1
|
Deng F, Lu L, Li L, Yang J, Chen Y, Zeng H, Li Y, Qiao Z. Floral Developmental Morphology and Biochemical Characteristics of Male Sterile Mutants of Lagerstroemia indica. PLANTS (BASEL, SWITZERLAND) 2024; 13:3043. [PMID: 39519960 PMCID: PMC11548521 DOI: 10.3390/plants13213043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Male sterility is a common phenomenon in higher plants and often plays an important role in the selection of superior offspring. 'Xiang Yun' is a mutant of Lagerstroemia indica that does not bear fruit after flowering, and its flowering period is significantly longer than that of normal L. indica. To explore the timing and molecular mechanisms of sterility in 'Xiang Yun', this study determined the period of sterility through anatomical observation and compared the content of nutrients and the activity of antioxidative enzymes at different stages of flower development. Finally, sequence alignment and qPCR were used to analyze the differences in pollen development genes between 'Xiang Yun' and 'Hong Ye'. The results showed that the anthers of 'Xiang Yun' dispersed pollen normally, but the pollen grains could not germinate normally. Observations with scanning electron microscopy revealed that the pollen grains were uneven in size and shriveled in shape. Further observation of anther sections found that abnormal development of the microspores began at the S2 stage, with the callose wall between microspores of 'Xiang Yun' being thicker than that of 'Hong Ye'. In addition, during the flower development of 'Xiang Yun', the contents of soluble sugar, soluble protein, free proline, and triglycerides were deficient to varying degrees, and the activities of POD, SOD, and MDA were lower. Sequence alignment and qPCR showed that there were several mutations in EFD1, TPD1, and DEX1 of 'Xiang Yun' compared with 'Hong Ye', and the expression levels of these genes were abnormally elevated in the later stages of development. Our results clarified the timing and phenotype of male sterility in 'Xiang Yun'. This provides solid and valuable information for further research on the molecular mechanism of sterility in 'Xiang Yun' and the genetic breeding of crape myrtle.
Collapse
Affiliation(s)
- Fuyuan Deng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Liushu Lu
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lu Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Yang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Chen
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Huijie Zeng
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Yongxin Li
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| | - Zhongquan Qiao
- Hunan Provincial Key Laboratory of Forest Clonal Breeding, Hunan Academy of Forestry, Changsha 410004, China
| |
Collapse
|
2
|
Zou M, Shabala S, Zhao C, Zhou M. Molecular mechanisms and regulation of recombination frequency and distribution in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:86. [PMID: 38512498 PMCID: PMC10957645 DOI: 10.1007/s00122-024-04590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.
Collapse
Affiliation(s)
- Meilin Zou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
3
|
Huang X, Zeng X, Cai M, Zhao D. The MSI1 member OsRBAP1 gene, identified by a modified MutMap method, is required for rice height and spikelet fertility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111201. [PMID: 35643623 DOI: 10.1016/j.plantsci.2022.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 05/10/2023]
Abstract
To explore the molecular mechanisms underlying plant height regulation, we isolated and characterized a stably inherited semi-dwarf mutant bgsd-2 from the ethane methyl sulfonate (EMS) mutant progeny of 'Ping Tang Wild-type (PTWT)', a rice (Oryza sativa ssp. japonica) landrace in Guizhou. Transcriptome sequencing and qRT-PCR analyses showed that a number of cellulose and lignin-related genes involved in cell wall biogenesis were substantially downregulated in bgsd-2. MutMap-based cloning revealed the occurrence of a single amino acid substitution in the LOC_Os01g51300 gene, belonging to the MSI1 (multicopy suppressor of IRA1) member OsRBAP1. The bgsd-2 mutation occurred in the 3rd exon of OsRBAP1, resulting in a nonsense mutation of a codon shift from glycine (G) to glutamic acid (E) at residue 65. Protein localization analysis uncovered that the OsRBAP1 gene encodes a nuclear-localized protein and that the mutation in bgsd-2 may affect the stability of the OsRBAP1 protein. The CRISPR/Cas9 system was used to switch off OsRBAP1 in PTWT to obtain the knockout mutant osrbap1, which exhibited a severe reduction in height and fertility. Cytological observations suggest that the dwarfism of osrabp1 may be caused by reduced cell size and numbers, and that male sterility may be due to abnormal microspore development. Transcriptome analysis revealed that OsRBAP1 defects can repress the expression of numerous essential genes, which regulate multiple developmental processes in plants. Altogether, our results suggest that OsRBAP1 plays an important role in the regulation of rice height and spikelet fertility.
