1
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
2
|
Shan S, Jin R, Cheng X, He J, Luo X. Mechano-induced arachidonic acid metabolism promotes keratinocyte proliferation through cPLA2 activity regulation. FASEB J 2024; 38:e70226. [PMID: 39636236 DOI: 10.1096/fj.202402088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Mechano-induced keratinocyte hyperproliferation is reported to be associated with various skin diseases. Enhanced cell proliferation often requires the active metabolism of nutrients to produce energy. However, how keratinocytes adapt their cellular metabolism homeostasis to mechanical cues remains unclear. Here, we first found that mechanical stretched keratinocytes showed the accumulation of metabolic arachidonic acid by metabolomic analysis. Second, we found that mechanical stretch promoted keratinocyte proliferation through the activation of cytosolic calcium-dependent phospholipase A2 (cPLA2). Knockdown or inhibition of cPLA2 could reduce the release of arachidonic acid and inhibit the proliferation of stretched keratinocytes in vitro and in vivo. Third, by analyzing overlapping transcriptomes of stretched keratinocytes and arachidonic acid-stimulated keratinocytes, we identified the upregulation of hexokinase domain-containing protein 1 (HKDC1) expression, a novel gene involved in glucose metabolism, which was associated with arachidonic acid-induced keratinocyte proliferation during stretching. Our data reveal a metabolic regulation mechanism by which mechanical stretch induces keratinocyte proliferation, thereby coupling cellular metabolism to the mechanics of the cellular microenvironment. Strategies to change the metabolism process may lead to a new way to treat skin diseases that are related to biophysical forces.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Xu X, Liu J, Li X, Feng Q, Su Y. Integrated network pharmacology and metabolomics to study the potential mechanism of Jiawei Yinchenhao decoction in chronic hepatitis B. Heliyon 2024; 10:e36267. [PMID: 39224343 PMCID: PMC11367511 DOI: 10.1016/j.heliyon.2024.e36267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic hepatitis B infection (CHB) is a major risk factor for the development of hepatocellular carcinoma (HCC) globally and continues to pose a significant global health challenge. Jiawei Yinchenhao decoction (JWYCH) is a modified version of Yinchenhao decoction (YCHD), which is widely used to treat liver diseases including icteric hepatitis, cholelithiasis, and hepatic ascites. However, the effectiveness and underlying mechanism of JWYCH on CHB are still unclear. This study aimed to investigate the impact of JWYCH on CHB and explore the underlying mechanism via network pharmacology and metabolomics. C57BL/6 mice were administered rAAV-HBV1.3 via hydrodynamic injection (HDI) to establish the CHB model. The infected mice were orally administered JWYCH for 4 weeks. HBsAg, HBeAg, HBV DNA, the serum liver function index, and histopathology were detected. In addition, network pharmacology was used to investigate potential targets, whereas untargeted metabolomics analysis was employed to explore the hepatic metabolic changes in JWYCH in CHB mice and identify relevant biomarkers and metabolic pathways. JWYCH was able to reduce HBeAg levels and improve liver pathological changes in mice with CHB. Additionally, metabolomics analysis indicated that JWYCH can influence 105 metabolites, including pipecolic acid, alpha-terpinene, adenosine, and L-phenylalanine, among others. Bile acid metabolism, arachidonic acid metabolism, and retinol metabolism are suggested to be potential targets of JWYCH in CHB. In conclusion, JWYCH demonstrated a hepatoprotective effect on a mouse model of CHB, suggesting a potential alternative therapeutic strategy for CHB. The effect of JWYCH is associated mainly with regulating the metabolism of bile acid, arachidonic acid, and retinol. These differentially abundant metabolites may serve as potential biomarkers and therapeutic targets for CHB.
Collapse
Affiliation(s)
- Xinyi Xu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xue Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - QuanSheng Feng
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Su
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
4
|
Yang C, Chen H, Deng C, Sun N. Serological Exosome Metabolic Biopsy of Hepatocellular Carcinoma via Designed Core-Shell Nanoparticles. Anal Chem 2024. [PMID: 38323920 DOI: 10.1021/acs.analchem.3c02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Exosome metabolite-based liquid biopsy is a promising strategy for large-scale application in practical clinics toward precise medicine. Given the current challenges in successive isolation and analysis of exosomes and their metabolites in this field, we established a low-cost, high-throughput, and rapid platform for serological exosome metabolic biopsy of hepatocellular carcinoma (HCC) via designed core-shell nanoparticles. It starts with the efficient extraction of high-quality serum exosomes and exosome metabolic features, based on which significantly obvious sample clusters are observed by unsupervised cluster analysis. The following integration of feature selection and supervised machine learning enables the identification of six key metabolites and achieves high-performance prediction between HCC, liver cirrhosis, and healthy controls. Specifically, both sensitivity and accuracy achieve 100% among any pairwise intergroup discrimination in a blind test. The quality and reliability of six key metabolites are further evaluated and validated by using different machine learning algorithms and pathway exploration. Our platform contributes to the future growth of new liquid biopsy technologies for precision diagnosis and real-time monitoring of HCC, among other conditions.
Collapse
Affiliation(s)
- Chenyu Yang
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Haolin Chen
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Zhao Z, Liu X, Xiang Y, Hou Z, He K, Zhong G, Hu J, Cai D, Liu Y, Ren J, Gong J, Zhao L. Inhibiting cholesterol de novo synthesis promotes hepatocellular carcinoma progression by upregulating prostaglandin E synthase 2-mediated arachidonic acid metabolism under high fatty acid conditions. Cancer Sci 2024; 115:477-489. [PMID: 38081591 PMCID: PMC10859596 DOI: 10.1111/cas.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 02/13/2024] Open
Abstract
Inhibition of cholesterol de novo synthesis (DNS) by statins has controversial effects on the treatment of hepatocellular carcinoma (HCC). High fatty acid conditions have been reported to limit the effect of statins on metabolism diseases. Whether high fatty acid conditions interfere with the effect of statins on HCC remains unclear. Here, we reported that inhibiting cholesterol DNS with atorvastatin promoted the oncogenic capabilities of diethylnitrosamine (DEN) in mice fed high fatty acid diets (HFD). The combined analysis of metabolomics and transcriptomics revealed that arachidonic acid (AA) metabolism was the most significant changed pathway between mice with and without atorvastatin treatment. In vitro, in the presence of AA precursor linoleic acid (LA), atorvastatin promoted the proliferation and migration ability of HCC cell lines. However, in the absence of LA, these phenomena disappeared. TCGA and tissue microarray examination revealed that prostaglandin e synthase 2 (PTGES2), a key enzyme in AA metabolism, was associated with the poor outcome of HCC patients. Overexpression of PTGES2 promoted the proliferation and migration of HCC cell lines, and knockdown of PTGES2 inhibited the proliferation and migration of cells. Additionally, atorvastatin upregulated PTGES2 expression by enhancing Sterol-regulatory element binding protein 2 (SREBP2)-mediated transcription. Knockdown of PTGES2 reversed the proliferation and migration ability enhanced by atorvastatin. Overall, our study reveals that a high fatty acid background is one of the possible conditions limiting the application of statins in HCC, under which statins promote the progression of HCC by enhancing SREBP2-mediated PTGES2 transcription.
Collapse
Affiliation(s)
- Zhibo Zhao
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xinyi Liu
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- Department of General SurgeryThe People's Hospital of Jianyang CityJianyangChina
| | - Yue Xiang
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zhengping Hou
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Kun He
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Guochao Zhong
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jiejun Hu
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Dong Cai
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yan Liu
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- Chengdu University of Traditional Chinese Medicine Affiliated Fifth People‘s hospitalChengduChina
| | - Jihua Ren
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jianping Gong
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), the Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
7
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
8
|
Li X, Zhu Q, Ye B, Zhu C, Dong Y, Ni Q. JNK/c-Jun pathway activation is essential for HBx-induced IL-35 elevation to promote persistent HBV infection. J Clin Lab Anal 2023; 37:e24860. [PMID: 36916737 PMCID: PMC10098067 DOI: 10.1002/jcla.24860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Immunoregulation plays pivotal roles during chronic hepatitis B virus (HBV) infection. Studies have shown that Interleukin (IL)-35 is an important molecule associated with inadequate immune response against HBV. However, the mechanisms involved in the up-regulation of IL-35 expression during persistent HBV infection remain unknown. METHODS In this study, we constructed a plasmid expressing the HBV X protein (pCMV-HBx) to evaluate the relationship between HBx and IL-35. Activation of the JNK/c-Jun pathway was analyzed and chromatin immunoprecipitation followed by sequencing and luciferase reporter assays were performed to determine whether c-Jun could regulate IL-35 transcription. RESULTS HBx can significantly activate IL-35 promoter in both LO2 and HepG2 cells compared to the control plasmid (pCMV-Tag2) using the dual-luciferase assay. Whereas other viral proteins, such as S, preS1, the core protein, had no significant effect on IL-35 expression. Similarly, WB and qRT-PCR also showed that HBx can significantly promote IL-35 expression at protein and mRNA levels in the aforementioned cells. The relevant pathway mechanism showed that the expression of JNK and c-Jun genes was significantly higher in transfected cells carrying pCMV-HBx than in the pCMV-Tag2-transfected and -untransfected cells. WB analysis revealed that phosphorylated JNK and c-Jun were overexpressed after HBx action. Conversely, the addition of the JNK/c-Jun signaling pathway inhibitor could significantly suppress HBx-induced IL-35 expression in a dose-dependent manner. CONCLUSIONS A novel molecular mechanism of HBV-induced IL-35 expression was revealed, which involves JNK/c-Jun signaling in up-regulating IL-35 expression via HBx, resulting in transactivation of the IL-35 subunit EBI3 and p35 promoter.
