1
|
Cab45S promotes cell proliferation through SERCA2b inhibition and Ca2+ signaling. Oncogene 2015; 35:35-46. [PMID: 25772237 DOI: 10.1038/onc.2015.56] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/07/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
Abstract
Cytosolic Ca(2+), closely related to endoplasmic reticulum (ER) Ca(2+), plays a critical role in regulating cell proliferation and tumorigenesis. However, the role of ER lumen proteins in regulating cytosolic Ca(2+) level remains poorly understood. Here, we find that the Cab45S, localizes in the ER lumen, inhibits sarco/ER Ca(2+)-ATPase 2b (SERCA2b) activity through its first EF-hand domain directly binding to the intra-lumenal loop 4 of SERCA2b, and reduces ER Ca(2+). STIM1 activation, induced by the Cab45S-dependent drop in ER Ca(2+), together with the upregulation of the plasma membrane Ca(2+) channel TRPC1 ultimately increases extracellular Ca(2+) influx. Furthermore, increased cytosolic Ca(2+) level elicits Ca(2+)-NFAT signaling and promotes cell proliferation. Consistently, in cervical carcinoma patients, Cab45S is upregulated. Thus, our data reveal that the ability of Cab45S to inhibit SERCA2b activity is crucial for its role as a modulator of cell proliferation and tumor growth.
Collapse
|
2
|
Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, Liu X, Liu L, Xu S, Chen J, Teng J. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene 2014; 34:1006-18. [DOI: 10.1038/onc.2014.52] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/06/2014] [Accepted: 01/20/2014] [Indexed: 01/04/2023]
|
3
|
Mon H, Lee JM, Mita K, Goldsmith MR, Kusakabe T. Chromatin-induced spindle assembly plays an important role in metaphase congression of silkworm holocentric chromosomes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:40-50. [PMID: 24291286 DOI: 10.1016/j.ibmb.2013.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
The kinetochore plays important roles in cell cycle progression. Interactions between chromosomes and spindle microtubules allow chromosomes to congress to the middle of the cell and to segregate the sister chromatids into daughter cells in mitosis. The chromosome passenger complex (CPC), composed of the Aurora B kinase and its regulatory subunits INCENP, Survivin, and Borealin, plays multiple roles in these chromosomal events. In the genome of the silkworm, Bombyx mori, which has holocentric chromosomes, the CPC components and their molecular interactions were highly conserved. In contrast to monocentric species, however, the silkworm CPC co-localized with the chromatin-driven spindles on the upper side of prometaphase chromosomes without forming bipolar mitotic spindles. Depletion of the CPC by RNAi arrested the cell cycle progression at prometaphase and disrupted the microtubule network of the chromatin-driven spindles. Interestingly, depletion of mitotic centromere-associated kinesin (MCAK) recovered formation of the microtubule network but did not overcome the cell cycle arrest at prometaphase. These results suggest that the CPC modulates the chromatin-induced spindle assembly and metaphase congression of silkworm holocentric chromosomes.
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kazuei Mita
- Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
4
|
Feng H, Chen L, Wang Q, Shen B, Liu L, Zheng P, Xu S, Liu X, Chen J, Teng J. Calumenin-15 facilitates filopodia formation by promoting TGF-β superfamily cytokine GDF-15 transcription. Cell Death Dis 2013; 4:e870. [PMID: 24136234 PMCID: PMC3920949 DOI: 10.1038/cddis.2013.403] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Filopodia, which are actin-rich finger-like membrane protrusions, have an important role in cell migration and tumor metastasis. Here we identify 13 novel calumenin (Calu) isoforms (Calu 3-15) produced by alternative splicing, and find that Calu-15 promotes filopodia formation and cell migration. Calu-15 shuttles between the nucleus and cytoplasm through interacting with importin α, Ran GTPase, and Crm1. The phosphorylation of the threonine at position 73 (Thr-73) by casein kinase 2 (CK2) is essential for the nuclear import of Calu-15, and either Thr-73 mutation or inhibition of CK2 interrupts its nuclear localization. In the nucleus, Calu-15 increases the transcription of growth differentiation factor-15 (GDF-15), a member of the transforming growth factor-β (TGF-β) superfamily, via binding to its promoter region. Furthermore, Calu-15 induces filopodia formation mediated by GDF-15. Together, we identify that Calu-15, a novel isoform of Calu with phosphorylation-dependent nuclear localization, has a critical role in promoting filopodia formation and cell migration by upregulating the GDF-15 transcription.
