1
|
Nan X, Hou S. Multilayered roles of COP1 in plant growth and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154475. [PMID: 40185052 DOI: 10.1016/j.jplph.2025.154475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Abstract
COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) is a highly conserved eukaryotic protein that functions as a central repressor in plant photomorphogenesis. As an E3 ubiquitin ligase, COP1 regulates various physiological processes by ubiquitinating and degrading specific substrates. In recent years, the multifunctionality of COP1 has garnered increasing attention, as it not only is involved in light signal transduction but also plays a critical regulatory role in plant growth and development, stress response pathways, and hormone signaling networks. Moreover, COP1 also participates in the cross-regulation of multiple signaling pathways, including light signaling, stress response, and hormone signaling, further highlighting its core position in plant environment adaptation and growth and development. This review systematically elaborates on the evolutionary conservation, structural features, and multifunctionality of COP1, with a focus on summarizing its molecular regulatory networks in growth, development, and stress responses, while exploring its potential applications in crop genetic improvement.
Collapse
Affiliation(s)
- Xiaohui Nan
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Deng F, Zhang Y, Chen Y, Li Y, Li L, Lei Y, Li Z, Pi B, Chen J, Qiao Z. Genome-wide identification and expression analysis of the BBX gene family in Lagerstroemia indica grown under light stress. Int J Biol Macromol 2025; 297:139899. [PMID: 39818400 DOI: 10.1016/j.ijbiomac.2025.139899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome. Using bioinformatics approaches, we predicted their structural and functional characteristics and examined the variations in leaf coloration under varying durations of darkness and the expression profiles of BBX genes. The LiBBX genes were categorized into five distinct subfamilies through phylogenetic analysis, with substantial gene expansion due to segmental duplication events. Promoter analysis demonstrated that the BBX family possesses an abundance of light-responsive cis-elements. Using protein interaction prediction followed by qPCR analysis, we identified 17 interacting partners. Notably, the expression levels of the majority of BBX genes in L.indica 'Ebony Embers' were significantly downregulated in the darkness compared to those in the light. Correlation analyses indicated that the expression levels of most BBX genes were positively correlated with both anthocyanin and chlorophyll contents. Ultimately, we discovered a core BBX protein, LiBBX4, which can interact with LiHY5, LiHYH, and LiCOP1, and verified its involvement in regulating anthocyanin synthesis using VIGS. This study for the first time revealed novel insights into the molecular mechanisms underlying light-induced leaf color changes in L.indica, which could provide a fundamental framework for the genetic improvement of L.indica and enhance its commercial appeal.
Collapse
Affiliation(s)
- Fuyuan Deng
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Yi Zhang
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Yi Chen
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Yongxin Li
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Lu Li
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China; College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuxing Lei
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China; College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhihui Li
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China; College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bing Pi
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China.
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL 32703, USA.
| | - Zhongquan Qiao
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Job N, Dwivedi S, Lingwan M, Datta S. BBX22 enhances the accumulation of antioxidants to inhibit DNA damage and promotes DNA repair under high UV-B. PHYSIOLOGIA PLANTARUM 2025; 177:e70038. [PMID: 39780752 DOI: 10.1111/ppl.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B. Our metabolomics data indicated that BBX22 promotes the accumulation of antioxidants like ascorbic acid and proline. These antioxidants play a vital role in shielding plants exposed to high UV-B from the detrimental effects of Reactive Oxygen Species (ROS), including DNA damage. Additionally, BBX22 promotes DNA damage repair by inducing the expression of DNA repair genes like UVR1 and UVR3. BBX22 directly binds to the promoter of UVR1 to regulate its expression. Furthermore, BBX22 indirectly induces the expression of UVR1 and UVR3 by enhancing the binding of HY5 to their promoters. Together, these results suggest a multi-pronged role of BBX22 in protection against high-intensity UV-B. Enhancing BBX22 levels or its orthologs in different plant species can potentially offer DNA damage protection and tolerance against intense UV radiation.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
- Current address: Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| | - Maneesh Lingwan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
- Current address: Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Wang Y, Qin H, Ni J, Yang T, Lv X, Ren K, Xu X, Yang C, Dai X, Zeng J, Liu W, Xu D, Ma W. Genome-Wide Identification, Characterization and Expression Patterns of the DBB Transcription Factor Family Genes in Wheat. Int J Mol Sci 2024; 25:11654. [PMID: 39519206 PMCID: PMC11546462 DOI: 10.3390/ijms252111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Double B-box (DBB) proteins are plant-specific transcription factors (TFs) that play crucial roles in plant growth and stress responses. This study investigated the classification, structure, conserved motifs, chromosomal locations, cis-elements, duplication events, expression levels, and protein interaction network of the DBB TF family genes in common wheat (Triticum aestivum L.). In all, twenty-seven wheat DBB genes (TaDBBs) with two conserved B-box domains were identified and classified into six subgroups based on sequence features. A collinearity analysis of the DBB family genes among wheat, Arabidopsis, and rice revealed some duplicated gene pairs and highly conserved genes in wheat. An expression pattern analysis indicated that wheat TaDBBs were involved in plant growth, responses to drought stress, light/dark, and abscisic acid treatment. A large number of cis-acting regulatory elements related to light response are enriched in the predicted promoter regions of 27 TaDBBs. Furthermore, some of TaDBBs can interact with COP1 or HY5 based on the STRING database prediction and yeast two-hybrid (Y2H) assay, indicating the potential key roles of TaDBBs in the light signaling pathway. Conclusively, our study revealed the potential functions and regulatory mechanisms of TaDBBs in plant growth and development under drought stress, light, and abscisic acid.