Collapse
Affiliation(s)
- Xiaozhen Huang
- College of Tea Sciences, Guizhou University, 550025, Guiyang, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Mingling Cai
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China; Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
4
|
Liu W, Sun J, Li J, Liu C, Si F, Yan B, Wang Z, Song X, Yang Y, Zhu Y, Cao X. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line. J Genet Genomics 2022; 49:624-635. [PMID: 35041992 DOI: 10.1016/j.jgg.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Translational regulation, especially tissue- or cell type-specific gene regulation, plays essential roles in plant growth and development. Thermo-sensitive genic male sterile (TGMS) lines have been widely used for hybrid breeding in rice (Oryza sativa). However, little is known about translational regulation during reproductive stage in TGMS rice. Here, we used translating ribosome affinity purification (TRAP) combined with RNA sequencing to investigate the reproductive tissue-specific translatome of TGMS rice expressing FLAG-tagged ribosomal protein L18 (RPL18) from the germline-specific promoter MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1). Differentially expressed genes at the transcriptional and translational levels were enriched in pollen and anther-related formation and development processes. These contained a number of genes reported to be involved in tapetum programmed cell death (PCD) and lipid metabolism during pollen development and anther dehiscence in rice, including several encoding transcription factors and key enzymes, as well as several long non-coding RNAs (lncRNAs) that potentially affect tapetum and pollen-related genes in male sterility. This study represents the first comprehensive reproductive tissue-specific characterization of the translatome in TGMS rice. These results contribute to our understanding of the molecular basis of sterility in TGMS rice and will facilitate further genetic manipulation of TGMS rice in two-line breeding systems.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ji Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuyan Si
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanzhu Yang
- Department of Rice Breeding, Hunan Yahua Seed Scientific Research Institute, Changsha 410119, Hunan, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Wu J, Chen L, Shahid MQ, Chen M, Dong Q, Li J, Xu X, Liu X. Pervasive interactions of Sa and Sb loci cause high pollen sterility and abrupt changes in gene expression during meiosis that could be overcome by double neutral genes in autotetraploid rice. RICE (NEW YORK, N.Y.) 2017; 10:49. [PMID: 29197985 PMCID: PMC5712294 DOI: 10.1186/s12284-017-0188-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/22/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Intersubspecific autotetraploid rice hybrids possess high hybrid vigor; however, low pollen fertility is a critical hindrance in its commercial utilization. Our previous study demonstrated that polyploidy could increase the multi-loci interaction and cause high pollen abortion in autotetraploid rice hybrids. However, there is little known about the critical role of pollen sterility locus or loci in the intersubspecific hybrids. We developed autotetraploid rice hybrids harboring heterozygous genotypes (S i S i S j S j ) at different pollen sterility loci by using the near isogenic lines of Taichung65-4×. Moreover, autotetraploid lines carrying double neutral genes, Sa n and Sb n , were used to assess their effect on fertility restoration. RESULTS Cytological studies showed that the deleterious genetic interactions at Sa and Sb pollen sterility loci resulted in higher pollen sterility (76.83%) and abnormal chromosome behavior (24.59%) at metaphase I of meiosis in autotetraploid rice hybrids. Transcriptome analysis revealed 1092 differentially expressed genes (DEG) in a hybrid with the pervasive interactions at Sa and Sb pollen sterility loci, and most of the genes (about 83%) exhibited down regulation. Of the DEG, 60 were associated with transcription regulation and 18 genes were annotated as meiosis-related genes. Analysis on the hybrids developed by using autotetraploid rice harboring double neutral genes, Sa n and Sb n , revealed normal pollen fertility, and transcriptome analysis showed non-significant difference in number of DEG among different hybrids. CONCLUSIONS Our finding revealed that pervasive interactions at Sa and Sb pollen sterility loci cause high sterility in the autotetraploid hybrids that lead to the down-regulation of important meiosis-related genes and transcription regulation factors. Moreover, we also found that the hybrids sterility could be overcome by double neutral genes, Sa n and Sb n , in autotetraploid rice hybrids. The present study provided a strong evidence for the utilization of heterosis in autotetraploid rice hybrids.
Collapse
Affiliation(s)
- Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Minyi Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Qinglei Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Jirui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaosong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
6
|
MULTI-TILLERING DWARF1, a new allele of BRITTLE CULM 12, affects plant height and tiller in rice. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0981-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Khosa JS, Lee R, Bräuning S, Lord J, Pither-Joyce M, McCallum J, Macknight RC. Doubled Haploid 'CUDH2107' as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility. PLoS One 2016; 11:e0166568. [PMID: 27861615 PMCID: PMC5115759 DOI: 10.1371/journal.pone.0166568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022] Open
Abstract
Researchers working on model plants have derived great benefit from developing genomic and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozygous genome making the sharing of germplasm and analysis of sequencing data complicated. To simplify the discovery and analysis of genes underlying important onion traits, we are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion research community. In the present investigation, we performed transcriptome sequencing on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed for gene ontology and transcripts were classified on the basis of putative biological processes, molecular function and cellular localization. Significant differences were observed in transcript expression profiles between different tissues. To demonstrate the utility of our CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of various traits, we identified orthologues of rice genes involved in male fertility and flower development. These genes provide an excellent starting point for studying the molecular regulation, and the engineering of reproductive traits.