Collapse
Affiliation(s)
- Xuefen Li
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoyun Zhu
- Central Laboratory, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Ye
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunxia Zhu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuejiao Dong
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Ni
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022; 11:cells11040741. [PMID: 35203390 PMCID: PMC8870387 DOI: 10.3390/cells11040741] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
With 296 million cases estimated worldwide, chronic hepatitis B virus (HBV) infection is the most common risk factor for hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key multifunctional regulatory protein, drives viral replication and interferes with several cellular signalling pathways that drive virus-associated hepatocarcinogenesis. This review article provides a comprehensive overview of the role of HBx in modulating the various hallmarks of HCC by supporting tumour initiation, progression, invasion and metastasis. Understanding HBx-mediated dimensions of complexity in driving liver malignancies could provide the key to unlocking novel and repurposed combinatorial therapies to combat HCC.
Collapse
|
10
|
Singapore Grouper Iridovirus Disturbed Glycerophospholipids Homeostasis: Cytosolic Phospholipase A2 Was Essential for Virus Replication. Int J Mol Sci 2021; 22:ijms222212597. [PMID: 34830477 PMCID: PMC8618910 DOI: 10.3390/ijms222212597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/31/2022] Open
Abstract
Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, causes great economic losses in the aquaculture industry. Previous studies demonstrated the lipid composition of intracellular unenveloped viruses, but the changes in host-cell glyceophospholipids components and the roles of key enzymes during SGIV infection still remain largely unknown. Here, the whole cell lipidomic profiling during SGIV infection was analyzed using UPLC-Q-TOF-MS/MS. The lipidomic data showed that glycerophospholipids (GPs), including phosphatidylcholine (PC), phosphatidylserine (PS), glycerophosphoinositols (PI) and fatty acids (FAs) were significantly elevated in SGIV-infected cells, indicating that SGIV infection disturbed GPs homeostasis, and then affected the metabolism of FAs, especially arachidonic acid (AA). The roles of key enzymes, such as cytosolic phospholipase A2 (cPLA2), 5-Lipoxygenase (5-LOX), and cyclooxygenase (COX) in SGIV infection were further investigated using the corresponding specific inhibitors. The inhibition of cPLA2 by AACOCF3 decreased SGIV replication, suggesting that cPLA2 might play important roles in the process of SGIV infection. Consistent with this result, the ectopic expression of EccPLA2α or knockdown significantly enhanced or suppressed viral replication in vitro, respectively. In addition, the inhibition of both 5-LOX and COX significantly suppressed SGIV replication, indicating that AA metabolism was essential for SGIV infection. Taken together, our results demonstrated for the first time that SGIV infection in vitro disturbed GPs homeostasis and cPLA2 exerted crucial roles in SGIV replication.
Collapse
|
11
|
Alvarez MDL, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol 2021; 192:114732. [PMID: 34411565 DOI: 10.1016/j.bcp.2021.114732] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Eicosanoids are lipid signaling molecules derived from the oxidation of ω-6 fatty acids, usually arachidonic acid. There are three major pathways, including the cyclooxygenase (COX), lipoxygenase (LOX), and P450 cytochrome epoxygenase (CYP) pathway. Prostanoids, which include prostaglandins (PG) and thromboxanes (Tx), are formed via the COX pathway, leukotrienes (LT) and lipoxins (LX) by the action of 5-LOX, and hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) by CYP. Although eicosanoids are usually associated with pro-inflammatory responses, non-classic eicosanoids, as LX, have anti-inflammatory and pro-resolving properties. Eicosanoids like PGE2, LTB4 and EETs have been involved in promoting liver regeneration after partial hepatectomy. PGE2 and LTB4 have also been reported to participate in the regenerative phase after ischemia and reperfusion (I/R), while cysteinyl leukotrienes (Cys-LT) contribute to the inflammatory process associated with I/R and are also involved in liver fibrosis and cirrhosis. However, LX, another product of 5-LOX, have the opposite effect, acting as pro-resolving mediators in these pathologies. In liver cancer, most studies show that eicosanoids, with the exception of LX, promote the proliferation of hepatocellular carcinoma cells and favor metastasis. This review summarizes the synthesis of different eicosanoids in the liver and discusses key findings from basic research linking eicosanoids to liver repair, regeneration and cancer and the impact of targeting eicosanoid cascade. In addition, studies in patients are presented that explore the potential use of eicosanoids as biomarkers and show correlations between eicosanoid production and the course and prognosis of liver disease.
Collapse
Affiliation(s)
- María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina.
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
12
|
Li X, Liu X, Wang W. IL-35: A Novel Immunomodulator in Hepatitis B Virus-Related Liver Diseases. Front Cell Dev Biol 2021; 9:614847. [PMID: 33777929 PMCID: PMC7990793 DOI: 10.3389/fcell.2021.614847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a risk factor for liver cirrhosis (LC) and hepatocellular carcinoma (HCC), however, little is known about the mechanisms involved in the progression of HBV-related diseases. It has been well acknowledged that host immune response was closely related to the clinical outcomes of patients with HBV infection. As the factors closely related to the immunomodulatory process, cytokines are crucial in the cell-cell communication and the host responses to HBV infection. Recently, a newly discovered cytokine, designated as interleukin-35 (IL-35), has been proved to be essential for the progression of chronic HBV infection, the development of cirrhosis, the transformation of cirrhosis to HCC, and the metastasis of HCC. Specifically, it showed various biological activities such as inhibiting the HBV-specific cytotoxic T lymphocyte (CTL) proliferation and cytotoxicity, deactivating the immature effector T-cells (Teffs), as well as delaying the proliferation of dendritic cells. It regulated the immune responses by acting as a “brake” on the activation of Teffs, which subsequently played important roles in the pathogenesis of various inflammatory diseases and malignancies. In this review, we focused on the most recent data on the relationship between IL-35 and chronic HBV infection, LC and HCC.
Collapse
Affiliation(s)
- Xuefen Li
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Liu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Wu Y, Wang X, Xu F, Zhang L, Wang T, Fu X, Jin T, Zhang W, Ye L. The regulation of acetylation and stability of HMGA2 via the HBXIP-activated Akt-PCAF pathway in promotion of esophageal squamous cell carcinoma growth. Nucleic Acids Res 2020; 48:4858-4876. [PMID: 32313942 PMCID: PMC7229824 DOI: 10.1093/nar/gkaa232] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/02/2020] [Accepted: 04/12/2020] [Indexed: 12/16/2022] Open
Abstract
High-mobility group AT-hook 2 (HMGA2) is an architectural transcription factor that plays essential roles in embryonic development and cancer progression. However, the mechanism of HMGA2 regulation remains largely uncharacterized. Here, we demonstrate that HMGA2 can be modulated by hepatitis B X-interacting protein (HBXIP), an oncogenic transcriptional coactivator, in esophageal squamous cell carcinoma (ESCC). HMGA2 expression was positively associated with HBXIP expression in clinical ESCC tissues, and their high levels were associated with advanced tumor stage and reduced overall and disease-free survival. We found that oncogenic HBXIP could posttranslationally upregulate HMGA2 protein level in ESCC cells. HBXIP induced HMGA2 acetylation at the lysine 26 (K26), resulting in HMGA2 protein accumulation. In this process, HBXIP increased the acetyltransferase p300/CBP-associated factor (PCAF) phosphorylation and activation via the Akt pathway, then PCAF directly interacted with HMGA2, leading to HMGA2 acetylation in the cells. HMGA2 K26 acetylation enhanced its DNA binding capacity and blocked its ubiquitination and then inhibited proteasome-dependent degradation. Functionally, HBXIP-stabilized HMGA2 could promote ESCC cell growth in vitro and in vivo. Strikingly, aspirin suppressed ESCC growth by inhibiting HBXIP and HMGA2. Collectively, our findings disclose a new mechanism for the posttranslational regulation of HMGA2 mediated by HBXIP in ESCC.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xue Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Feifei Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xueli Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Tianzhi Jin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
14
|
Jiang YC, Li YF, Zhou L, Zhang DP. Comparative metabolomics unveils molecular changes and metabolic networks of syringin against hepatitis B mice by untargeted mass spectrometry. RSC Adv 2020; 10:461-473. [PMID: 35492557 PMCID: PMC9048208 DOI: 10.1039/c9ra06332c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Untargeted metabolomics technology was used to discover the metabolic pathways and biomarkers for revealing the potential biological mechanism of syringin on hepatitis B virus. Serum samples were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based comparative metabolomics coupled with pattern recognition methods and network pathway. In addition, the histopathology, HBV DNA detection of liver tissue, and biochemical indicators of liver function change were also explored for investigating the antiviral effect of syringin. In comparison to the model group, the metabolic profiles of the turbulence in transgenic mice tended to recover to the same as the control group after syringin therapy. A total of 33 potential biomarkers were determined to explore the metabolic disorders in the hepatitis B animal model, of which 25 were regulated by syringin, and 8 metabolic pathways, such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, were involved. Syringin markedly reduced the liver pathology change, inhibited HBV DNA replication, and improved liver function. Amino acid metabolism is a potential target for the treatment of hepatitis B. The hepatoprotective effect of syringin may contribute to ameliorating oxidative stress and preventing protein and DNA replication. Comparative metabolomics is a promising tool for discovering metabolic pathways and biomarkers of the hepatitis B animal model as targets to reveal the effects and mechanism of syringin, which benefits the development of natural products and advances the treatment of diseases. Untargeted metabolomics technology was used to discover the metabolic pathways and biomarkers for revealing the potential biological mechanism of syringin on hepatitis B virus.![]()
Collapse
Affiliation(s)
- Yi-chang Jiang
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Yuan-feng Li
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Ling Zhou
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Da-peng Zhang
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|
15
|
Feng J, Yang G, Liu Y, Gao Y, Zhao M, Bu Y, Yuan H, Yuan Y, Yun H, Sun M, Gao H, Zhang S, Liu Z, Yin M, Song X, Miao Z, Lin Z, Zhang X. LncRNA PCNAP1 modulates hepatitis B virus replication and enhances tumor growth of liver cancer. Am J Cancer Res 2019; 9:5227-5245. [PMID: 31410212 PMCID: PMC6691589 DOI: 10.7150/thno.34273] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Hepatitis B virus (HBV) is a major risk factor for liver cancer, in which HBV covalently closed circular DNA (cccDNA) plays crucial roles. However, the effect of pseudogene-derived long noncoding RNAs (lncRNAs) acting as functional regulators of their ancestral gene expression on HBV replication and hepatocellular carcinoma (HCC) remains unclear. In this study, we speculated that the pseudogene-derived lncRNA PCNAP1 and its ancestor PCNA might modulate HBV replication and promote hepatocarcinogenesis. Methods: We investigated the roles of lncRNA PCNAP1 in contribution of HBV replication through modulating miR-154/PCNA/HBV cccDNA signaling in hepatocarcinogenesis by using CRISPR/Cas9, Southern blot analysis, confocal assays, et al. in primary human hepatocytes (PHH), HepaRG cells, HepG2-NTCP cells, hepatoma carcinoma cells, human liver-chimeric mice model, transgenetic mice model, in vitro tumorigenicity and clinical patients. Results: Interestingly, the expression levels of PCNAP1 and PCNA were significantly elevated in the liver of HBV-infectious human liver-chimeric mice. Clinically, the mRNA levels of PCNAP1 and PCNA were increased in the liver of HBV-positive/HBV cccDNA-positive HCC patients. Mechanistically, PCNA interacted with HBV cccDNA in a HBc-dependent manner. PCNAP1 enhanced PCNA through sponging miR-154 targeting PCNA mRNA 3′UTR. Functionally, PCNAP1 or PCNA remarkably enhanced HBV replication and accelerated the growth of HCC in vitro and in vivo. Conclusion: We conclude that lncRNA PCNAP1 enhances the HBV replication through modulating miR-154/PCNA/HBV cccDNA signaling and the PCNAP1/PCNA signaling drives the hepatocarcinogenesis. Our finding provides new insights into the mechanism by which lncRNA PCNAP1 enhances HBV replication and hepatocarcinogenesis.