Collapse
Affiliation(s)
- Yalin Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Huimin Qin
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Jinlan Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Tingzhi Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xinru Lv
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Kangzhen Ren
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xinyi Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Chuangyi Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (H.Q.); (J.N.); (T.Y.); (X.L.); (K.R.); (X.X.); (C.Y.); (X.D.); (J.Z.); (W.L.)
- School of Agriculture, Murdoch University, Perth, WA 4350, Australia
| |
Collapse
|
5
|
Gao Z, Sun Y, Zhu Z, Ni N, Sun S, Nie M, Du W, Irfan M, Chen L, Zhang L. Transcription factors LvBBX24 and LvbZIP44 coordinated anthocyanin accumulation in response to light in lily petals. HORTICULTURE RESEARCH 2024; 11:uhae211. [PMID: 39372289 PMCID: PMC11450212 DOI: 10.1093/hr/uhae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/23/2024] [Indexed: 10/08/2024]
Abstract
Lily (Lilium spp.), a horticultural crop serving both ornamental and edible functions, derives its coloration primarily from anthocyanins. However, limited studies have been conducted on the accumulation of anthocyanins within lilies. In this study, we cloned a light-induced transcription factor named as LvBBX24 in lilies. Through genetic and biochemical analysis, we determined that LvBBX24 could upregulate the transcription of LvMYB5 and facilitate anthocyanin synthesis. Moreover, we identified that darkness promoted the degradation of LvBBX24 protein. Through screening a yeast library, we identified LvbZIP44 acts as its interacting partner. Genetic testing confirmed that LvbZIP44 also plays a role in promoting lily anthocyanin synthesis. This indicates a potential synergistic regulatory effect between LvBBX24 and LvbZIP44. Our study indicates that LvBBX24 and LvbZIP44 cooperate to regulate anthocyanin accumulation in lily petals. These findings provide compelling evidence supporting the idea that LvBBX24 and LvbZIP44 may form a looped helix surrounding the LvMYB5 promoter region to regulate anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Zhenhua Gao
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Yibo Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ziman Zhu
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Na Ni
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Shaokun Sun
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Mengyao Nie
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Weifeng Du
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| |
Collapse
|
6
|
Nguyen QM, Iswanto ABB, Kang H, Moon J, Phan KAT, Son GH, Suh MC, Chung EH, Gassmann W, Kim SH. The processed C-terminus of AvrRps4 effector suppresses plant immunity via targeting multiple WRKYs. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1769-1787. [PMID: 38869289 DOI: 10.1111/jipb.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Pathogens generate and secrete effector proteins to the host plant cells during pathogenesis to promote virulence and colonization. If the plant carries resistance (R) proteins that recognize pathogen effectors, effector-triggered immunity (ETI) is activated, resulting in a robust immune response and hypersensitive response (HR). The bipartite effector AvrRps4 from Pseudomonas syringae pv. pisi has been well studied in terms of avirulence function. In planta, AvrRps4 is processed into two parts. The C-terminal fragment of AvrRps4 (AvrRps4C) induces HR in turnip and is recognized by the paired resistance proteins AtRRS1/AtRPS4 in Arabidopsis. Here, we show that AvrRps4C targets a group of Arabidopsis WRKY, including WRKY46, WRKY53, WRKY54, and WRKY70, to induce its virulence function. Indeed, AvrRps4C suppresses the general binding and transcriptional activities of immune-positive regulator WRKY54 and WRKY54-mediated resistance. AvrRps4C interferes with WRKY54's binding activity to target gene SARD1 in vitro, suggesting WRKY54 is sequestered from the SARD1 promoter by AvrRps4C. Through the interaction of AvrRps4C with four WRKYs, AvrRps4 enhances the formation of homo-/heterotypic complexes of four WRKYs and sequesters them in the cytoplasm, thus inhibiting their function in plant immunity. Together, our results provide a detailed virulence mechanism of AvrRps4 through its C-terminus.