Collapse
Affiliation(s)
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sophia Bräuning
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Janice Lord
- Department of Botany, University of Otago, Dunedin, New Zealand
| | | | - John McCallum
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
- * E-mail:
| |
Collapse
|
8
|
Yan X, Zeng X, Wang S, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Li Y, Zhu L, Wu G. Aberrant Meiotic Prophase I Leads to Genic Male Sterility in the Novel TE5A Mutant of Brassica napus. Sci Rep 2016; 6:33955. [PMID: 27670217 PMCID: PMC5037387 DOI: 10.1038/srep33955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Genic male sterility (GMS) has already been extensively utilized for hybrid rapeseed production. TE5A is a novel thermo-sensitive dominant GMS line in Brassica napus, however, its mechanisms of GMS remain largely unclear. Histological and Transmission electron microscopy (TEM) analyses of anthers showed that the male gamete development of TE5A was arrested at meiosis prophase I. EdU uptake of S-phase meiocytes revealed that the TE5A mutant could accomplish DNA replication, however, chromosomal and fluorescence in situ hybridization (FISH) analyses of TE5A showed that homologous chromosomes could not pair, synapse, condense and form bivalents. We then analyzed the transcriptome differences between young floral buds of sterile plants and its near-isogenic fertile plants through RNA-Seq. A total of 3,841 differentially expressed genes (DEGs) were obtained, some of which were associated with homologous chromosome behavior and cell cycle control during meiosis. Dynamic expression changes of selected candidate DEGs were then analyzed at different anther developmental stages. The present study not only demonstrated that the TE5A mutant had defects in meiotic prophase I via detailed cytological analysis, but also provided a global insight into GMS-associated DEGs and elucidated the mechanisms of GMS in TE5A through RNA-Seq.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Shasha Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Hongfei Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Yunjing Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Li Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
9
|
Zhang K, Song Q, Wei Q, Wang C, Zhang L, Xu W, Su Z. Down-regulation of OsSPX1 caused semi-male sterility, resulting in reduction of grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1661-72. [PMID: 26806409 PMCID: PMC5066639 DOI: 10.1111/pbi.12527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/06/2015] [Indexed: 05/03/2023]
Abstract
OsSPX1, a rice SPX domain gene, involved in the phosphate (Pi)-sensing mechanism plays an essential role in the Pi-signalling network through interaction with OsPHR2. In this study, we focused on the potential function of OsSPX1 during rice reproductive phase. Based on investigation of OsSPX1 antisense and sense transgenic rice lines in the paddy fields, we discovered that the down-regulation of OsSPX1 caused reduction of seed-setting rate and filled grain number. Through examination of anthers and pollens of the transgenic and wild-type plants by microscopy, we found that the antisense of OsSPX1 gene led to semi-male sterility, with lacking of mature pollen grains and phenotypes with a disordered surface of anthers and pollens. We further conducted rice whole-genome GeneChip analysis to elucidate the possible molecular mechanism underlying why the down-regulation of OsSPX1 caused deficiencies in anthers and pollens and lower seed-setting rate in rice. The down-regulation of OsSPX1 significantly affected expression of genes involved in carbohydrate metabolism and sugar transport, anther development, cell cycle, etc. These genes may be related to pollen fertility and male gametophyte development. Our study demonstrated that down-regulation of OsSPX1 disrupted rice normal anther and pollen development by affecting carbohydrate metabolism and sugar transport, leading to semi-male sterility, and ultimately resulted in low seed-setting rate and grain yield.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qian Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Miyazaki S, Sato Y, Asano T, Nagamura Y, Nonomura KI. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR. PLANT MOLECULAR BIOLOGY 2015; 89:293-307. [PMID: 26319516 DOI: 10.1007/s11103-015-0369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.
Collapse
Affiliation(s)
- Saori Miyazaki
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
- Office for the Promotion of Global Education Programs, Shizuoka University, Jyouhoku, Nakaku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Yutaka Sato
- Genome Resource Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, 920-0934, Japan.
- Wakasa Seikatsu Co. Ltd, 22 Naginataboko-cho, Shijo-Karasuma, Shimogyo-ku, Kyoto, 600-8008, Japan.
| | - Yoshiaki Nagamura
- Genome Resource Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
11
|
Coudert Y, Le VAT, Adam H, Bès M, Vignols F, Jouannic S, Guiderdoni E, Gantet P. Identification of CROWN ROOTLESS1-regulated genes in rice reveals specific and conserved elements of postembryonic root formation. THE NEW PHYTOLOGIST 2015; 206:243-254. [PMID: 25442012 DOI: 10.1111/nph.13196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/22/2014] [Indexed: 05/22/2023]
Abstract
In monocotyledons, the root system is mostly composed of postembryonic shoot-borne roots called crown roots. In rice (Oryza sativa), auxin promotes crown root initiation via the LOB-domain transcription factor (LBD) transcription factor CROWN ROOTLESS1 (CRL1); however, the gene regulatory network downstream of CRL1 remains largely unknown. We tested CRL1 transcriptional activity in yeast and in planta, identified CRL1-regulated genes using an inducible gene expression system and a transcriptome analysis, and used in situ hybridization to demonstrate coexpression of a sample of CRL1-regulated genes with CRL1 in crown root primordia. We show that CRL1 positively regulates 277 genes, including key genes involved in meristem patterning (such as QUIESCENT-CENTER SPECIFIC HOMEOBOX; QHB), cell proliferation and hormone homeostasis. Many genes are homologous to Arabidopsis genes involved in lateral root formation, but about a quarter are rice-specific. Our study reveals that several genes acting downstream of LBD transcription factors controlling postembryonic root formation are conserved between monocots and dicots. It also provides evidence that specific genes are involved in the formation of shoot-derived roots in rice.