Collapse
|
16
|
Li H, Jiang M, Cui M, Feng G, Dong J, Li Y, Xiao H, Fan S. MiR-365 enhances the radiosensitivity of non-small cell lung cancer cells through targeting CDC25A. Biochem Biophys Res Commun 2019; 512:392-398. [PMID: 30902389 DOI: 10.1016/j.bbrc.2019.03.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
Abstract
Radioresistance is a major challenge in lung cancer radiotherapy (RT), and consequently, new radiosensitizers are urgently needed. MicroRNAs (miRNAs) have been demonstrated to participate in many important cellular processes including radiosensitization. MiR-365 is dysregulated in non-small cell lung cancer (NSCLC) and is able to restrain the development of NSCLC. However, the relationship between miR-365 and radiosensitivities of NSCLC cells remains largely unknown. Here we reveal that overexpression of miR-365 is able to enhance the radiosensitivity of NSCLC cells through targeting CDC25A. We found that the expression level of miR-365 was positively correlated with the radiosensitivity of NSCLC cell lines. Furthermore, our results showed that overexpression of miR-365 could sensitize A549 cells to the irradiation. However, knockdown of miR-365 in H460 cells could act the converse manner. Mechanically, miR-365 was able to directly target 3'UTR of cell division cycle 25A (CDC25A) mRNA and reduce the expression of CDC25A at the levels of mRNA and protein. And we confirmed that miR-365 could increase the radiosensitivity of NSCLC cells by targeting CDC25A using in vitro and in vivo assays. Taken together, restoration of miR-365 expression enhances the radiosensitivity of NSCLC cells by suppressing CDC25A, and miR-365 could be used as a radiosensitizer for NSCLC therapy.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
17
|
Dynamic expression of ZNF382 and its tumor-suppressor role in hepatitis B virus-related hepatocellular carcinogenesis. Oncogene 2019; 38:4804-4819. [PMID: 30804458 DOI: 10.1038/s41388-019-0759-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/24/2018] [Accepted: 02/10/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is the primary cause of hepatocellular carcinoma (HCC). Zinc-finger protein 382 (ZNF382), which belongs to zinc-finger protein family, has been documented to be downregulated in certain types of cancer. However, its role in HCC remains largely unknown. In this study, we demonstrated that ZNF382 expression was significantly elevated in HBV-infected liver cirrhosis tissues relative to HBV-negative normal liver tissues at protein levels, but not at mRNA levels, and was positively correlated with the levels of HBV DNA and hepatitis B virus X protein (HBx). Further studies revealed that ZNF382 was a target of miR-6867, and HBx promoted the translation of ZNF382 during HBV chronic infection through Erk-mediated miR-6867 inhibition. In addition, our data showed that ZNF382 was frequently downregulated by promoter methylation in HBV-related HCCs relative to HBV-infected liver cirrhosis tissues, and decreased expression of ZNF382 was strongly correlated with poor survival in early-stage HCC patients. Functional studies demonstrated that ZNF382 was a potent tumor suppressor in HCC cells through inhibiting cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice, and inducing cell apoptosis. Mechanistically, ZNF382 exerted its tumor-suppressor functions in HCC through transcriptionally repressing its downstream targets such as Fos proto-oncogene (FOS), Jun proto-oncogene (JUN), disheveled segment polarity protein 2 (DVL2), and frizzled class receptor 1 (FZD1), thereby impairing the activities of activating protein 1 (AP-1) and Wnt/β-catenin pathways and activating p53 signaling. Altogether, our data show that ZNF382 acts as a tumor suppressor, and is co-regulated by HBx and epigenetic mechanism in HBV-related hepatocellular carcinogenesis.
Collapse
|
18
|
The oncoprotein HBXIP promotes human breast cancer growth through down-regulating p53 via miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharmacol Sin 2018; 39:1787-1796. [PMID: 30181579 DOI: 10.1038/s41401-018-0034-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Mammalian hepatitis B X-interacting protein (HBXIP) is an 18-kDa protein that regulates a large number of transcription factors such as TF-IID, E2F1, SP1, STAT3, c-Myc, and LXR by serving as an oncogenic transcription coactivator and plays an important role in the development of breast cancer. We previously showed that HBXIP as an oncoprotein could enhance the promoter activity of MDM2 through coactivating p53, promoting the MDM2 transcription in breast cancer. In this study we investigated the molecular mechanisms underlying the modulation of MDM2/p53 interaction by HBXIP in human breast cancer MCF-7 cells in vitro and in vivo. We showed that HBXIP could up-regulate MDM2 through inducing DNA methylation of miR-18b, thus suppressing the miR-18b expression, leading to the attenuation of p53 in breast cancer cells. In addition, HBXIP could promote the phosphorylation of MDM2 by increasing the level of pAKT and bind to pMDM2, subsequently enhancing the interaction between MDM2 and p53 for the down-regulation of p53 in breast cancer cells. In MCF-7 breast cancer xenograft nude mice, we also observed that overexpression of HBXIP promoted breast cancer growth through the miR-18b/MDM2 and pAKT/MDM2 pathways. In conclusion, oncoprotein HBXIP suppresses miR-18b to elevate MDM2 and activates pAKT to phosphorylate MDM2 for enhancing the interaction between MDM2 and p53, leading to p53 degradation in promotion of breast cancer growth. Our findings shed light on a novel mechanism of p53 down-regulation during the development of breast cancer.
Collapse
|
19
|
Lu Y, Fang J, Zou L, Cui L, Liang X, Lim SG, Dan YY, Ong CN. Omega-6-derived oxylipin changes in serum of patients with hepatitis B virus-related liver diseases. Metabolomics 2018; 14:26. [PMID: 30830341 DOI: 10.1007/s11306-018-1326-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic hepatitis B virus (HBV) infection is the main etiologic risk factor for hepatocellular carcinoma (HCC). Early studies indicated that the increase of omega-6-derived oxylipins may be involved in the pathogenesis of HBV-related HCC, yet their changes during the distinct clinical phases of chronic HBV infection remain unclear. To fill this gap, in this study we investigated the omega-6-derived oxylipin profiles in patients with three major clinical stages of chronic HBV infection (chronic hepatitis B, liver cirrhosis, and HCC). METHODS Eighteen omega-6-derived oxylipins were quantified in serum samples of 34 patients with chronic hepatitis B, 46 patients with HBV-related liver cirrhosis, 38 patients with HBV-related HCC, and 50 healthy controls using liquid chromatography tandem mass spectrometry. RESULTS Seven oxylipins were found to be altered in patients with HBV-related liver diseases, including 9,10-dihydroxyoctadecenoic acid (9,10-DiHOME), 12,13-DiHOME, 14,15-dihydroxyeicosatrienoic acid (14,15-DiHETrE), 13-hydroxyoctadecadienoic acid (13-HODE), 12-hydroxyeicosatetraenoic acid (12-HETE), 11-HETE, and thromboxane B2 (TXB2). Of these, three oxylipins derived from the cytochrome P450 (CYP450) pathways including 9,10-DiHOME, 12,13-DiHOME, and 14,15-DiHETrE were found to be associated with the levels of α-fetoprotein (AFP), a tumor marker. In combination with AFP, age, and gender, a combination of these seven differential oxylipins could significantly enhance the prediction of HBV-related liver diseases, particularly for liver cirrhosis (p < 0.05). CONCLUSION This study for the first time shows the correlations between CYP450-derived oxylipins and the progression of chronic HBV infection, and sheds a new light on the surveillance of HBV-related live diseases using oxylipins.
Collapse
Affiliation(s)
- Yonghai Lu
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building, Level 11, 12 Science Drive 2, Singapore, 117549, Singapore.