Collapse
Affiliation(s)
- Quang-Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Kieu Anh Thi Phan
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea
| | - Walter Gassmann
- Division of Plant Science and Technology, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, Missouri, USA
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
7
|
Deng J, Zhang L, Wang L, Zhao J, Yang C, Li H, Huang J, Shi T, Zhu L, Damaris RN, Chen Q. The Complex FtBBX22 and FtHY5 Positively Regulates Light-Induced Anthocyanin Accumulation by Activating FtMYB42 in Tartary Buckwheat Sprouts. Int J Mol Sci 2024; 25:8376. [PMID: 39125947 PMCID: PMC11313212 DOI: 10.3390/ijms25158376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Anthocyanin is one important nutrition composition in Tartary buckwheat (Fagopyrum tataricum) sprouts, a component missing in its seeds. Although anthocyanin biosynthesis requires light, the mechanism of light-induced anthocyanin accumulation in Tartary buckwheat is unclear. Here, comparative transcriptome analysis of Tartary buckwheat sprouts under light and dark treatments and biochemical approaches were performed to identify the roles of one B-box protein BBX22 and ELONGATED HYPOCOTYL 5 (HY5). The overexpression assay showed that FtHY5 and FtBBX22 could both promote anthocyanin synthesis in red-flower tobacco. Additionally, FtBBX22 associated with FtHY5 to form a complex that activates the transcription of MYB transcription factor genes FtMYB42 and FtDFR, leading to anthocyanin accumulation. These findings revealed the regulation mechanism of light-induced anthocyanin synthesis and provide excellent gene resources for breeding high-quality Tartary buckwheat.
Collapse
Affiliation(s)
- Jiao Deng
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Lan Zhang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Lijuan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Jiali Zhao
- School of Life Sciences, Sichuan Agricultural University, Ya’an 625099, China;
| | - Chaojie Yang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | | | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| |
Collapse
|
8
|
Xie Y, Miao T, Lyu S, Huang Y, Shu M, Li S, Xiong T. Arabidopsis ERD15 regulated by BBX24 plays a positive role in UV-B signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112077. [PMID: 38552846 DOI: 10.1016/j.plantsci.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.
Collapse
Affiliation(s)
- Yuxin Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tingting Miao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Suihua Lyu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuewei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoshan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
9
|
Yang G, Sun M, Brewer L, Tang Z, Nieuwenhuizen N, Cooney J, Xu S, Sheng J, Andre C, Xue C, Rebstock R, Yang B, Chang W, Liu Y, Li J, Wang R, Qin M, Brendolise C, Allan AC, Espley RV, Lin‐Wang K, Wu J. Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1468-1490. [PMID: 38169146 PMCID: PMC11123420 DOI: 10.1111/pbi.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.