Collapse
Affiliation(s)
| | - Van Anh Thi Le
- Université Montpellier 2, Montpellier, France
- IRD, UMR DIADE, Montpellier, France
- University of Science and Technology of Hanoi, LMI RICE, Agricultural Genetics Institute, Hanoi, Vietnam
| | | | | | | | | | | | - Pascal Gantet
- Université Montpellier 2, Montpellier, France
- IRD, UMR DIADE, Montpellier, France
- University of Science and Technology of Hanoi, LMI RICE, Agricultural Genetics Institute, Hanoi, Vietnam
| |
Collapse
|
12
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
13
|
Wu Z, Ji J, Tang D, Wang H, Shen Y, Shi W, Li Y, Tan X, Cheng Z, Luo Q. OsSDS is essential for DSB formation in rice meiosis. FRONTIERS IN PLANT SCIENCE 2015; 6:21. [PMID: 25691887 PMCID: PMC4315026 DOI: 10.3389/fpls.2015.00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/10/2015] [Indexed: 05/18/2023]
Abstract
SDS is a meiosis specific cyclin-like protein and required for DMC1 mediated double-strand break (DSB) repairing in Arabidopsis. Here, we found its rice homolog, OsSDS, is essential for meiotic DSB formation. The Ossds mutant is normal in vegetative growth but both male and female gametes are inviable. The Ossds meiocytes exhibit severe defects in homologous pairing and synapsis. No γH2AX immunosignals in Ossds meiocytes together with the suppression of chromosome fragmentation in Ossds-1 Osrad51c, both provide strong evidences that OsSDS is essential for meiotic DSB formation. Immunostaining investigations revealed that meiotic chromosome axes are normally formed but both SC installation and localization of recombination elements are failed in Ossds. We suspected that this cyclin protein has been differentiated pretty much between monocots and dicots on its function in meiosis.
Collapse
Affiliation(s)
- Zhigang Wu
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
| | - Jianhui Ji
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- School of Life Sciences, Huaiyin Normal UniversityHuaian, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Wenqing Shi
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xuelin Tan
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Zhukuan Cheng, State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China e-mail:
| | - Qiong Luo
- Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural UniversityKunming, China
- Qiong Luo, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, Yunnan Agricultural University, Heilongtan, Guandu District, Kunming 650201, China e-mail:
| |
Collapse
|
14
|
Ko SS, Li MJ, Sun-Ben Ku M, Ho YC, Lin YJ, Chuang MH, Hsing HX, Lien YC, Yang HT, Chang HC, Chan MT. The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of EAT1 and Regulate Pollen Development in Rice. THE PLANT CELL 2014; 26:2486-2504. [PMID: 24894043 PMCID: PMC4114947 DOI: 10.1105/tpc.114.126292] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 05/18/2023]
Abstract
Male sterility plays an important role in F1 hybrid seed production. We identified a male-sterile rice (Oryza sativa) mutant with impaired pollen development and a single T-DNA insertion in the transcription factor gene bHLH142. Knockout mutants of bHLH142 exhibited retarded meiosis and defects in tapetal programmed cell death. RT-PCR and in situ hybridization analyses showed that bHLH142 is specifically expressed in the anther, in the tapetum, and in meiocytes during early meiosis. Three basic helix-loop-helix transcription factors, UDT1 (bHLH164), TDR1 (bHLH5), and EAT1/DTD1 (bHLH141) are known to function in rice pollen development. bHLH142 acts downstream of UDT1 and GAMYB but upstream of TDR1 and EAT1 in pollen development. In vivo and in vitro assays demonstrated that bHLH142 and TDR1 proteins interact. Transient promoter assays demonstrated that regulation of the EAT1 promoter requires bHLH142 and TDR1. Consistent with these results, 3D protein structure modeling predicted that bHLH142 and TDR1 form a heterodimer to bind to the EAT1 promoter. EAT1 positively regulates the expression of AP37 and AP25, which induce tapetal programmed cell death. Thus, in this study, we identified bHLH142 as having a pivotal role in tapetal programmed cell death and pollen development.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Maurice Sun-Ben Ku
- Institute of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan
| | - Yi-Cheng Ho
- Institute of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Ming-Hsing Chuang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Xian Hsing
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Yi-Chen Lien
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Hui-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Hung-Chia Chang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
15
|
Luo Q, Li Y, Shen Y, Cheng Z. Ten years of gene discovery for meiotic event control in rice. J Genet Genomics 2014; 41:125-37. [PMID: 24656233 DOI: 10.1016/j.jgg.2014.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/26/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022]
Abstract
Meiosis is the crucial process by which sexually propagating eukaryotes give rise to haploid gametes from diploid cells. Several key processes, like homologous chromosomes pairing, synapsis, recombination, and segregation, sequentially take place in meiosis. Although these widely conserved events are under both genetic and epigenetic control, the accurate details of molecular mechanisms are continuing to investigate. Rice is a good model organism for exploring the molecular mechanisms of meiosis in higher plants. So far, 28 rice meiotic genes have been characterized. In this review, we give an overview of the discovery of rice meiotic genes in the last ten years, with a particular focus on their functions in meiosis.
