miRNA families were generated. Additionally, their silencing efficacies were compared to the corresponding MIM and STTM transgenes via scoring the frequency and severity of phenotypic abnormalities elicited by each transgene. While SPs with wild-type miRNA binding sites have no apparent impact, SPs containing miRNA binding sites with two central mismatches (cmSPs) can generate strong loss-of-function phenotypes. However, their efficacy varied dramatically, from inducing strong loss-of-function phenotypes to failing to produce any phenotypic impact. Variability was also observed when MIMs and STTMs were compared to cmSPs. While cmSP165/166 and STTM165/166 showed a stronger efficacy than MIM165/166, MIM159 was stronger than cmSP159 and STTM159. Although increasing the number of miRNA binding sites or strengthening the free energy of the miRNA binding site interaction can improve decoy efficacy, clearly additional unknown overriding factors are at play. In conclusion, we demonstrate that no one approach guarantees the strongest miRNA inhibition, but rather distinct miRNA families respond differently to the various approaches, suggesting that multiple approaches may need to be taken to generate the desired loss-of-function outcome.
Collapse
Affiliation(s)
- Marlene Reichel
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Yanjiao Li
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Junyan Li
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Anthony A Millar
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
17
|
Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology. MOLECULAR PLANT 2015; 8:998-1010. [PMID: 25620770 DOI: 10.1016/j.molp.2015.01.013] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 01/13/2015] [Indexed: 05/18/2023]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level.
Collapse
Affiliation(s)
- Mohammad Amin Omidbakhshfard
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sebastian Proost
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ushio Fujikura
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
18
|
Abstract
Stem cells are responsible for organogenesis, but it is largely unknown whether and how information from stem cells acts to direct organ patterning after organ primordia are formed. It has long been proposed that the stem cells at the plant shoot apex produce a signal, which promotes leaf adaxial-abaxial (dorsoventral) patterning. Here we show the existence of a transient low auxin zone in the adaxial domain of early leaf primordia. We also demonstrate that this adaxial low auxin domain contributes to leaf adaxial-abaxial patterning. The auxin signal is mediated by the auxin-responsive transcription factor MONOPTEROS (MP), whose constitutive activation in the adaxial domain promotes abaxial cell fate. Furthermore, we show that auxin flow from emerging leaf primordia to the shoot apical meristem establishes the low auxin zone, and that this auxin flow contributes to leaf polarity. Our results provide an explanation for the hypothetical meristem-derived leaf polarity signal. Opposite to the original proposal, instead of a signal derived from the meristem, we show that a signaling molecule is departing from the primordium to the meristem to promote robustness in leaf patterning.
Collapse
|
19
|
Seo PJ. Recent advances in plant membrane-bound transcription factor research: emphasis on intracellular movement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:334-342. [PMID: 24299191 DOI: 10.1111/jipb.12139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
Transcription factors constitute numerous signal transduction networks and play a central role in gene expression regulation. Recent studies have shown that a limited portion of transcription factors are anchored in the cellular membrane, storing as dormant forms. Upon exposure to environmental and developmental cues, these transcription factors are released from the membrane and translocated to the nucleus, where they regulate associated target genes. As this process skips both transcriptional and translational regulations, it guarantees prompt response to external and internal signals. Membrane-bound transcription factors (MTFs) undergo several unique steps that are not involved in the action of canonical nuclear transcription factors: proteolytic processing and intracellular movement. Recently, alternative splicing has also emerged as a mechanism to liberate MTFs from the cellular membranes, establishing an additional activation scheme independent of proteolytic processing. Multiple layers of MTF regulation add complexity to transcriptional regulatory scheme and ensure elaborate action of MTFs. In this review, we provide an overview of recent findings on MTFs in plants and highlight the molecular mechanisms underlying MTF liberation from cellular membranes with an emphasis on intracellular movement.