Collapse
Affiliation(s)
- Guangyan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Manyi Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Lester Brewer
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Zikai Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Shaozhuo Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiawen Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Christelle Andre
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Ria Rebstock
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Bo Yang
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Wenjing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yueyuan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiaming Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Runze Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Mengfan Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Cyril Brendolise
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Kui Lin‐Wang
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| |
Collapse
|
10
|
Liu X, Sun W, Ma B, Song Y, Guo Q, Zhou L, Wu K, Zhang X, Zhang C. Genome-wide analysis of blueberry B-box family genes and identification of members activated by abiotic stress. BMC Genomics 2023; 24:584. [PMID: 37789264 PMCID: PMC10546702 DOI: 10.1186/s12864-023-09704-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND B-box (BBX) proteins play important roles in regulating plant growth, development, and abiotic stress responses. BBX family genes have been identified and functionally characterized in many plant species, but little is known about the BBX family in blueberry (Vaccinium corymbosum). RESULT In this study, we identified 23 VcBBX genes from the Genome Database for Vaccinium (GDV). These VcBBXs can be divided into five clades based on gene structures and conserved domains in their encoded proteins. The prediction of cis-acting elements in the upstream sequences of VcBBX genes and protein-protein interactions indicated that VcBBX proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of transcriptome deep sequencing (RNA-seq) data showed that VcBBX genes exhibited organ-specific expression pattern and 11 VcBBX genes respond to ultraviolet B (UV-B) radiation. The co-expression analysis revealed that the encoded 11 VcBBX proteins act as bridges integrating UV-B and phytohormone signaling pathways in blueberry under UV-B radiation. Reverse-transcription quantitative PCR (RT-qPCR) analysis showed that most VcBBX genes respond to drought, salt, and cold stress. Among VcBBX proteins, VcBBX24 is highly expressed in all the organs, not only responds to abiotic stress, but it also interacts with proteins in UV-B and phytohormone signaling pathways, as revealed by computational analysis and co-expression analysis, and might be an important regulator integrating abiotic stress and phytohormone signaling networks. CONCLUSIONS Twenty-three VcBBX genes were identified in blueberry, in which, 11 VcBBX genes respond to UV-B radiation, and act as bridges integrating UV-B and phytohormone signaling pathways according to RNA-seq data. The expression patterns under abiotic stress suggested that the functional roles of most VcBBX genes respose to drought, salt, and cold stress. Our study provides a useful reference for functional analysis of VcBBX genes and for improving abiotic stress tolerance in blueberry.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wenying Sun
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Bin Ma
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yan Song
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Qingxun Guo
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Lianxia Zhou
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Kuishen Wu
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xinsheng Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Bhatnagar A, Burman N, Sharma E, Tyagi A, Khurana P, Khurana JP. Two splice forms of OsbZIP1, a homolog of AtHY5, function to regulate skotomorphogenesis and photomorphogenesis in rice. PLANT PHYSIOLOGY 2023; 193:426-447. [PMID: 37300540 DOI: 10.1093/plphys/kiad334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Plants possess well-developed light sensing mechanisms and signal transduction systems for regulating photomorphogenesis. ELONGATED HYPOCOTYL5 (HY5), a basic leucine zipper (bZIP) transcription factor, has been extensively characterized in dicots. In this study, we show that OsbZIP1 is a functional homolog of Arabidopsis (Arabidopsis thaliana) HY5 (AtHY5) and is important for light-mediated regulation of seedling and mature plant development in rice (Oryza sativa). Ectopic expression of OsbZIP1 in rice reduced plant height and leaf length without affecting plant fertility, which contrasts with OsbZIP48, a previously characterized HY5 homolog. OsbZIP1 is alternatively spliced, and the OsbZIP1.2 isoform lacking the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-binding domain regulated seedling development in the dark. Rice seedlings overexpressing OsbZIP1 were shorter than the vector control under white and monochromatic light conditions, whereas RNAi knockdown seedlings displayed the opposite phenotype. While OsbZIP1.1 was light-regulated, OsbZIP1.2 showed a similar expression profile in both light and dark conditions. Due to its interaction with OsCOP1, OsbZIP1.1 undergoes 26S proteasome-mediated degradation under dark conditions. Also, OsbZIP1.1 interacted with and was phosphorylated by CASEIN KINASE2 (OsCK2α3). In contrast, OsbZIP1.2 did not show any interaction with OsCOP1 or OsCK2α3. We propose that OsbZIP1.1 likely regulates seedling development in the light, while OsbZIP1.2 is the dominant player under dark conditions. The data presented in this study reveal that AtHY5 homologs in rice have undergone neofunctionalization, and alternative splicing of OsbZIP1 has increased the repertoire of its functions.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Naini Burman