Collapse
Affiliation(s)
- Qiong Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
16
|
Wijnker E, Schnittger A. Control of the meiotic cell division program in plants. PLANT REPRODUCTION 2013; 26:143-58. [PMID: 23852379 PMCID: PMC3747318 DOI: 10.1007/s00497-013-0223-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/23/2013] [Indexed: 05/02/2023]
Abstract
While the question of why organisms reproduce sexually is still a matter of controversy, it is clear that the foundation of sexual reproduction is the formation of gametes with half the genomic DNA content of a somatic cell. This reduction in genomic content is accomplished through meiosis that, in contrast to mitosis, comprises two subsequent chromosome segregation steps without an intervening S phase. In addition, meiosis generates new allele combinations through the compilation of new sets of homologous chromosomes and the reciprocal exchange of chromatid segments between homologues. Progression through meiosis relies on many of the same, or at least homologous, cell cycle regulators that act in mitosis, e.g., cyclin-dependent kinases and the anaphase-promoting complex/cyclosome. However, these mitotic control factors are often differentially regulated in meiosis. In addition, several meiosis-specific cell cycle genes have been identified. We here review the increasing knowledge on meiotic cell cycle control in plants. Interestingly, plants appear to have relaxed cell cycle checkpoints in meiosis in comparison with animals and yeast and many cell cycle mutants are viable. This makes plants powerful models to study meiotic progression and allows unique modifications to their meiotic program to develop new plant-breeding strategies.
Collapse
Affiliation(s)
- Erik Wijnker
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
17
|
Tan C, Han Z, Yu H, Zhan W, Xie W, Chen X, Zhao H, Zhou F, Xing Y. QTL scanning for rice yield using a whole genome SNP array. J Genet Genomics 2013; 40:629-38. [PMID: 24377869 DOI: 10.1016/j.jgg.2013.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/29/2013] [Accepted: 06/20/2013] [Indexed: 01/04/2023]
Abstract
High-throughput SNP genotyping is widely used for plant genetic studies. Recently, a RICE6K SNP array has been developed based on the Illumina Bead Array platform and Infinium SNP assay technology for genome-wide evaluation of allelic variations and breeding applications. In this study, the RICE6K SNP array was used to genotype a recombinant inbred line (RIL) population derived from the cross between the indica variety, Zhenshan 97, and the japonica variety, Xizang 2. A total of 3324 SNP markers of high quality were identified and were grouped into 1495 recombination bins in the RIL population. A high-density linkage map, consisting of the 1495 bins, was developed, covering 1591.2 cM and with average length of 1.1 cM per bin. Segregation distortions were observed in 24 regions of the 11 chromosomes in the RILs. One half of the distorted regions contained fertility genes that had been previously reported. A total of 23 QTLs were identified for yield. Seven QTLs were firstly detected in this study. The positive alleles from about half of the identified QTLs came from Zhenshan 97 and they had lower phenotypic values than Xizang 2. This indicated that favorable alleles for breeding were dispersed in both parents and pyramiding favorable alleles could develop elite lines. The size of the mapping population for QTL analysis using high throughput SNP genotyping platform is also discussed.
Collapse
Affiliation(s)
- Cong Tan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Yu
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430075, China
| | - Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fasong Zhou
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430075, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Bulankova P, Akimcheva S, Fellner N, Riha K. Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes. PLoS Genet 2013; 9:e1003508. [PMID: 23671425 PMCID: PMC3649987 DOI: 10.1371/journal.pgen.1003508] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a modified cell division in which a single S-phase is followed by two rounds of chromosome segregation resulting in the production of haploid gametes. The meiotic mode of chromosome segregation requires extensive remodeling of the basic cell cycle machinery and employment of unique regulatory mechanisms. Cyclin-dependent kinases (CDKs) and cyclins represent an ancient molecular module that drives and regulates cell cycle progression. The cyclin gene family has undergone a massive expansion in angiosperm plants, but only a few cyclins were thoroughly characterized. In this study we performed a systematic immunolocalization screen to identify Arabidopsis thaliana A- and B-type cyclins expressed in meiosis. Many of these cyclins exhibit cell-type-specific expression in vegetative tissues and distinct subcellular localization. We found six A-type cyclins and a single B-type cyclin (CYCB3;1) to be expressed in male meiosis. Mutant analysis revealed that these cyclins contribute to distinct meiosis-related processes. While A2 cyclins are important for chromosome segregation, CYCB3;1 prevents ectopic cell wall formation. We further show that cyclin SDS does not contain a D-box and is constitutively expressed throughout meiosis. Analysis of plants carrying cyclin SDS with an introduced D-box motif determined that, in addition to its function in recombination, SDS acts together with CYCB3;1 in suppressing unscheduled cell wall synthesis. Our phenotypic and expression data provide extensive evidence that multiplication of cyclins is in plants accompanied by functional diversification. The alteration of haploid and diploid cell generations during the sexual life cycle requires meiosis, a specialized cell division that enables the formation of haploid gametes from diploid cells. Meiosis occurs only once during the life cycle, and the transition from the mitotic to meiotic mode of chromosome partitioning requires extensive remodeling of the cell cycle machinery. The cell cycle progression is driven by cyclin-dependent kinases and associated cyclins that regulate CDK activity and confer substrate specificity. Cyclin gene families have undergone a massive expansion in plants, which has raised the question of whether some of these cyclins evolved specific meiotic functions. We systematically analyzed two cyclin gene families in Arabidopsis to identify plant cyclins that are meiotically expressed. We found in total eight cyclins to be expressed in male meiotic cells, and functional characterization revealed their involvement in diverse meiotic processes. Interestingly, none of the cyclins appear to be essential for meiotic progression, indicating that plant meiosis is governed by unorthodox cell cycle regulators.