- Institute of Nutrition and Health, Qingdao University, Qingdao, Shandong, China.
| | - Jinling Fang
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building, Level 11, 12 Science Drive 2, Singapore, 117549, Singapore
| | - Li Zou
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building, Level 11, 12 Science Drive 2, Singapore, 117549, Singapore
| | - Liang Cui
- Singapore-MIT Alliance for Research & Technology (SMART), Singapore, Singapore
| | - Xu Liang
- NUS Environment Research Institute, National University of Singapore, Singapore, Singapore
| | - Seng Gee Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Yock-Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building, Level 11, 12 Science Drive 2, Singapore, 117549, Singapore
- NUS Environment Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Abstract
The high affinity leukotriene B4 receptor, BLT1 mediates chemotaxis of diverse leukocyte subsets to the sites of infection or inflammation. Whereas the pathological functions of LTB4/BLT1 axis in allergy, autoimmunity and cardiovascular disorders are well established; its role in cancer is only beginning to emerge. In this review, we summarize recent findings on LTB4/BLT1 axis enabling distinct outcomes toward tumor progression. In a mouse lung tumor model promoted by silicosis-induced inflammation, genetic deletion of BLT1 attenuated neutrophilic inflammation and tumor promotion. In contrast, in a spontaneous model of intestinal tumorigenesis, absence of BLT1 led to defective mucosal host response, altered microbiota and bacteria dependent colon tumor progression. Furthermore, BLT1 mediated CD8+ T cell recruitment was shown to be essential for initiating anti-tumor immunity in number of xenograft models and is critical for effective PD1 based immunotherapy. BLT2 mediated chemotherapy resistance, tumor promotion and metastasis are also discussed. This new information points to a paradigm shift in our understanding of the LTB4 pathways in cancer.
Collapse
|
21
|
Wang Y, Chen F, Zhao M, Yang Z, Li J, Zhang S, Zhang W, Ye L, Zhang X. The long noncoding RNA HULC promotes liver cancer by increasing the expression of the HMGA2 oncogene via sequestration of the microRNA-186. J Biol Chem 2017; 292:15395-15407. [PMID: 28765279 DOI: 10.1074/jbc.m117.783738] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
The long noncoding RNA highly up-regulated in liver cancer (HULC) is aberrantly elevated in hepatocellular carcinoma (HCC), and this up-regulation is crucial for HCC pathogenesis. However, the underlying mechanism in HULC up-regulation is poorly understood. We hypothesized that HULC might modulate the oncogene high mobility group A2 (HMGA2) to promote hepatocarcinogenesis. Quantitative real-time PCR analysis showed that the expression levels of HULC were positively correlated with those of HMGA2 in clinical HCC tissues. Interestingly, we also observed that HULC could up-regulate HMGA2 in HCC cells. Mechanistically, we found that the microRNA-186 inhibited HMGA2 expression by targeting the 3'-untranslated region (3'-UTR) of HMGA2 mRNA. Strikingly, HULC acted as a competing noncoding RNA to sequester miR-186 and thereby relieved miR-186-mediated HMGA2 repression. Functionally, HMGA2 knockdown decreased the HULC-enhanced growth of HCC cells both in vitro and in vivo We conclude that the long noncoding RNA HULC increases HMGA2 expression by sequestering miR-186 post-transcriptionally and thereby promotes liver cancer growth, providing new insights into the mechanism by which HULC enhances hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yuan Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China and
| | - Fuquan Chen
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China and
| | - Man Zhao
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China and
| | - Zhe Yang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China and
| | - Jiong Li
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China and
| | - Shuqin Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China and
| | - Weiying Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China and
| | - Lihong Ye
- the State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaodong Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China and
| |
Collapse
|
22
|
Zhang X, Han K, Yuan DH, Meng CY. Overexpression of NAD(P)H: Quinone Oxidoreductase 1 Inhibits Hepatocellular Carcinoma Cell Proliferation and Induced Apoptosis by Activating AMPK/PGC-1α Pathway. DNA Cell Biol 2017; 36:256-263. [PMID: 28191864 DOI: 10.1089/dna.2016.3588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Xin Zhang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, China
| | - Kun Han
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, China
| | - Dong-hong Yuan
- Department of Gastroenterology, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Cun-ying Meng
- Department of Gastroenterology, Affiliated Hospital of Yan'an University, Yan'an, China
| |
Collapse
|
23
|
Zhang S, Gao S, Zhao M, Liu Y, Bu Y, Jiang Q, Zhao Q, Ye L, Zhang X. Anti-HBV drugs suppress the growth of HBV-related hepatoma cells via down-regulation of hepatitis B virus X protein. Cancer Lett 2017; 392:94-104. [PMID: 28192212 DOI: 10.1016/j.canlet.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/13/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Chronic infection of hepatitis B virus (HBV) is closely associated with the development of hepatocellular carcinoma (HCC). Meta-analyses show that adjuvant anti-HBV therapy is effective for HBV-related HCC patients in clinical. However, the significance that anti-HBV drugs depress HCC is poorly understood. Here, we investigated the effects of telbivudine (LdT), entecavir (ETV) and interferon-α2b (IFN-α2b) on HBV-related HCC. Our data showed that the treatment with the drugs significantly suppressed the growth of HBV-expressing hepatoma cells in vitro and in vivo, but failed to work in HBV-free liver cells. We present the hypothesis that HBx may be involved in the event. As expected, we observed that the expression of HBx was down-regulated by the agents. Meanwhile, the expression of HBx downstream factors was significantly down-regulated. Interestingly, LdT, ETV and IFN-α2b lost the anti-proliferation effects on HBV-related hepatoma cells when the cells were treated with HBx siRNA. Moreover, combination of those drugs enhanced the anti-proliferation effects. In conclusion, LdT, ETV and IFN-α2b suppress the growth of HBV-related HCC through down-regulation of HBx. Our finding provides new insights into the mechanisms of anti-HBV drugs in HCC therapy.
Collapse
Affiliation(s)
- Shuqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Man Zhao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunxia Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanan Bu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiulei Jiang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S, Liu Y, Ye L, Li Y, Zhang X. MicroRNA-145 Modulates N6-Methyladenosine Levels by Targeting the 3'-Untranslated mRNA Region of the N6-Methyladenosine Binding YTH Domain Family 2 Protein. J Biol Chem 2017; 292:3614-3623. [PMID: 28104805 DOI: 10.1074/jbc.m116.749689] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/14/2017] [Indexed: 12/21/2022] Open
Abstract
N6-Methyladenosine (m6A) is a prevalent modification present in the mRNAs of higher eukaryotes. YTH domain family 2 (YTHDF2), an m6A "reader" protein, can recognize mRNA m6A sites to mediate mRNA degradation. However, the regulatory mechanism of YTHDF2 is poorly understood. To this end, we investigated the post-transcriptional regulation of YTHDF2. Bioinformatics analysis suggested that the microRNA miR-145 might target the 3'-untranslated region (3'-UTR) of YTHDF2 mRNA. The levels of miR-145 were negatively correlated with those of YTHDF2 mRNA in clinical hepatocellular carcinoma (HCC) tissues, and immunohistochemical staining revealed that YTHDF2 was closely associated with malignancy of HCC. Interestingly, miR-145 decreased the luciferase activities of 3'-UTR of YTHDF2 mRNA. Mutation of predicted miR-145 binding sites in the 3'-UTR of YTHDF2 mRNA abolished the miR-145-induced decrease in luciferase activity. Overexpression of miR-145 dose-dependently down-regulated YTHDF2 expression in HCC cells at the levels of both mRNA and protein. Conversely, inhibition of miR-145 resulted in the up-regulation of YTHDF2 in the cells. Dot blot analysis and immunofluorescence staining revealed that the overexpression of miR-145 strongly increased m6A levels relative to those in control HCC cells, and this increase could be blocked by YTHDF2 overexpression. Moreover, miR-145 inhibition strongly decreased m6A levels, which were rescued by treatment with a small interfering RNA-based YTHDF2 knockdown. Thus, we conclude that miR-145 modulates m6A levels by targeting the 3'-UTR of YTHDF2 mRNA in HCC cells.
Collapse
Affiliation(s)
- Zhe Yang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiong Li
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoxing Feng
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shan Gao
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuqin Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunxia Liu
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China, and
| | - Yueguo Li
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiaodong Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China,
| |
Collapse
|
25
|
Huang JL, Ren TY, Cao SW, Zheng SH, Hu XM, Hu YW, Lin L, Chen J, Zheng L, Wang Q. HBx-related long non-coding RNA DBH-AS1 promotes cell proliferation and survival by activating MAPK signaling in hepatocellular carcinoma. Oncotarget 2016; 6:33791-804. [PMID: 26393879 PMCID: PMC4741803 DOI: 10.18632/oncotarget.5667] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/23/2015] [Indexed: 01/04/2023] Open
Abstract
Accumulating evidence supports an important role for the hepatitis B virus x protein (HBx) in the pathogenesis of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC), but the underlying mechanisms are not entirely clear. Here, we identified a novel long noncoding RNA (lncRNA) DBH-AS1 involved in the HBx-mediated hepatocarcinogenesis. The levels of DBH-AS1 were positively correlated with hepatitis B surface antigen (HBsAg) and tumor size in HCC tissues. Functionally, transgenic expression of DBH-AS1 significantly enhanced cell proliferation and tumorigenesis, whereas short hairpin RNA knockdown of DBH-AS1 caused an inhibition of cell proliferation. Mechanistically, overexpression of DBH-AS1 induced cell cycle progression by accelerating G1/S and G2/M transition concomitantly with upregulation of CDK6, CCND1, CCNE1 and downregulation of p16, p21 and p27. We also found that enhanced DBH-AS1 expression inhibited serum starvation-induced apoptosis of HCC cells. In contrast, suppressed DBH-AS1 expression had opposite effects. Furthermore, DBH-AS1 was shown to activate MAPK pathway. We also provide evidence that DBH-AS1 could be significantly induced by HBx protein and markedly down-regulated by p53. Thus, we concluded that DBH-AS1 can be induced by HBx and inactivated by p53, and consequently promote cell proliferation and cell survival through activation of MAPK signaling in HCC. Our study suggests that DBH-AS1 acts as an oncogene for HCC.