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, 561-756, Korea; Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 561-756, Korea; Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju, 561-756, Korea
| |
Collapse
|
20
|
Chen X, Wang H, Li J, Huang H, Xu L. Quantitative control of ASYMMETRIC LEAVES2 expression is critical for leaf axial patterning in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4895-905. [PMID: 24006428 PMCID: PMC3830476 DOI: 10.1093/jxb/ert278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ASYMMETRIC LEAVES2 (AS2) is one of the key genes required for specifying leaf adaxial identity during leaf adaxial-abaxial polarity establishment. Previous data have shown that, in leaf development, AS2 is directly repressed by an abaxially located transcription factor KANADI1 (KAN1), so that the AS2 transcripts are restricted only in the adaxial leaf domain. It is shown here that, different from the spatial repression by KAN1, the quantitative repression of AS2 in the adaxial domain is also critical for ensuring normal leaf pattern formation. By analysing two gain-of-function as2 mutants, as2-5D and isoginchaku-2D (iso-2D), it is shown that the similar AS2-over-expressed phenotypes of these mutants reflect two different kinds of AS2 misexpression patterns. While as2-5D causes disruption of a KAN1-binding site at the AS2 promoter leading to derepression of AS2 in the abaxial side but without changing its expression level of a leaf, iso-2D results in over-expression of AS2 but without altering its adaxial expression pattern. In addition, it was found that, in iso-2D, levels of histone H3 lysine 27 trimethylation (H3K27me3) and H3K4me3 at the AS2 locus are significantly reduced and increased, respectively, compared with those in the wild type and as2-5D. These results suggest that during leaf patterning, quantitative control of the AS2 expression level might involve epigenetic regulations.
Collapse
Affiliation(s)
| | | | | | | | - Lin Xu
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Korir NK, Li X, Xin S, Wang C, Changnian S, Kayesh E, Fang J. Characterization and expression profiling of selected microRNAs in tomato (Solanum lycopersicon) 'Jiangshu14'. Mol Biol Rep 2013; 40:3503-21. [PMID: 23408149 DOI: 10.1007/s11033-012-2425-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 12/18/2012] [Indexed: 01/22/2023]
Abstract
Presence of selected tomato (Solanum lycopersicon) microRNAs (sly-miRNAs) was validated and their expression profiles established in roots, stems, leaves, flowers and fruits of tomato variety Jiangshu14 by quantitative RT-PCR (qRT-PCR). In addition conservation characteristics these sly-miRNAs were analyzed and target genes predicted bioinformatically. Results indicate that some of these miRNAs are specific to tomato while most are conserved in other plant species. Predicted sly-miRNA targets genes were shown to be targeted by either by a single or more miRNAs and are involved in diverse processes in tomato plant growth and development. All the 36 miRNAs were present in the cDNA of mixed tissues and qRT-PCR revealed that some of these sly-miRNAs are ubiquitous in tomato while others have tissue-specific expression. The experimental validation and expression profiling as well target gene prediction of these miRNAs in tomato as done in this study can add to the knowledge on the important roles played by these sly-miRNAs in the growth and development, environmental stress tolerance as well as pest and disease resistance in tomatoes and related species. In addition these findings broaden the knowledge of small RNA-mediated regulation in S. lycopersicon. It is recommended that experimental validation of the target genes be done so as to give a much more comprehensive information package on these miRNAs in tomato and specifically in the selected variety.