Collapse
Affiliation(s)
- Petra Bulankova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | | | - Nicole Fellner
- Campus Science Support Facilities, Electron Microscopy Facility, Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
19
|
Kubo T, Fujita M, Takahashi H, Nakazono M, Tsutsumi N, Kurata N. Transcriptome analysis of developing ovules in rice isolated by laser microdissection. PLANT & CELL PHYSIOLOGY 2013; 54:750-65. [PMID: 23411663 DOI: 10.1093/pcp/pct029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Comprehensive genome-wide gene expression profiles during plant male gametogenesis have been thoroughly analyzed over the last decade. In contrast, gene expression profiles during female gametogenesis have been studied relatively little, and our knowledge concerning plant female gametogenesis is limited. We determined the genome-wide gene expression profiles of developing ovules containing female gametophytes from the megaspore mother cell at the pre-meiotic stage to the mature embryo sac in rice (Oryza sativa) using microarrays. In order to separate ovules from scutellum, we used a laser microdissection (LM) technique. Dynamic gene expression was revealed in developing ovules, and a major transition of the transcriptome was observed between middle and late meiotic stages, where many genes were down-regulated >10-fold. Many potential players in female gametogenesis, that showed dynamic or enriched expression, were highlighted. We identified the temporal and dramatic up-regulation of a subset of transposable elements during female meiotic stages that were not observed in males. Transcription factor genes enriched in developing ovules were also uncovered, which may play crucial roles during female gametogenesis. This is the first report of comprehensive genome-wide gene expression profiles during female gametogenesis useful for plant reproductive studies. Combined with additional experiments, our data may provide important clues to understand female gametogenesis in plants.
Collapse
Affiliation(s)
- Takahiko Kubo
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | | | | | | | | | | |
Collapse
|
20
|
De Storme N, Geelen D. Sexual polyploidization in plants--cytological mechanisms and molecular regulation. THE NEW PHYTOLOGIST 2013; 198:670-684. [PMID: 23421646 PMCID: PMC3744767 DOI: 10.1111/nph.12184] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/01/2013] [Indexed: 05/18/2023]
Abstract
In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium
| |
Collapse
|
21
|
Guo JX, Liu YG. Molecular control of male reproductive development and pollen fertility in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:967-78, i. [PMID: 23025662 DOI: 10.1111/j.1744-7909.2012.01172.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Anther development and male fertility are essential biological processes for flowering plants and are important for crop seed production. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Rice (Oryza sativa L.) male sterility phenotypes, including genic male sterility, hybrid male sterility, and cytoplasmic male sterility, are generally caused by mutations of fertility-related genes, by incompatible interactions between divergent allelic or non-allelic genes, or by genetic incompatibilities between cytoplasmic and nuclear genomes. Here, we review the recent advances in the molecular basis of anther development and male fertility-sterility conversion in specific genetic backgrounds, and the interactions with certain environmental factors. The highlighted findings in this review have significant implications in both basic studies and rice genetic improvement.
Collapse
Affiliation(s)
- Jing-Xin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
22
|
Hong L, Tang D, Shen Y, Hu Q, Wang K, Li M, Lu T, Cheng Z. MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. THE NEW PHYTOLOGIST 2012; 196:402-413. [PMID: 22913653 DOI: 10.1111/j.1469-8137.2012.04270.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/11/2012] [Indexed: 05/22/2023]
Abstract
The formation of diverse, appropriately patterned cell types is critical in the development of all complex multicellular organisms. In flowering plants, anther patterning is a complex process essential for successful sexual reproduction. However, few genes regulating this process have been characterized to date. We report here that the gene MICROSPORELESS2 (MIL2) regulates early anther cell differentiation in rice (Oryza sativa). The anthers of mil2 mutants were characterized using molecular markers and cytological examination. The MIL2 gene was cloned and its expression pattern was analyzed through RNA in situ hybridization. The localization of the MIL2 protein was observed by immunostaining. MIL2 encodes the rice homolog of the Arabidopsis TAPETUM DETERMINANT1 (TPD1) protein. However, mil2 anthers display phenotypes different from those of tpd1 mutants, with only two layers of anther wall cells formed. MIL2 has an expression pattern distinct from that of TPD1. Its transcripts and proteins predominate in inner parietal cells, but show little accumulation in reproductive cells. Our results demonstrate that MIL2 is responsible for the differentiation of primary parietal cells into secondary parietal cells in rice anthers, and suggest that rice and Arabidopsis anthers might share similar regulators in anther patterning, but divergent mechanisms are employed in these processes.
Collapse
Affiliation(s)
- Lilan Hong
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Hu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
23
|
Abstract
The mutant of "Sanming Dominant Genic Male Sterile Rice" was found from an F2 population of cross "SE2lS/Basmati370" by Sanming Institute of Agricultural Science in 2001. It has proven that the male sterility of this mutant is controlled by a dominant gene (named as SMS). By multiple backcrosses, this dominant male sterile allele was introduced into the genetic background of an indica rice cultivar Jiafuzhan (which was known as Jiabuyu). In order to map SMS, a mapping population was constructed by crossing Jiabuyu with a japonica cultivar Nipponbare and further crossing the F1 with Jiafuzhan. By bulked segregant analysis and linkage analysis using SSR and INDEL markers, SMS was mapped to a 99 kb interval between INDEL markers ZM30 and ZM9 on chromosome 8. This result will facilitate cloning of SMS.