Collapse
Affiliation(s)
- Jin-lan Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting-yu Ren
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shun-wang Cao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shi-hao Zheng
- Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xiu-mei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Lin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Chandrasekharan JA, Marginean A, Sharma-Walia N. An insight into the role of arachidonic acid derived lipid mediators in virus associated pathogenesis and malignancies. Prostaglandins Other Lipid Mediat 2016; 126:46-54. [PMID: 27450483 DOI: 10.1016/j.prostaglandins.2016.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/25/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022]
Abstract
Several studies shed light on the size and diversity of the lipidome, along with its role in physiological and pathological processes in human health. Besides that, lipids also function as important signaling mediators. This review focuses on discussing the role of arachidonic acid (AA) derived lipids as mediators in diseases with special emphasis on viral infections. Structurally, arachidonic acid derived lipids, also referred to as lipid mediators, can be classified into three specific classes: Class 1-eicosanoids derived from arachidonic acid metabolism; Class 2-lysophospholipids consisting of either a glycerol or a sphingosine backbone; Class 3-AA and ω-3 polyunsaturated fatty acid (PUFA) derivatives. Class 1 and 2 lipids are commonly referred to as pro-inflammatory molecules, which are found upregulated in diseases like cancer and viral infection. Class 3 lipids are anti-inflammatory molecules, which could be potentially used in treatment of diseases associated with inflammation. The function of each class has been elucidated as unique and contributory to an overall cellular homeostasis. Current work in this field is promising and will surely usher in a new era of lipid understanding and control not only at the molecular level, but also in terms of holistic patient care.
Collapse
Affiliation(s)
- Jayashree A Chandrasekharan
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandru Marginean
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
27
|
Gao YE, Wang Y, Chen FQ, Feng JY, Yang G, Feng GX, Yang Z, Ye LH, Zhang XD. Post-transcriptional modulation of protein phosphatase PPP2CA and tumor suppressor PTEN by endogenous siRNA cleaved from hairpin within PTEN mRNA 3'UTR in human liver cells. Acta Pharmacol Sin 2016; 37:898-907. [PMID: 27133296 PMCID: PMC4933753 DOI: 10.1038/aps.2016.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/03/2016] [Indexed: 01/08/2023]
Abstract
Aim: Increasing evidence shows that mRNAs exert regulatory function along with coding proteins. Recently we report that a hairpin within YAP mRNA 3′UTR can modulate the Hippo signaling pathway. PTEN is a tumor suppressor, and is mutated in human cancers. In this study we examined whether PTEN mRNA 3′UTR contained a hairpin structure that could regulate gene regulation at the post-transcriptional level. Methods: The secondary structure of PTEN mRNA 3′UTR was analyzed using RNAdraw and RNAstructure. Function of hairpin structure derived from the PTEN mRNA 3′UTR was examined using luciferase reporter assay, RT-PCR and Western blotting. RNA-immunoprecipitation (RIP) assay was used to analyze the interaction between PTEN mRNA and microprocessor Drosha and DGCR8. Endogenous siRNA (esiRNA) derived from PTEN mRNA 3′UTR was identified by RT-PCR and rt-PCR, and its target genes were predicted using RNAhybrid. Results: A bioinformatics analysis revealed that PTEN mRNA contained a hairpin structure (termed PTEN-sh) within 3′UTR, which markedly increased the reporter activities of AP-1 and NF-κB in 293T cells. Moreover, treatment with PTEN-sh (1 and 2 μg) dose-dependently inhibited the expression of PTEN in human liver L-O2 cells. RIP assay demonstrated that the microprocessor Drosha and DGCR8 was bound to PTEN-sh in L-O2 cells, leading to the cleavage of PTEN-sh from PTEN mRNA 3′UTR. In addition, microprocessor Dicer was involved in the processing of PTEN-sh. Interestingly, esiRNA (termed PTEN-sh-3p21) cleaved from PTEN-sh was identified in 293T cells and human liver tissues, which was found to target the mRNA 3′UTRs of protein phosphatase PPP2CA and PTEN in L-O2 cells. Treatment of L-O2 or Chang liver cells with PTEN-sh-3p21 (50, 100 nmol/L) promoted the cell proliferation in dose- and time-dependent manners. Conclusion: The endogenous siRNA (PTEN-sh-3p21) cleaved from PTEN-sh within PTEN mRNA 3′UTR modulates PPP2CA and PTEN at the post-transcriptional level in liver cells.
Collapse
|
28
|
Molecular Pathway of Psoralidin-Induced Apoptosis in HepG2 Cell Line. Chin J Integr Med 2016; 25:757-762. [DOI: 10.1007/s11655-016-2251-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 12/13/2022]
|
29
|
Lee WP, Lan KH, Li CP, Chao Y, Lin HC, Lee SD. Oncogenic circuit constituted by Ser31-HBx and Akt increases risks of chronic hepatitis and hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2016; 1862:837-849. [PMID: 26791804 DOI: 10.1016/j.bbadis.2015.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/29/2015] [Accepted: 12/16/2015] [Indexed: 01/27/2023]
Abstract
The X protein of hepatitis B virus (HBx) has been specifically implicated in the development of hepatocellular carcinoma (HCC). Clinical associations of HBx isoforms with chronic hepatitis and HCC have not been well studied. HBx has two roles in liver cells, namely pro-apoptotic and anti-apoptotic. In this report, we examined the role of Ser31-HBx in HCC and chronic hepatitis. Using the case-control study, we determined risks of chronic hepatitis and HCC conferred by hepatitis B virus (HBV) containing Ser31-HBx that was phosphorylated by Akt. Ser31-HBx isoforms conferred 3.23-fold risk of HCC in male and 3.36-fold risk in female. Ser31 isoforms were associated with 3.12-fold risk of chronic hepatitis and 3.43-fold risk of cirrhosis and also associated with higher HBV viral load and replication efficiency and lower rate of HBe loss. To determine the mechanism, we found that Ser31-HBx constituted an oncogenic circuit with Akt and cooperated with ras to transform NIH3T3 cells in contrast to non-Ser31-HBxs that did not transduce oncogenic signals. Our results give a clue to account for an underlying cause of HBx-mediated hepatocarcinogenesis. It appears that Ser31 phosphorylation of HBx by Akt plays an important role. The current study provides an example of association of HBV genome variations with risks of HCC and chronic hepatitis.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Keng-Hsin Lan
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Pin Li
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Wang Y, Cai J, Zeng X, Chen Y, Yan W, Ouyang Y, Xiao D, Zeng Z, Huang L, Liu A. Downregulation of toll-like receptor 4 induces suppressive effects on hepatitis B virus-related hepatocellular carcinoma via ERK1/2 signaling. BMC Cancer 2015; 15:821. [PMID: 26514586 PMCID: PMC4627624 DOI: 10.1186/s12885-015-1866-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) infection is a major risk factor which can lead to development of hepatocellular carcinoma (HCC). In this study, we aimed to explore the effects of toll-like receptor 4 (TLR4) downregulation on the growth and survival of HBV-related HCC cells and to examine the molecular mechanisms been involved. Methods The expression levels of TLR4 were examined in a panel of HCC cell lines (HepG2, SMMC7721, Huh7, HepG2.2.15 and Hep3B). The effects of TLR4 downregulation on the proliferation, apoptosis, and tumorigenicity of HBV-related HepG2.2.15 cells were determined. The effects of TLR4 downregulation on multiple signaling pathways were also measured. Co-immunoprecipitation and immunofluoresence staining assays were performed to investigate the interaction between TLR4 and HBV X protein (HBx). Results The mRNA and protein levels of TLR4 were significantly increased in HepG2.2.15 cells than those in the other cells which have been studied. Downregulation of TLR4 significantly decreased the proliferation and induced G2/M cell cycle arrest and apoptosis in HepG2.2.15 cells. TLR4 depletion inhibited HepG2.2.15 cell colony formation and tumor growth in nude mice. TLR4 silencing decreased the phosphorylation of ERK1/2 but not JNK1/2, p38, or NF-κB. Chemical inhibition of ERK1/2 approximately phenocopied the growth-suppressive effect of TLR4 downregulation on HepG2.2.15 cells. In addition, TLR4 showed a physical interaction with HBx. Conclusions Taken together, TLR4 plays a tumor-promoting role in HBV-related HCC cells, which is associated with regulation of ERK1/2 activation and interaction with HBx. Therefore, TLR4 may be a potential therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Jing Cai
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Xiaoli Zeng
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yajie Chen
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Wei Yan
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yuming Ouyang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Dan Xiao
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Zhiming Zeng
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Long Huang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Anwen Liu
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
31
|
Downregulation of mPGES-1 Expression via EGR1 Plays an Important Role in Inhibition of Caffeine on PGE2 Synthesis of HBx(+) Hepatocytes. Mediators Inflamm 2015; 2015:372750. [PMID: 26538827 PMCID: PMC4619973 DOI: 10.1155/2015/372750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 02/05/2023] Open
Abstract
We investigated the mechanism of caffeine in influencing HBx(+) hepatocytes to synthesize PGE2. The inhibitory effect of caffeine on hepatocyte proliferation increased with increasing caffeine concentrations (200–800 μM) and treatment times (1–7 days), which was first observed at the second test time point (caffeine treatment for 4 days). The inhibition of caffeine on the growth of HL7702-HBx and HepG2-HBx cells was most obvious at 800 μM caffeine and at caffeine treatment for 7 days. The PGE2 secretion and the expression of mPGES-1 and EGR1 were downregulated, whereas PPARγ expression was upregulated. The mPGES-1 promoter activity of HBx(+) hepatocytes decreased more significantly than that of HBx(−) hepatocytes. Moreover, the expression of EGR1 and PPARγ changed more significantly in HBx(+) hepatocytes cultured for 12 to 24 hours in the presence of 5 mM caffeine. This limited success may be attributed to caffeine releasing the binding of HBx and PPARγ and furthermore affecting the mPGES-1 expression by EGR1 in HBx(+) hepatocytes. The results indicate that caffeine could effectively reduce PGE2 synthesis in HBx(+) hepatocytes by specifically blocking the PPARγ-EGR1-mPGES-1 pathway, thereby providing a new evidence of molecular biology for the hypothesis that drinking coffee is beneficial to HBV-infected patients.