Collapse
Affiliation(s)
- Nicholas Kibet Korir
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Y, Bai Y, Han J, Chen M, Kayesh E, Jiang W, Fang J. Bioinformatics prediction of miRNAs in the Prunus persica genome with validation of their precise sequences by miR-RACE. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:80-92. [PMID: 23107282 DOI: 10.1016/j.jplph.2012.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
We predicted 262 potential MicroRNAs (miRNAs) belonging to 70 miRNA families from the peach (Prunus persica) genome and two specific 5' and 3' miRNA rapid amplification of cDNA ends (miR-RACE) PCR reactions and sequence-directed cloning were employed to accurately validate 61 unique P. persica miRNAs (Ppe-miRNAs) sequences belonging to 61 families comprising 97 Ppe-miRNAs. Validation of the termini nucleotides in particular can define the real sequences of the Ppe-miRNAs on peach genome. Comparison between predicted and validated Ppe-miRNAs through alignment revealed that 43 unique orthologous sequences were identical, while the remaining 18 exhibited some divergences at their termini nucleotides. Quantitative real-time polymerase chain reaction (qRT-PCR) was further employed to analyze the expression of all the 61 miRNAs and 10 putative targets of 8 randomly selected Ppe-miRNAs in peach leaves, flowers and fruits at different stages of development, where both the miRNAs and the putative target genes showed tissue-specific expression.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang W, Xu B, Wang H, Li J, Huang H, Xu L. YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development. PLANT PHYSIOLOGY 2011; 157:1805-19. [PMID: 22003085 PMCID: PMC3327174 DOI: 10.1104/pp.111.186395] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/12/2011] [Indexed: 05/21/2023]
Abstract
During leaf development, the formation of leaf adaxial-abaxial polarity at the primordium stage is crucial for subsequent leaf expansion. However, little is known about the genetic control from polarity establishment to blade outgrowth. The leaf margin, comprising elongated margin cells and hydathodes, is thought to affect leaf expansion. Here, we show that mutants with defective leaf polarity or with loss of function in the multiple auxin-biosynthetic YUCCA (YUC) genes exhibited a similar abnormal leaf margin and less-expanded leaves. Leaf margins of these mutants contained fewer hydathodes and an increased number of cell patches in which the patterns of epidermal cells resembled those of hydathodes. The previously characterized leaf-abaxialized asymmetric leaves2 (as2) revoluta (rev) and leaf-adaxialized kanadi1 (kan1) kan2 double mutants both produce finger-shaped, hydathode-like protrusions on adaxial and abaxial leaf surfaces, respectively. YUCs are required for formation of the protrusions, as those produced by as2 rev and kan1 kan2 were absent in the yuc1 yuc2 yuc4 triple mutant background. Expressions of YUC1, YUC2, and YUC4 were spatially regulated in the leaf, being associated with hydathodes in wild-type leaves and protrusions on as2 rev and kan1 kan2 leaves. In addition, inhibition of auxin transport by treatment of seedlings with N-(1-naphtyl) phtalamic acid or disruption of the auxin gradient by transforming plants with the 35S:YUC1 construct also blocked leaf margin development. Collectively, our data show that expressions of YUCs in the leaf respond to the adaxial-abaxial juxtaposition, and that the activities of auxin mediate leaf margin development, which subsequently promotes blade outgrowth.
Collapse
Affiliation(s)
- Wei Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
24
|
Horiguchi G, Nakayama H, Ishikawa N, Kubo M, Demura T, Fukuda H, Tsukaya H. ANGUSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis. PLANT & CELL PHYSIOLOGY 2011; 52:112-24. [PMID: 21097896 DOI: 10.1093/pcp/pcq178] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Leaf morphogenesis relies on adaxial/abaxial patterning and extensive growth. This study investigated the role of ANGUSTIFOLIA3 (AN3) from Arabidopsis thaliana in these processes. The an3 mutants produce narrower leaves that contain significantly fewer cells than the wild type. We examined the genetic interaction between an3 and asymmetric leaves2 (as2), which has a weak adaxial defect. The an3 as2 mutants developed trumpet-like leaves and accumulated transcripts of abaxially expressed genes at higher levels than an3 and as2. Gene expression analyses suggested that an3 altered the expression of a number of genes. Many of them were involved in metabolism, and several genes that promote adaxial identity cooperatively with as2 were down-regulated. Next, we performed detailed developmental analyses to examine the relationship between the narrow-leaf phenotype of an3 and leaf polarity. As a result, we showed that AN3 is required during a specific phase after an oblong shape is established in early leaf primordia. During this phase, the angle of the cell division plane relative to the longitudinal axis of the leaf primordium is more variable than in the earlier phase where transverse divisions were dominant in both the wild type and an3. Correlated with this dynamic change in cell division pattern, the leaf primordium became rounder. In an3, mitotic activity was reduced more rapidly than in the wild type, causing premature termination of the morphometric change. These results suggest that AN3 promotes cell proliferation during a specific developmental phase that is also required to correct abaxial/adaxial patterning in concert with AS2.