Collapse
|
24
|
Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS One 2011; 6:e26162. [PMID: 22046259 PMCID: PMC3202526 DOI: 10.1371/journal.pone.0026162] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/21/2011] [Indexed: 11/23/2022] Open
Abstract
Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, “meiosis” and “pollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events.
Collapse
|
25
|
Nan GL, Ronceret A, Wang RC, Fernandes JF, Cande WZ, Walbot V. Global transcriptome analysis of two ameiotic1 alleles in maize anthers: defining steps in meiotic entry and progression through prophase I. BMC PLANT BIOLOGY 2011; 11:120. [PMID: 21867558 PMCID: PMC3180651 DOI: 10.1186/1471-2229-11-120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/26/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND Developmental cues to start meiosis occur late in plants. Ameiotic1 (Am1) encodes a plant-specific nuclear protein (AM1) required for meiotic entry and progression through early prophase I. Pollen mother cells (PMCs) remain mitotic in most am1 mutants including am1-489, while am1-praI permits meiotic entry but PMCs arrest at the leptotene/zygotene (L/Z) transition, defining the roles of AM1 protein in two distinct steps of meiosis. To gain more insights into the roles of AM1 in the transcriptional pre-meiotic and meiotic programs, we report here an in depth analysis of gene expression alterations in carefully staged anthers at 1 mm (meiotic entry) and 1.5 mm (L/Z) caused by each of these am1 alleles. RESULTS 1.0 mm and 1.5 mm anthers of am1-489 and am1-praI were profiled in comparison to fertile siblings on Agilent® 4 × 44 K microarrays. Both am1-489 and am1-praI anthers are cytologically normal at 1.0 mm and show moderate transcriptome alterations. At the 1.5-mm stage both mutants are aberrant cytologically, and show more drastic transcriptome changes. There are substantially more absolute On/Off and twice as many differentially expressed genes (sterile versus fertile) in am1-489 than in am1-praI. At 1.5 mm a total of 4,418 genes are up- or down-regulated in either am1-489 or am1-praI anthers. These are predominantly stage-specific transcripts. Many putative meiosis-related genes were found among them including a small subset of allele-specific, mis-regulated genes specific to the PMCs. Nearly 60% of transcriptome changes in the set of transcripts mis-regulated in both mutants (N = 530) are enriched in PMCs, and only 1% are enriched in the tapetal cell transcriptome. All array data reported herein will be deposited and accessible at MaizeGDB http://www.maizegdb.org/. CONCLUSIONS Our analysis of anther transcriptome modulations by two distinct am1 alleles, am1-489 and am1-praI, redefines the role of AM1 as a modulator of expression of a subset of meiotic genes, important for meiotic progression and provided stage-specific insights into the genetic networks associated with meiotic entry and early prophase I progression.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Arnaud Ronceret
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Rachel C Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Institute of Plant and Microbial Biology (IPMB), Academia Sinica, Taipei, 11529, Taiwan
| | - John F Fernandes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - W Zacheus Cande
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Deveshwar P, Bovill WD, Sharma R, Able JA, Kapoor S. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice. BMC PLANT BIOLOGY 2011; 11:78. [PMID: 21554676 PMCID: PMC3112077 DOI: 10.1186/1471-2229-11-78] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/09/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND In flowering plants, the anther is the site of male gametophyte development. Two major events in the development of the male germline are meiosis and the asymmetric division in the male gametophyte that gives rise to the vegetative and generative cells, and the following mitotic division in the generative cell that produces two sperm cells. Anther transcriptomes have been analyzed in many plant species at progressive stages of development by using microarray and sequence-by synthesis-technologies to identify genes that regulate anther development. Here we report a comprehensive analysis of rice anther transcriptomes at four distinct stages, focusing on identifying regulatory components that contribute to male meiosis and germline development. Further, these transcriptomes have been compared with the transcriptomes of 10 stages of rice vegetative and seed development to identify genes that express specifically during anther development. RESULTS Transcriptome profiling of four stages of anther development in rice including pre-meiotic (PMA), meiotic (MA), anthers at single-celled (SCP) and tri-nucleate pollen (TPA) revealed about 22,000 genes expressing in at least one of the anther developmental stages, with the highest number in MA (18,090) and the lowest (15,465) in TPA. Comparison of these transcriptome profiles to an in-house generated microarray-based transcriptomics database comprising of 10 stages/tissues of vegetative as well as reproductive development in rice resulted in the identification of 1,000 genes specifically expressed in anther stages. From this sub-set, 453 genes were specific to TPA, while 78 and 184 genes were expressed specifically in MA and SCP, respectively. The expression pattern of selected genes has been validated using real time PCR and in situ hybridizations. Gene ontology and pathway analysis of stage-specific genes revealed that those encoding transcription factors and components of protein folding, sorting and degradation pathway genes dominated in MA, whereas in TPA, those coding for cell structure and signal transduction components were in abundance. Interestingly, about 50% of the genes with anther-specific expression have not been annotated so far. CONCLUSIONS Not only have we provided the transcriptome constituents of four landmark stages of anther development in rice but we have also identified genes that express exclusively in these stages. It is likely that many of these candidates may therefore contribute to specific aspects of anther and/or male gametophyte development in rice. In addition, the gene sets that have been produced will assist the plant reproductive community in building a deeper understanding of underlying regulatory networks and in selecting gene candidates for functional validation.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi-110021, India