Collapse
|
32
|
Lu ZP, Xiao ZL, Yang Z, Li J, Feng GX, Chen FQ, Li YH, Feng JY, Gao YE, Ye LH, Zhang XD. Hepatitis B virus X protein promotes human hepatoma cell growth via upregulation of transcription factor AP2α and sphingosine kinase 1. Acta Pharmacol Sin 2015; 36:1228-36. [PMID: 26073327 DOI: 10.1038/aps.2015.38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022]
Abstract
AIM Sphingosine kinase 1 (SPHK1) is involved in various cellular functions, including cell growth, migration, apoptosis, cytoskeleton architecture and calcium homoeostasis, etc. As an oncogenic kinase, SPHK1 is associated with the development and progression of cancers. The aim of this study was to investigate whether SPHK1 was involved in hepatocarcinogenesis induced by the hepatitis B virus X protein (HBx). METHODS The expression of SPHK1 in hepatocellular carcinoma (HCC) tissue and hepatoma cells were measured using qRT-PCR and Western blot analysis. HBx expression levels in hepatoma cells were modulated by transiently transfected with HBx or psi-HBx plasmids. The SPHK1 promoter activity was measured using luciferase reporter gene assay, and the interaction of the transcription factor AP2α with the SPHK1 promoter was studied with chromatin immunoprecipitation assay. The growth of hepatoma cells was evaluated in vitro using MTT and colony formation assays, and in a tumor xenograft model. RESULTS A positive correlation was found between the mRNA levels of SPHK1 and HBx in 38 clinical HCC samples (r=+0.727, P<0.01). Moreover, the expression of SPHK1 was markedly increased in the liver cancer tissue of HBx-transgenic mice. Overexpressing HBx in normal liver cells LO2 and hepatoma cells HepG2 dose-dependently increased the expression of SPHK1, whereas silencing HBx in HBx-expressing hepatoma cells HepG2-X and HepG2.2.15 suppressed SPHK1 expression. Furthermore, overexpressing HBx in HepG2 cells dose-dependently increased the SPHK1 promoter activity, whereas silencing HBx in HepG2-X cells suppressed this activity. In HepG2-X cells, AP2α was found to directly interact with the SPHK1 promoter, and silencing AP2α suppressed the SPHK1 promoter activity and SPHK1 expression. Silencing HBx in HepG2-X cells abolished the HBx-enhanced proliferation and colony formation in vitro, and tumor growth in vivo. CONCLUSION HBx upregulates SPHK1 through the transcription factor AP2α, which promotes the growth of human hepatoma cells.
Collapse
|
33
|
A long noncoding RNA perturbs the circadian rhythm of hepatoma cells to facilitate hepatocarcinogenesis. Neoplasia 2015; 17:79-88. [PMID: 25622901 PMCID: PMC4309731 DOI: 10.1016/j.neo.2014.11.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022] Open
Abstract
Clock circadian regulator (CLOCK)/brain and muscle arnt-like protein-1 (BMAL1) complex governs the regulation of circadian rhythm through triggering periodic alterations of gene expression. However, the underlying mechanism of circadian clock disruption in hepatocellular carcinoma (HCC) remains unclear. Here, we report that a long noncoding RNA (lncRNA), highly upregulated in liver cancer (HULC), contributes to the perturbations in circadian rhythm of hepatoma cells. Our observations showed that HULC was able to heighten the expression levels of CLOCK and its downstream circadian oscillators, such as period circadian clock 1 and cryptochrome circadian clock 1, in hepatoma cells. Strikingly, HULC altered the expression pattern and prolonged the periodic expression of CLOCK in hepatoma cells. Mechanistically, the complementary base pairing between HULC and the 5' untranslated region of CLOCK mRNA underlay the HULC-modulated expression of CLOCK, and the mutants in the complementary region failed to achieve the event. Moreover, immunohistochemistry staining and quantitative real-time polymerase chain reaction validated that the levels of CLOCK were elevated in HCC tissues, and the expression levels of HULC were positively associated with those of CLOCK in clinical HCC samples. In functional experiments, our data exhibited that CLOCK was implicated in the HULC-accelerated proliferation of hepatoma cells in vitro and in vivo. Taken together, our data show that an lncRNA, HULC, is responsible for the perturbations in circadian rhythm through upregulating circadian oscillator CLOCK in hepatoma cells, resulting in the promotion of hepatocarcinogenesis. Thus, our finding provides new insights into the mechanism by which lncRNA accelerates hepatocarcinogenesis through disturbing circadian rhythm of HCC.
Collapse
|
34
|
Li H, Liu Q, Wang Z, Fang R, Shen Y, Cai X, Gao Y, Li Y, Zhang X, Ye L. The oncoprotein HBXIP modulates the feedback loop of MDM2/p53 to enhance the growth of breast cancer. J Biol Chem 2015; 290:22649-61. [PMID: 26229107 DOI: 10.1074/jbc.m115.658468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/26/2022] Open
Abstract
MDM2 and p53 form a negative feedback loop, in which p53 as a transcription factor positively regulates MDM2 and MDM2 negatively regulates tumor suppressor p53 through promoting its degradation. However, the mechanism of the feedback loop is poorly understood in cancers. We had reported previously that the oncoprotein hepatitis B X-interacting protein (HBXIP) is a key oncoprotein in the development of cancer. Thus, we supposed that HBXIP might be involved in the event. Here, we observed that the expression levels of HBXIP were positively correlated to those of MDM2 in clinical breast cancer tissues. Interestingly, HBXIP was able to up-regulate MDM2 at the levels of mRNA and protein in MCF-7 breast cancer cells. Mechanically, HBXIP increased the promoter activities of MDM2 through directly binding to p53 in the P2 promoter of MDM2. Strikingly, we identified that the acetyltransferase p300 was recruited by HBXIP to p53 in the promoter of MDM2. Moreover, we validated that HBXIP enhanced the p53 degradation mediated by MDM2. Functionally, the knockdown of HBXIP or/and p300 inhibited the proliferation of breast cancer cells in vitro, and the depletion of MDM2 or overexpression of p53 significantly blocked the HBXIP-promoted growth of breast cancer in vitro and in vivo. Thus, we concluded that highly expressed HBXIP accelerates the MDM2-mediated degradation of p53 in breast cancer through modulating the feedback loop of MDM2/p53, resulting in the fast growth of breast cancer cells. Our findings provide new insights into the mechanism of the acceleration of the MDM2/p53 feedback loop in the development of cancer.
Collapse
Affiliation(s)
- Hang Li
- From the Department of Biochemistry and
| | - Qian Liu
- From the Department of Biochemistry and
| | - Zhen Wang
- From the Department of Biochemistry and
| | | | - Yu Shen
- From the Department of Biochemistry and
| | | | - Yuen Gao
- the Department of Cancer Research, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Xiaodong Zhang
- the Department of Cancer Research, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Ye
- From the Department of Biochemistry and
| |
Collapse
|
35
|
Gao Y, Wang Y, Feng J, Feng G, Zheng M, Yang Z, Xiao Z, Lu Z, Ye L, Zhang X. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level. Biochem Biophys Res Commun 2015; 459:306-312. [DOI: 10.1016/j.bbrc.2015.02.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/18/2015] [Indexed: 12/26/2022]
|
36
|
Cui M, Xiao Z, Wang Y, Zheng M, Song T, Cai X, Sun B, Ye L, Zhang X. Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Res 2015; 75:846-57. [PMID: 25592151 DOI: 10.1158/0008-5472.can-14-1192] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HULC is a long noncoding RNA overexpressed in hepatocellular carcinoma (HCC), but its functional contributions in this setting have not been determined. In this study, we explored the hypothesis that HULC contributes to malignant development by supporting abnormal lipid metabolism in hepatoma cells. HULC modulated the deregulation of lipid metabolism in HCC by activating the acyl-CoA synthetase subunit ACSL1. Immunohistochemical analysis of tissue microarrays revealed that approximately 77% (180/233) of HCC tissues were positive for ACSL1. Moreover, HULC mRNA levels correlated positively with ACSL1 levels in 60 HCC cases according to real-time PCR analysis. Mechanistic investigations showed that HULC upregulated the transcriptional factor PPARA, which activated the ACSL1 promoter in hepatoma cells. HULC also suppressed miR-9 targeting of PPARA mRNA by eliciting methylation of CpG islands in the miR-9 promoter. We documented the ability of HULC to promote lipogenesis, thereby stimulating accumulation of intracellular triglycerides and cholesterol in vitro and in vivo. Strikingly, ACSL1 overexpression that generates cholesterol was sufficient to enhance the proliferation of hepatoma cells. Further, cholesterol addition was sufficient to upregulate HULC expression through a positive feedback loop involving the retinoid receptor RXRA, which activated the HULC promoter. Overall, we concluded that HULC functions as an oncogene in hepatoma cells, acting mechanistically by deregulating lipid metabolism through a signaling pathway involving miR-9, PPARA, and ACSL1 that is reinforced by a feed-forward pathway involving cholesterol and RXRA to drive HULC signaling.
Collapse
Affiliation(s)
- Ming Cui
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Zelin Xiao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Yue Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - Minying Zheng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqiang Song
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. Key Laboratory of Cancer Prevention and Therapy, Tianjin Department of Hepatobiliary Tumor, Tianjin, China
| | - Xiaoli Cai
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - Baodi Sun
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China.
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
37
|
Yang WJ, Yang YN, Cao J, Man ZH, Li Y, Xing YQ. Paxillin regulates vascular endothelial growth factor A-induced in vitro angiogenesis of human umbilical vein endothelial cells. Mol Med Rep 2014; 11:1784-92. [PMID: 25405379 PMCID: PMC4270338 DOI: 10.3892/mmr.2014.2961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022] Open
Abstract
The purpose of the present study was to investigate the role of paxillin in the vascular endothelial growth factor A (VEGF-A)-induced adhesion, proliferation, migration and capillary formation of endothelial cells (ECs) in vitro. Human umbilical vein ECs (HUVECs) were used to evaluate these four processes in vitro. The HUVECs were either mock-transfected (control), transfected with scramble small interference RNA (siRNA) or transfected with siRNA specifically targeting paxillin. VEGF-A (20 ng/ml) was used to stimulate angiogenesis. The VEGF-A treatment significantly increased the adhesion, proliferation, migration and tube formation of the HUVECs in the control and scramble siRNA groups, whereas the siRNA-mediated knockdown of paxillin inhibited these VEGF-A-induced effects. Paxillin is essential for VEGF-A-mediated angiogenesis in ECs and its inhibition may be a potential target for antiangiogenic therapies.