Collapse
Affiliation(s)
- Gorou Horiguchi
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Yuan Z, Luo D, Li G, Yao X, Wang H, Zeng M, Huang H, Cui X. Characterization of the AE7 gene in Arabidopsis suggests that normal cell proliferation is essential for leaf polarity establishment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:331-342. [PMID: 21070412 DOI: 10.1111/j.1365-313x.2010.04326.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The formation of leaf polarity is critical for leaf morphogenesis. In this study, we characterized and cloned an Arabidopsis gene, AS1/2 ENHANCER7 (AE7), which is required for both leaf adaxial-abaxial polarity formation and normal cell proliferation. The ae7 mutant exhibited leaf adaxial-abaxial polarity defects and double mutants combining ae7 with the leaf polarity mutants as1 (asymmetric leaves1), as2, rdr6 (RNA-dependent RNA polymerase6) or ago7/zip (argonaute7/zippy) all resulted in plants with an apparently enhanced loss of adaxial leaf identity. In addition, ae7 also showed decreased cell proliferation in both leaves and roots, compensated by increased cell sizes in leaves. AE7 encodes a protein conserved in many eukaryotic organisms, ranging from unicellular yeasts to humans; however, the functions of AE7 family members from other species have not been reported. In situ hybridization revealed that AE7 is expressed in a spotted pattern in plant tissues, similar to cell-cycle marker genes such as HISTONE4. Moreover, the ae7 endoploidy and expression analysis of several cell-cycle marker genes in ae7 suggest that the AE7 gene is required for cell cycle progression. As the previously characterized 26S proteasome and ribosome mutants also affect both leaf adaxial-abaxial polarity and cell proliferation, similar to the defects in ae7, we propose that normal cell proliferation may be essential for leaf polarity establishment. Possible models for how cell proliferation influences leaf adaxial-abaxial polarity establishment are discussed.
Collapse
Affiliation(s)
- Zhenhuan Yuan
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ferrándiz C, Fourquin C, Prunet N, Scutt CP, Sundberg E, Trehin C, Vialette-Guiraud AC. Carpel Development. ADVANCES IN BOTANICAL RESEARCH 2010. [PMID: 0 DOI: 10.1016/b978-0-12-380868-4.00001-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
27
|
Xu ZQ, Huang X, Feng C, Tian N, Xu D, Feng SZ. Multicellular genesis of leaf primordium was demonstrated via chimaeric transgenic plant of maize (Zea mays L.) regenerated from Type II calli. Mol Biol Rep 2009; 37:3525-31. [PMID: 20039139 DOI: 10.1007/s11033-009-9946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/03/2009] [Indexed: 10/20/2022]
Abstract
Type-II embryonic calli were induced from immature embryos of maize (Zea mays L.) genotype YD and bombarded with beta-glucuronidase gene. Bombarded calli were proliferated on normal N6 medium for 2 weeks at 26°C in the dark and selected on N6 medium containing 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 5 mg/l phosphinothricin (PPT) but without casamino acids and proline under the same conditions for 14 days. Regeneration was carried out on hormone-free MS medium containing 5 mg/l phosphinothricin at 26°C under 3000 lux illumination. Plants over 8 cm were transplanted into soil and sprayed with 250 mg/l phosphinothricin when two new leaves appeared. Except normal transgenic plants, chimaeric transgenics also were regenerated in the present work. The expression pattern of beta-glucuronidase gene in leaves of chimaeric transgenic plant revealed that more than one cell formed leaf primordium at the initial stage, and filial cells stemed from each cell in leaf primordium arranged in a row longitudinally from leaf base to leaf apex. There was a clear boundary as a straight line between the area formed by transformed cells and the area formed by normal cells. A hypothesis was put forward that the primitive cells in leaf primordium divided in a longitudinal style, resulted in leaf elongation, then the filial cells divided transversally and synchronously toward the outside to broaden the leaf.