Collapse
Affiliation(s)
- H Feng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - L Chen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Q Wang
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - B Shen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - L Liu
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - P Zheng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - S Xu
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - X Liu
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - J Chen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - J Teng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Wang Q, Shen B, Zheng P, Feng H, Guo Y, Cao W, Chen L, Liu X, Zhao G, Xu S, Shen W, Chen J, Teng J. BmCREC is an endoplasmic reticulum (ER) resident protein and required for ER/Golgi morphology. J Biol Chem 2013; 288:26649-57. [PMID: 23921381 DOI: 10.1074/jbc.m113.463018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Silkworm posterior silkgland is a model for studying intracellular trafficking. Here, using this model, we identify several potential cargo proteins of BmKinesin-1 and focus on one candidate, BmCREC. BmCREC (also known as Bombyx mori DNA supercoiling factor, BmSCF) was previously proposed to supercoil DNA in the nucleus. However, we show here that BmCREC is localized in the ER lumen. Its C-terminal tetrapeptide HDEF is recognized by the KDEL receptor, and subsequently it is retrogradely transported by coat protein I (COPI) vesicles to the ER. Lacking the HDEF tetrapeptide of BmCREC or knocking down COPI subunits results in decreased ER retention and simultaneously increased secretion of BmCREC. Furthermore, we find that BmCREC knockdown markedly disrupts the morphology of the ER and Golgi apparatus and leads to a defect of posterior silkgland tube expansion. Together, our results clarify the ER retention mechanism of BmCREC and reveal that BmCREC is indispensable for maintaining ER/Golgi morphology.
Collapse
Affiliation(s)
- Qiao Wang
- From the Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Q, Feng H, Zheng P, Shen B, Chen L, Liu L, Liu X, Hao Q, Wang S, Chen J, Teng J. The intracellular transport and secretion of calumenin-1/2 in living cells. PLoS One 2012; 7:e35344. [PMID: 22514732 PMCID: PMC3325945 DOI: 10.1371/journal.pone.0035344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/14/2012] [Indexed: 01/05/2023] Open
Abstract
Calumenin isoforms 1 and 2 (calu-1/2), encoded by the CALU gene, belong to the CREC protein family. Calu-1/2 proteins are secreted into the extracellular space, but the secretory process and regulatory mechanism are largely unknown. Here, using a time-lapse imaging system, we visualized the intracellular transport and secretory process of calu-1/2-EGFP after their translocation into the ER lumen. Interestingly, we observed that an abundance of calu-1/2-EGFP accumulated in cellular processes before being released into the extracellular space, while only part of calu-1/2-EGFP proteins were secreted directly after attaching to the cell periphery. Moreover, we found the secretion of calu-1/2-EGFP required microtubule integrity, and that calu-1/2-EGFP-containing vesicles were transported by the motor proteins Kif5b and cytoplasmic dynein. Finally, we determined the export signal of calu-1/2-EGFP (amino acid positions 20–46) and provided evidence that the asparagine at site 131 was indispensable for calu-1/2-EGFP stabilization. Taken together, we provide a detailed picture of the intracellular transport of calu-1/2-EGFP, which facilitates our understanding of the secretory mechanism of calu-1/2.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Hui Feng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Pengli Zheng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Birong Shen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Liang Chen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Lin Liu
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Qingsong Hao
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Shunchang Wang
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Jianguo Chen
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- Center for Theoretical Biology, Peking University, Beijing, China
| | - Junlin Teng
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Wang Q, Shen B, Zheng P, Feng H, Chen L, Zhang J, Zhang C, Zhang G, Teng J, Chen J. Silkworm coatomers and their role in tube expansion of posterior silkgland. PLoS One 2010; 5:e13252. [PMID: 20967265 PMCID: PMC2953498 DOI: 10.1371/journal.pone.0013252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022] Open
Abstract
Background Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation. Methodology/Principal Findings Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits (α,β,β′, δ, ε, and ζ-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI, as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of α-, β′- and γ-COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of α-COP disrupted the integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for PSG tube expansion. Conclusions/Significance The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and would facilitate the establishment of silkworm PSG as an efficient bioreactor.
Collapse
Affiliation(s)
- Qiao Wang
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Birong Shen
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Pengli Zheng
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Hui Feng
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Liang Chen
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Jing Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Chuanxi Zhang
- Institute of Insect Sciences, Zhejiang University, Zhejiang, China
| | - Guozheng Zhang
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhejiang, China
| | - Junlin Teng
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (JT); (JC)
| | - Jianguo Chen
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
- The Center for Theoretical Biology, Peking University, Beijing, China
- * E-mail: (JT); (JC)
| |
Collapse
|