Collapse
Affiliation(s)
- Wan-Ju Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Ning Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Cao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zi-Hui Man
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ying Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
38
|
Liu C, Chen S, Wang X, Chen Y, Tang N. 15d-PGJ2 decreases PGE2 synthesis in HBx-positive liver cells by interfering EGR1 binding to mPGES-1 promoter. Biochem Pharmacol 2014; 91:337-47. [DOI: 10.1016/j.bcp.2014.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 01/05/2023]
|
39
|
Wang Y, Cui M, Sun BD, Liu FB, Zhang XD, Ye LH. MiR-506 suppresses proliferation of hepatoma cells through targeting YAP mRNA 3'UTR. Acta Pharmacol Sin 2014; 35:1207-14. [PMID: 25087998 DOI: 10.1038/aps.2014.59] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
Abstract
AIM MiR-506 is a miRNA involved in carcinogenesis of several kinds of cancer. In this study, we explored whether miR-506 played a critical role in hepatocellular carcinoma (HCC). METHODS Twenty HCC and adjacent normal liver tissue samples were collected. Human hepatoma cell lines HepG2 and H7402 were used for in vitro studies. The expression of miR-506 and transcriptional co-activator YAP was examined using qRT-PCR. Western blot analysis was used to measure the expression of YAP and its target genes. Luciferase reporter gene assay was used to identify YAP as a target gene of miR-506. MTT and EdU assays were carried out for functional analysis. RESULTS The expression of miR-506 was significantly lower in HCC than in adjacent normal liver tissues. Bioinformatics analysis revealed that YAP mRNA might be one of the targets of miR-506, and miR-506 in HCC tissues was found to be negatively correlated with YAP (r=-0.605). In both HepG2 and H7402 cells, miR-506 dose-dependently down-regulated YAP and its target genes c-Myc and the connective tissue growth factor (CTGF). Luciferase reporter gene assays demonstrated that miR-506 targeted the wild type 3'UTR of YAP mRNA, but not a 3'UTR with a mutant seed site. Furthermore, miR-506 significantly inhibited the proliferation of HepG2 and H7402 cells, while anti-miR-506 enhanced the cell proliferation, which was blocked by YAP siRNA. CONCLUSION MiR-506 suppresses the proliferation of hepatoma cells by targeting YAP mRNA.
Collapse
|
40
|
Hepatitis B virus X protein inhibits tumor suppressor miR-205 through inducing hypermethylation of miR-205 promoter to enhance carcinogenesis. Neoplasia 2014; 15:1282-91. [PMID: 24339740 DOI: 10.1593/neo.131362] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023] Open
Abstract
The infection of hepatitis B virus (HBV) is closely associated with the development of hepatocellular carcinoma (HCC), in which HBV X protein (HBx) plays crucial roles. MicroRNAs are involved in diverse biologic functions and in carcinogenesis by regulating gene expression. In the present study, we aim to investigate the underlying mechanism by which HBx enhances hepatocarcinogenesis. We found that miR-205 was downregulated in 33 clinical HCC tissues in comparison with adjacent noncancerous hepatic tissues. The expression levels of miR-205 were inversely correlated with those of HBx in abovementioned tissues. Then, we demonstrated that HBx was able to suppress miR-205 expression in hepatoma and liver cells. We validated that miR-205 directly targeted HBx mRNA. Ectopic expression of miR-205 downregulated HBx, whereas depletion of endogenous miR-205 upregulated HBx in hepatoma cells. Notably, our data revealed that HBx downregulated miR-205 through inducing hypermethylation of miR-205 promoter in the cells. In terms of function, the forced miR-205 expression remarkably inhibited the HBx-enhanced proliferation of hepatoma cells in vitro and in vivo, suggesting that miR-205 is a potential tumor-suppressive gene in HCC. HBx-transgenic mice showed that miR-205 was downregulated in the liver. Importantly, HBx was able to abrogate the effect of miR-205 on tumor suppression in carcinogenesis. Therefore, we conclude that HBx is able to inhibit tumor suppressor miR-205 to enhance hepatocarcinogenesis through inducing hypermethylation of miR-205 promoter during their interaction. Therapeutically, miR-205 may be useful in the treatment of HCC.
Collapse
|
41
|
Wang Y, Cui M, Cai X, Sun B, Liu F, Zhang X, Ye L. The oncoprotein HBXIP up-regulates SCG3 through modulating E2F1 and miR-509-3p in hepatoma cells. Cancer Lett 2014; 352:169-78. [PMID: 24882622 DOI: 10.1016/j.canlet.2014.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/30/2014] [Accepted: 05/11/2014] [Indexed: 01/05/2023]
Abstract
Hepatitis B X-interacting protein (HBXIP) is an important oncoprotein in hepatocarcinogenesis. Here, we found that the expression levels of HBXIP were positively associated with those of Secretogranin III (SCG3) in clinical hepatocellular carcinoma tissues. We identified that HBXIP up-regulated the expression of SCG3 through modulating both E2F transcription factor 1 (E2F1) and miR-509-3p. HBXIP suppressed miR-509-3p through activating NF-κB. In function, we showed that SCG3 increased the proliferation of hepatoma cells and HBXIP enhanced the proliferation of the cells via SCG3 in vitro and in vivo. Thus, we conclude that HBXIP facilitates the proliferation of hepatoma cells through up-regulating SCG3.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Ming Cui
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xiaoli Cai
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Baodi Sun
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Fabao Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
42
|
Zhang W, Lu Z, Kong G, Gao Y, Wang T, Wang Q, Cai N, Wang H, Liu F, Ye L, Zhang X. Hepatitis B virus X protein accelerates hepatocarcinogenesis with partner survivin through modulating miR-520b and HBXIP. Mol Cancer 2014; 13:128. [PMID: 24886421 PMCID: PMC4046021 DOI: 10.1186/1476-4598-13-128] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatitis B virus X protein (HBx) plays crucial roles in hepatocarcinogenesis. However, the underlying mechanism remains elusive. We have reported that HBx is able to up-regulate survivin in hepatocellular carcinoma tissues. The oncopreotein hepatitis B X-interacting protein (HBXIP), a target of miR-520b, is involved in the development of cancer. In this study, we focus on the investigation of hepatocarcinogenesis mediated by HBx. METHODS The expression of HBx and survivin was examined in the liver tissues of HBx-Tg mice. The effect of HBx/survivin on the growth of LO2-X-S cells was determined by colony formation and transplantation in nude mice. The effect of HBx/survivin on promoter of miR-520b was determined by Western blot analysis, luciferase reporter gene assay, co-immunoprecipitation (co-IP) and chromatin immunoprecipitation (ChIP), respectively. The expression of HBx, survivin and HBXIP was detected by immunohistochemistry and real-time PCR in clinical HCC tissues, respectively. The DNA demethylation of HBXIP promoter was examined. The functional influence of miR-520b and HBXIP on proliferation of hepatoma cells was analyzed by MTT, colony formation, EdU and transplantation in nude mice in vitro and in vivo. RESULTS In this study, we provided evidence that HBx up-regulated survivin in the liver cancer tissues of HBx-Tg mice aged 18 M. The engineered LO2 cell lines with survivin and/or HBx were successfully established, termed LO2-X-S. MiR-520b was down-regulated in LO2-X-S cells and clinical HCC tissues. Our data revealed that HBx survivin-dependently down-regulated miR-520b through interacting with Sp1 in the cells. HBXIP was highly expressed in LO2-X-S cells, liver cancer tissues of HBx-Tg mice aged 18 M and clinical HCC tissues (75.17%, 112/149). The expression level of HBXIP was positively associated with those of HBx or survivin in clinical HCC tissues. In addition, we showed that HBx survivin-dependently up-regulated HBXIP through inducing demethylation of HBXIP promoter in LO2-X-S cells and clinical HCC tissues. In function, low level miR-520b and high level HBXIP mediated by HBx with partner survivin contributed to the growth of LO2-X-S cells in vitro and in vivo. CONCLUSION HBx accelerates hepatocarcinogenesis with partner survivin through modulating tumor suppressor miR-520b and oncoprotein HBXIP.
Collapse
Affiliation(s)
- Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Zhanping Lu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Guangyao Kong
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Yuen Gao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Tao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Qi Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Na Cai
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Honghui Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Fabao Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| |
Collapse
|
43
|
Chen S, Liu C, Wang X, Li X, Chen Y, Tang N. 15-Deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) promotes apoptosis of HBx-positive liver cells. Chem Biol Interact 2014; 214:26-32. [PMID: 24582817 DOI: 10.1016/j.cbi.2014.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/26/2013] [Accepted: 02/19/2014] [Indexed: 12/22/2022]
Abstract
This study aims to investigate the inflammatory response characteristics of liver cells caused by HBV x protein (HBx) and the unique function of the PGE2 inhibitor on HBx-positive liver cells. Tetrazolium blue colorimetric method, flow cytometry, and Western blot were performed to detect the proliferation, cycle, and apoptosis protein expression of HBx-positive HL7702 liver and control cells. The effect of the PGE2 inhibitor 15-Deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) on the growth of HL7702-HBx was also observed. HBx induces the PGE2 accumulation in HL7702 liver cells and promotes their growth and inhibits their apoptosis. HL7702-HBx and HL7702 cells showed increased apoptosis rate, increased apoptosis-promoting protein expression, and reduced apoptosis-inhibiting protein expression under the effect of 15d-PGJ2, and the changes in HL7702-HBx cells were more significant than in HL7702 cells. HBx expression causes liver cells to be more sensitive to the apoptosis-promoting function of 15d-PGJ2. Therefore, the use of 15d-PGJ2 may be a new method for the prevention or treatment of inflammatory changes to cancer caused by HBV infection in liver cells.