Collapse
Affiliation(s)
- Zi-Qin Xu
- Provincial Key Laboratory of Biotechnology, Institute of Life Science, Northwest University, Xian, 710069, China.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet 2009; 5:e1000716. [PMID: 19936050 PMCID: PMC2773440 DOI: 10.1371/journal.pgen.1000716] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/12/2009] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling identified 150 high-confidence genes within 26 miRNA families. For 25 families, expression was verified by deep-sequencing of small RNA libraries that were prepared from an assortment of maize tissues. PCR-RACE amplification of 68 miRNA transcript precursors, representing 18 families conserved across several plant species, showed that splice variation and the use of alternative transcriptional start and stop sites is common within this class of genes. Comparison of sequence variation data from diverse maize inbred lines versus teosinte accessions suggest that the mature miRNAs are under strong purifying selection while the flanking sequences evolve equivalently to other genes. Since maize is derived from an ancient tetraploid, the effect of whole-genome duplication on miRNA evolution was examined. We found that, like protein-coding genes, duplicated miRNA genes underwent extensive gene-loss, with approximately 35% of ancestral sites retained as duplicate homoeologous miRNA genes. This number is higher than that observed with protein-coding genes. A search for putative miRNA targets indicated bias towards genes in regulatory and metabolic pathways. As maize is one of the principal models for plant growth and development, this study will serve as a foundation for future research into the functional roles of miRNA genes.
Collapse
Affiliation(s)
- Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jer-Ming Chia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Joshua C. Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Zhijie Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Apurva Narechania
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Christopher A. Maher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Katherine Guill
- Plant Genetics Research Unit, United States Department of Agriculture–Agriculture Research Service, Columbia, Missouri, United States of America
| | - Michael D. McMullen
- Plant Genetics Research Unit, United States Department of Agriculture–Agriculture Research Service, Columbia, Missouri, United States of America
- Division of Plant Sciences, University of Missouri Columbia, Columbia, Missouri, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Plant, Soil, and Nutrition Research Unit, United States Department of Agriculture–Agriculture Research Service, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Yao X, Wang H, Li H, Yuan Z, Li F, Yang L, Huang H. Two types of cis-acting elements control the abaxial epidermis-specific transcription of the MIR165a and MIR166a genes. FEBS Lett 2009; 583:3711-7. [PMID: 19879265 DOI: 10.1016/j.febslet.2009.10.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/25/2009] [Accepted: 10/26/2009] [Indexed: 01/30/2023]
Abstract
During leaf development, polarity formation is critical for leaf morphogenesis and functions. This process is regulated by several components including two microRNAs, miR165 and 166, which negatively regulate transcription factor genes PHABULOSA, PHAVOLUTA and REVOLUTA. Although miR165 and 166 are known to be accumulated in the abaxial leaf domain, how this pattern is determined is largely unknown. Here we report that the MIR165a and 166a genes are predominantly transcribed in the abaxial epidermis, and this transcript distribution pattern is controlled by two types of cis-acting elements. Our results suggest a model for the polar accumulation of MIR165 and 166 transcripts.