| | | | | | | | | |
Collapse
|
27
|
Tang X, Zhang ZY, Zhang WJ, Zhao XM, Li X, Zhang D, Liu QQ, Tang WH. Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. PLANT PHYSIOLOGY 2010; 154:1855-70. [PMID: 20959420 PMCID: PMC2996036 DOI: 10.1104/pp.110.161661] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/15/2010] [Indexed: 05/19/2023]
Abstract
Pollen mother cells (PMCs) represent a critical early stage in plant sexual reproduction in which the stage is set for male gamete formation. Understanding the global molecular genetics of this early meiotic stage has so far been limited to whole stamen or floret transcriptome studies, but since PMCs are a discrete population of cells in developmental synchrony, they provide the potential for precise transcriptome analysis and for enhancing our understanding of the transition to meiosis. As a step toward identifying the premeiotic transcriptome, we performed microarray analysis on a homogenous population of rice (Oryza sativa) PMCs isolated by laser microdissection and compared them with those of tricellular pollen and seedling. Known meiotic genes, including OsSPO11-1, PAIR1, PAIR2, PAIR3, OsDMC1, OsMEL1, OsRAD21-4, OsSDS, and ZEP1, all showed preferential expression in PMCs. The Kyoto Encyclopedia of Genes and Genomes pathways significantly enriched in PMC-preferential genes are DNA replication and repair pathways. Our genome-wide survey showed that, in the buildup to meiosis, PMCs accumulate the molecular machinery for meiosis at the mRNA level. We identified 1,158 PMC-preferential genes and suggested candidate genes and pathways involved in meiotic recombination and meiotic cell cycle control. Regarding the developmental context for meiosis, the DEF-like, AGL2-like, and AGL6-like subclades of MADS box transcription factors are PMC-preferentially expressed, the trans-zeatin type of cytokinin might be preferentially synthesized, and the gibberellin signaling pathway is likely active in PMCs. The ubiquitin-mediated proteolysis pathway is enriched in the 127 genes that are expressed in PMCs but not in tricellular pollen or seedling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics (X.T., Z.-Y.Z., D.Z., W.-H.T.) and Key Laboratory of Synthetic Biology (X.L.), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China (X.T., Q.-Q.L.); and Institute of Systems Biology, Shanghai University, Shanghai 200444, China (W.-J.Z., X.-M.Z.)
| |
Collapse
|
28
|
Abstract
Plant reproduction occurs through the production of gametes by a haploid generation, the gametophyte. Flowering plants have highly reduced male and female gametophytes, called pollen grains and embryo sacs, respectively, consisting of only a few cells. Gametophytes are critical for sexual reproduction, but detailed understanding of their development remains poor as compared to the diploid sporophyte. This article reviews recent progress in understanding the mechanisms underlying gametophytic development and function in flowering plants. The focus is on genes and molecules involved in the processes of initiation, growth, cell specification, and fertilization of the male and female gametophytes derived primarily from studies in model systems.
Collapse
Affiliation(s)
- Hong Ma
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, China
| | | |
Collapse
|
29
|
Guo J, Wang F, Song J, Sun W, Zhang XS. The expression of Orysa;CycB1;1 is essential for endosperm formation and causes embryo enlargement in rice. PLANTA 2010; 231:293-303. [PMID: 19921249 DOI: 10.1007/s00425-009-1051-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/23/2009] [Indexed: 05/08/2023]
Abstract
The cell cycle is an important process during seed development in plants and its progression is driven by a number of core regulators such as the cyclins. Currently, however, little is known regarding the role of the cyclins in embryo and endosperm development in cereals. In our current study, we show that the knockdown of Orysa;CycB1;1 in rice results in the production of abnormal seeds, which at maturity contain only an enlarged embryo. It was further found that a delayed and abnormal cellularization occurred in the endosperm in these knockdown seeds which eventually became abortive. Moreover, the observed development of the enlarged embryo was also morphologically abnormal and found to be caused by an enlarged cell size rather than an increased cell number. Expression analysis showed that Orysa;CycB1;1 transcripts were localized in the endosperm and embryo. Genome-wide transcriptional profiling further indicated that a large number of genes are responsible for the phenotype of the enlarged embryo. The results of the knockdown of Orysa;CycB1;1 via an endosperm or an embryo-specific promoter also suggest that the enlarged embryo may be correlated to the abortive endosperm. Our results suggest that Orysa;CycB1;1 expression is critical for endosperm formation via the regulation of mitotic division, and that the endosperm plays an important role in maintenance of embryo development in rice.
Collapse
Affiliation(s)
- Jing Guo
- College of Life Sciences, Northeast Forestry University, 150040 Harbin, Heilongjiang, China
| | | | | | | | | |
Collapse
|