Collapse
Affiliation(s)
- Siyan Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chong Liu
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiujin Li
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yanling Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
44
|
Wang HY, Yang SL, Liang HF, Li CH. HBx protein promotes oval cell proliferation by up-regulation of cyclin D1 via activation of the MEK/ERK and PI3K/Akt pathways. Int J Mol Sci 2014; 15:3507-18. [PMID: 24577313 PMCID: PMC3975350 DOI: 10.3390/ijms15033507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 12/13/2022] Open
Abstract
Growing evidence has shown that hepatic oval cells, also named liver progenitor cells, play an important role in the process of liver regeneration in various liver diseases. Oval cell proliferation has been reported in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) and chronic liver disease. Studies have found expression of HBV surface and core antigens in oval cells in the livers of patients with HCC, suggesting that HBV infection of oval cells could be a mechanism of human hepatocarcinogenesis. In addition, there is evidence of multiplication of HBV in oval cell culture. However, little research has been performed to explore the role of HBV-encoded proteins in the proliferation of hepatic oval cells. Previously, we successfully transfected the HBV x (HBx) gene, one of the four genes in the HBV genome, into a rat LE/6 oval cell line. In this study, we tested whether or not the transfected HBx gene could affect oval cell proliferation in vitro. Our results show that overexpression of HBx promotes the proliferation of oval cells and increases cyclin D1 expression, assessed at both the mRNA and protein levels. We also found that HBx activated the PI-3K/Akt and MEK/ERK1/2 pathways in HBx-transfected oval cells. Furthermore, the HBx-induced increases in cyclin D1 expression and oval cell proliferation were completely abolished by treatment with either MEK inhibitor PD184352 or PI-3K inhibitor LY294002. These results demonstrated that HBx has the ability to promote oval cell proliferation in vitro, and its stimulatory effects on cell proliferation and expression of cyclin D1 depend on the activation of the MEK/ERK and PI3K/Akt signaling pathways in cultured oval cells.
Collapse
Affiliation(s)
- Heng-Yi Wang
- Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Sheng-Li Yang
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430077, China.
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, China.
| | - Chang-Hai Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, China.
| |
Collapse
|
45
|
Liu F, You X, Chi X, Wang T, Ye L, Niu J, Zhang X. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Biochem Biophys Res Commun 2014; 444:128-34. [PMID: 24434140 DOI: 10.1016/j.bbrc.2014.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/07/2014] [Indexed: 01/13/2023]
Abstract
The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3'UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.
Collapse
Affiliation(s)
- Fabao Liu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China; Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xiaona You
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xiumei Chi
- Department of Hepatology, The First Hospital, Jilin University, Changchun 130021, PR China
| | - Tao Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Lihong Ye
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Junqi Niu
- Department of Hepatology, The First Hospital, Jilin University, Changchun 130021, PR China.
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
46
|
Yan Y, Liu N, Lu L, Zang CM, Shao B, Li Y, Wen Y, Wei Y, Cheng P. Autophagy enhances antitumor immune responses induced by irradiated hepatocellular carcinoma cells engineered to express hepatitis B virus X protein. Oncol Rep 2013; 30:993-9. [PMID: 23754319 DOI: 10.3892/or.2013.2531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/24/2013] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus X protein (HBx) plays a critical role in malignancy transformation of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). HBx sequence has been mapped with multi-epitopes which can elicit robust specific cytolytic T lymphocyte (CTL) responses. In our previous study, we developed an adenoviral vaccine against HBx oncoproteins to prevent growth of HBV-associated HCC. However, due to the weak immunogenicity of tumor antigen and pre-existing virus-neutralizing antibodies to the vaccine carrier preventing the vector from transducing target cells, the development of novel methods to enhance antigen presentation is urgently required. In the present study, we developed an adenoviral‑mediated genetic engineering of hepatoma cell vaccine to express HBx and to evaluate if the novel vaccine could elicit specific immune responses. Our data showed that the irradiated tumor cells engineered to express HBx could significantly induce antitumor immune responses in vivo. The novel vaccine could induce a specific CTL response to recognize and lyse HBx-positive hepatoma cells in vitro. Both CD8+ T and CD4+ T lymphocytes are involved in the antitumor immune response induced by the novel vaccine. Furthermore, numerous autophagosomes and autolysosomes were found in the irradiated tumor cells engineered to express HBx. The results demonstrated that the irradiated HBx-modified tumor cell vaccine was a potent and promising therapeutic agent against HBx-positive HCC via induction of autophagy-enhanced CD8+ T and CD4+ T lymphocyte-mediated antitumor immune responses. The present findings have implications for the development of clinical immunotherapy against HBV-associated HCC.
Collapse
Affiliation(s)
- Yingying Yan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
You X, Liu F, Zhang T, Li Y, Ye L, Zhang X. Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells. Carcinogenesis 2013; 34:1644-52. [PMID: 23471881 DOI: 10.1093/carcin/bgt089] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus X protein (HBx) contributes to the development of hepatocellular carcinoma (HCC) through inducing dysregulation of lipogenesis. However, the mechanism by which HBx induces the abnormal lipogenesis is not well known. In this study, we report that the oncogene Rab18, a member of Ras family, enhances the HBx-induced hepatocarcinogenesis through inducing dysregulation of lipogenesis and proliferation. Our data showed that the expression levels of Rab18 were positively associated with those of HBx in clinical HCC tissues. HBx was able to upregulate the expression of Rab18 in p21-HBx transgenic mice and hepatoma cell lines. Next, we identified the mechanism by which HBx upregulated Rab18. The results demonstrated that cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) were able to stimulate Rab18 promoter through activating transcription factor activator protein 1 (AP-1) and cyclic adenosine 3',5'-monophosphate response element-binding (CREB). In addition, we identified another pathway that HBx activated Rab18. We found that miR-429 was able to directly target the 3' untranslated region of Rab18, suggesting that Rab18 is one of the target genes of miR-429. Then, we found that HBx was able to downregulate miR-429 in hepatoma cells. The oil red O staining showed that HBx resulted in the dysregulation of lipogenesis through Rab18. Moreover, Rab18 contributed to the HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. HBx enhances hepatocarcinogenesis through leading to the dysregulation of lipogenesis and proliferation of hepatoma cells, involving two pathways such as HBx/COX-2/5-LOX/AP-1/CREB/Rab18 and HBx/miR-429/Rab18.
Collapse
Affiliation(s)
- Xiaona You
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
48
|
Zhang S, Shan C, Cui W, You X, Du Y, Kong G, Gao F, Ye L, Zhang X. Hepatitis B virus X protein protects hepatoma and hepatic cells from complement-dependent cytotoxicity by up-regulation of CD46. FEBS Lett 2013; 587:645-51. [PMID: 23391762 DOI: 10.1016/j.febslet.2013.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/27/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022]
Abstract
The involvement of hepatitis B virus X protein (HBx) in anti-complement-dependent cytotoxicity (CDC) activity during hepatocarcinogenesis is poorly understood. Here, we report that HBx is able to up-regulate membrane-bound complement regulatory protein CD46 in hepatoma cells and human immortalized liver cells through activating the promoter activity involving cAMP response element-binding protein (CREB)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. In contrast, the down-regulation of CD46 abolishes the resistance capability of hepatoma cells to CDC. Thus, we conclude that HBx contributes to the protection of hepatoma and hepatic cells from CDC by up-regulation of CD46.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute for Molecular Biology and Biochemistry, College of Life Sciences, Nankai University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu F, You X, Liu F, Shen X, Yao Y, Ye L, Zhang X. The oncoprotein HBXIP up-regulates Skp2 via activating transcription factor E2F1 to promote proliferation of breast cancer cells. Cancer Lett 2013; 333:124-32. [PMID: 23352642 DOI: 10.1016/j.canlet.2013.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 02/08/2023]
Abstract
Hepatitis B X-interacting protein (HBXIP) is a novel oncoprotein. In this study, we found that the expression levels of HBXIP were positively associated with those of S-phase kinase-associated protein 2 (Skp2) in clinical breast cancer tissues and cell lines. Moreover, we found that HBXIP was able to stimulate the promoter of Skp2 through binding to the -640/-443 region in Skp2 promoter involving activating E2F transcription factor 1 (E2F1). Skp2 plays crucial roles in HBXIP-enhanced proliferation of breast cancer cells in vitro and in vivo. We conclude that HBXIP up-regulates Skp2 via activating E2F1 to promote proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Fuqiang Xu
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Hepatitis B virus X protein upregulates Lin28A/Lin28B through Sp-1/c-Myc to enhance the proliferation of hepatoma cells. Oncogene 2013; 33:449-60. [PMID: 23318446 DOI: 10.1038/onc.2012.618] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/02/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022]
Abstract
Hepatitis B virus X protein (HBx) plays critical roles in the pathogenesis of hepatocellular carcinoma (HCC). Here, we were interested in knowing whether the oncogene Lin28A and its homolog Lin28B are involved in the hepatocarcinogenesis mediated by HBx. We showed that the expression levels of Lin28A and Lin28B were increased in clinical HCC tissues, HepG2.2.15 cell line and liver tissues of p21-HBx transgenic mice. Interestingly, the expression levels of HBx were positively associated with those of Lin28A/Lin28B in clinical HCC tissues. Moreover, the overexpression of HBx resulted in the upregulation of Lin28A/Lin28B in hepatoma HepG2/H7402 cell lines by transient transfection, suggesting that HBx was able to upregulate Lin28A and Lin28B. Then, we examined the mechanism by which HBx upregulated Lin28A and Lin28B. We identified that the promoter region of Lin28A regulated by HBx was located at nt -235/-66 that contained Sp-1 binding element. Co-immunoprecipitation showed that HBx was able to interact with Sp-1 in HepG2-X cells. Moreover, chromatin immunoprecipitation (ChIP) demonstrated that HBx could bind to the promoter of Lin28A, which failed to work when Sp-1 was silenced. Electrophoretic mobility shift assay (EMSA) further identified that HBx was able to interact with Sp-1 element in Lin28A promoter via transcription factor Sp-1. In addition, we found that c-Myc was involved in the activation of Lin28B mediated by HBx. In function, Lin28A/Lin28B played important roles in HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. In conclusion, HBx activates Lin28A/Lin28B through Sp-1/c-Myc in hepatoma cells. Lin28A/Lin28B serves as key driver genes in HBx-induced hepatocarcinogenesis.
Collapse
|