Collapse
Affiliation(s)
- Xiaozhen Yao
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Shi Y, Chen J, Liu W, Huang Q, Shen B, Leung H, Wu J. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). ACTA ACUST UNITED AC 2009; 52:885-90. [PMID: 19802748 DOI: 10.1007/s11427-009-0109-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/06/2009] [Indexed: 11/24/2022]
Abstract
To understand the development of rice leaf blades, we identified a new rolled-leaf mutant, w32, from indica cultivar IR64 through EMS mutagenesis. The mutant showed a stable rolled-leaf phenotype throughout the life cycle. Two F2 populations were developed by crossing w32 to cultivar IR24 and PA64. Genetic analysis showed that the rolled-leaf phenotype was controlled by a single recessive gene. To determine the location of the gene, bulked segregant analysis was carried out using mutant and wild-type DNA pools and 1846 mutant-type F2 individuals derived from the cross w32/PA64 were genotyped to locate the gene on the short arm of chromosome 7. The rolled-leaf gene, tentatively named rl11(t), is likely a new gene as no other rolled-leaf genes have been identified near the region. By developing new SSR and InDel markers, the gene was delimited to a 52 kb region near the end of the short chromosome arm. Further fine mapping and cloning of the gene are currently underway.
Collapse
Affiliation(s)
- YongFeng Shi
- Chinese National Center for Rice Improvement/National key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Brooks L, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire RJ, Eudy D, Pawlowska T, Ware D, Janick-Buckner D, Buckner B, Timmermans MCP, Schnable PS, Nettleton D, Scanlon MJ. Microdissection of shoot meristem functional domains. PLoS Genet 2009; 5:e1000476. [PMID: 19424435 PMCID: PMC2673047 DOI: 10.1371/journal.pgen.1000476] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/09/2009] [Indexed: 12/30/2022] Open
Abstract
The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection-microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize.
Collapse
Affiliation(s)
- Lionel Brooks
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Josh Strable
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Xiaolan Zhang
- Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Kazuhiro Ohtsu
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Ruilian Zhou
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Ananda Sarkar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sarah Hargreaves
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Robert J. Elshire
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Douglas Eudy
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | - Teresa Pawlowska
- Department of Plant Pathology, Ithaca, New York, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Agriculture Research Service Department, United States Department of Agriculture, Washington, D.C., United States of America
| | - Diane Janick-Buckner
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | - Brent Buckner
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | | | - Patrick S. Schnable
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
32
|
Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. THE PLANT CELL 2009; 21:719-35. [PMID: 19304938 PMCID: PMC2671703 DOI: 10.1105/tpc.108.061457] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 02/10/2009] [Accepted: 02/27/2009] [Indexed: 05/18/2023]
Abstract
As an important agronomic trait, rice (Oryza sativa L.) leaf rolling has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the photosynthesis of cultivars and hence raises grain yield. However, the relevant molecular mechanism remains unclear. Here, we show the isolation and functional characterization of SHALLOT-LIKE1 (SLL1), a key gene controlling rice leaf rolling. sll1 mutant plants have extremely incurved leaves due to the defective development of sclerenchymatous cells on the abaxial side. Defective development can be functionally rescued by expression of SLL1. SLL1 is transcribed in various tissues and accumulates in the abaxial epidermis throughout leaf development. SLL1 encodes a SHAQKYF class MYB family transcription factor belonging to the KANADI family. SLL1 deficiency leads to defective programmed cell death of abaxial mesophyll cells and suppresses the development of abaxial features. By contrast, enhanced SLL1 expression stimulates phloem development on the abaxial side and suppresses bulliform cell and sclerenchyma development on the adaxial side. Additionally, SLL1 deficiency results in increased chlorophyll and photosynthesis. Our findings identify the role of SLL1 in the modulation of leaf abaxial cell development and in sustaining abaxial characteristics during leaf development. These results should facilitate attempts to use molecular breeding to increase the photosynthetic capacity of rice, as well as other crops, by modulating leaf development and rolling.
Collapse
Affiliation(s)
- Guang-Heng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | | | | | | | | |
Collapse
|
33
|
Ling Q, Yao Y, Huang H. A model for the 26S proteasome and ribosome actions in leaf polarity formation. PLANT SIGNALING & BEHAVIOR 2008; 3:804-805. [PMID: 19704563 PMCID: PMC2634378 DOI: 10.4161/psb.3.10.5877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 03/10/2008] [Indexed: 05/28/2023]
Abstract
Leaf morphogenesis requires the establishment of adaxial-abaxial polarity in emerging leaf primordia, and a number of genes participating in this process have been identified in recent years. We previously reported that the 26S proteasome is important in specifying the leaf adaxial fate. More recently, two papers from separate researches showed that several genes encoding ribosomal large subunit proteins also play an important role in leaf adaxial-abaxial patterning. Here we show that plants with a single mutation in the genes encoding either 26S proteasome subunits or ribosomal proteins shared similar abnormalities in some leaves, with an outgrowth formed on the distal part of the leaf abaxial side. Plants harboring these 26S proteasome or ribosome mutations in combination with an additional mutation asymmetric leaves1 or 2 (as1 or as2) demonstrated severely defective leaves, and the phenotypes of these double mutants were very similar. Because activities of the 26S proteasome and ribosome both affect the level of functional proteins, the recent findings suggest that a previously unrecognized regulation, the protein level regulation, is critical in normal leaf patterning. A regulatory model for the 26S proteasome and ribosome actions in leaf patterning is discussed.
Collapse
Affiliation(s)
- Qihua Ling
- National Laboratory of Plant Molecular Genetics; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institute for Biological Sciences; Shanghai China
| | | | | |
Collapse
|
34
|
Yan S, Yan CJ, Zeng XH, Yang YC, Fang YW, Tian CY, Sun YW, Cheng ZK, Gu MH. ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. PLANT MOLECULAR BIOLOGY 2008; 68:239-50. [PMID: 18594992 DOI: 10.1007/s11103-008-9365-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 06/15/2008] [Indexed: 05/05/2023]
Abstract
Leaves, the collective organ produced by the shoot apical meristem (SAM), are polarized along their adaxial-abaxial axis. In this study, we characterized two rice (Oryza sativa) allelic rolled-leaf mutants, rolled leaf 9-1 (rl9-1) and rl9-2, which display very similar phenotypes with completely adaxialized leaves and malformed spikelets. We cloned the RL9 gene by way of a map-based cloning strategy. Molecular studies have revealed that RL9 encodes a GARP protein, an orthologue of Arabidopsis KANADIs. RL9 is mainly expressed in roots, leaves, and flowers. The transient expression of a RL9-GFP (green fluorescent protein) fusion protein has indicated that RL9 protein is localized in the nucleus, suggesting that RL9 acts as a putative transcription factor.
Collapse
Affiliation(s)
- Song Yan
- The Key Laboratory of Plant Functional Genomics, Ministry of Education of China, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, 12 East Wenhui Road, Jiangsu 225009, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhu Y, Li Z, Xu B, Li H, Wang L, Dong A, Huang H. Subcellular localizations of AS1 and AS2 suggest their common and distinct roles in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:897-905. [PMID: 18713400 DOI: 10.1111/j.1744-7909.2008.00693.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
During leaf organogenesis, a critical step for normal leaf primordium initiation is the repression of the class 1 KNOTTED1-like homeobox (KNOX) genes. After leaf primordia are formed, they must establish polarity for normal leaf morphogenesis. Recent studies have led to the identification of a number of genes that participate in the class 1 KNOX gene repression and/or the leaf polarity establishment. ASTMMETRIC LEAVES1 and 2 (AS1 and AS2) are two of these genes, which are critical for both of these two processes. As a first step towards understanding the molecular genetic basis of the AS1-AS2 action, we determined the subcellular localizations of the two proteins in both tobacco BY2 cells and Arabidopsis plants, by fusing them to yellow/cyan fluorescent protein (YFP/CFP). Our data showed that AS1 and AS2 alone were predominantly localized in the nucleolus and the nucleoplasm, respectively. The presence of both AS1 and AS2 proteins in the same interphase cell demonstrated their co-localization in both nucleolus and nucleoplasm. In addition, AS1 alone was able to associate with the condensed chromosome in the metaphase cell. Our data suggest that AS1, AS2 and the AS1-AS2 protein complex may have distinct functions, which are all required for normal plant development.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|