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Akhilesh Tyagi
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
12
|
Zhang L, Wang Y, Yue M, Jiang L, Zhang N, Luo Y, Chen Q, Zhang Y, Wang Y, Li M, Zhang Y, Lin Y, Tang H. FaMYB5 Interacts with FaBBX24 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Strawberry ( Fragaria × ananassa). Int J Mol Sci 2023; 24:12185. [PMID: 37569565 PMCID: PMC10418308 DOI: 10.3390/ijms241512185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
MYB and BBX transcription factors play important roles in flavonoid biosynthesis. Here, we obtained transgenic woodland strawberry with stable overexpression of FaMYB5, demonstrating that FaMYB5 can increase anthocyanin and proanthocyanidin content in roots, stems and leaves of woodland strawberry. In addition, bimolecular fluorescence complementation assays and yeast two-hybridization demonstrated that the N-terminal (1-99aa) of FaBBX24 interacts with FaMYB5. Transient co-expression of FaBBX24 and FaMYB5 in cultivated strawberry 'Xiaobai' showed that co-expression strongly promoted the expression of F3'H, 4CL-2, TT12, AHA10 and ANR and then increased the content of anthocyanin and proanthocyanidin in strawberry fruits. We also determined that FaBBX24 is also a positive regulator of anthocyanin and proanthocyanidin biosynthesis in strawberry. The results reveal a novel mechanism by which the FaMYB5-FaBBX24 module collaboratively regulates anthocyanin and proanthocyanidin in strawberry fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.Z.); (Y.W.); (M.Y.); (L.J.); (N.Z.); (Y.L.); (Q.C.); (Y.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
13
|
Chiriotto TS, Saura-Sánchez M, Barraza C, Botto JF. BBX24 Increases Saline and Osmotic Tolerance through ABA Signaling in Arabidopsis Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2392. [PMID: 37446954 DOI: 10.3390/plants12132392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Seed germination is a critical stage for survival during the life cycle of an individual plant. Genetic and environmental cues are integrated by individual seeds to determine germination, mainly achieved through regulation of the metabolism and signaling of gibberellins (GA) and abscisic acid (ABA), two phytohormones with antagonistic roles. Saline and drought conditions can arrest the germination of seeds and limit the seedling emergence and homogeneity of crops. This work aimed to study the function of BBX24, a B-Box transcription factor, in the control of germination of Arabidopsis thaliana seeds imbibed in saline and osmotic conditions. Seeds of mutant and reporter GUS lines of BBX24 were incubated at different doses of NaCl and polyethylene-glycol (PEG) solutions and with ABA, GA and their inhibitors to evaluate the rate of germination. We found that BBX24 promotes seed germination under moderated stresses. The expression of BBX24 is inhibited by NaCl and PEG. In addition, ABA suppresses BBX24-induced seed germination. Additional experiments suggest that BBX24 reduces ABA sensitivity, improving NaCl tolerance, and increases GA sensitivity in seeds imbibed in ABA. In addition, BBX24 inhibits the expression of ABI3 and ABI5 and genetically interacts upstream of HY5 and ABI5. This study demonstrates the relevance of BBX24 to induce drought and salinity tolerance in seed germination to ensure seedling emergence in sub-optimal environments.
Collapse
Affiliation(s)
- Tai S Chiriotto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Maite Saura-Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Carla Barraza
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Javier F Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| |
Collapse
|
14
|
Li S, Ou C, Wang F, Zhang Y, Ismail O, Elaziz YSA, Edris S, Jiang S, Li H. Mutant Ppbbx24-delgene positively regulates light-induced anthocyanin accumulation in the red pear.. [DOI: 10.1101/2023.05.19.541476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractAnthocyanins are pigments and nutrients in red pears regulated by BBX family genes. Herein, we characterized a 14-nucleotide deletion mutation in the coding region of thePpBBX24gene from ‘Red Zaosu’ pear (Pyrus pyrifoliaWhite Pear Group), namedPpbbx24-del. Genetic and biochemical approaches were used to compare the roles of PpBBX24 and Ppbbx24-del in anthocyanin accumulation.Ppbbx24-delplayed a positive role in anthocyanin biosynthesis of the ‘Red Zaosu’ pear peel by light treatment. Functional analyses based on overexpression in tobacco and transient overexpression in pear fruit peels showed thatPpbbx24-delpromoted anthocyanin accumulation. Cyanidin and peonidin were major differentially expressed anthocyanins, and transcript levels of some structural genes in the anthocyanin biosynthesis pathway were significantly increased. Protein interaction assays showed that PpBBX24 was located in the nucleus and interacted with PpHY5, whereas Ppbbx24-del was colocalized in the nucleoplasm and did not interact with PpHY5. PpHY5 and Ppbbx24-del had positive regulatory effects on the expression ofPpCHS,PpCHI, andPpMYB10when acting alone, but had cumulative effects on gene activation when acting simultaneously. Alone, PpBBX24 had no significant effect on the expression ofPpCHS,PpCHI, orPpMYB10, whereas it inhibited the activation effects of PpHY5 on downstream genes when it existed with PpHY5. Our study demonstrated that mutant Ppbbx24-del positively regulates the anthocyanin accumulation in pear. The results of this study clarify the mechanism and enrich the regulatory network of anthocyanin biosynthesis, which lays a theoretical foundation forPpbbx24-deluse to create red pear cultivars.
Collapse
|
15
|
Saura-Sánchez M, Chiriotto TS, Cascales J, Gómez-Ocampo G, Hernández-García J, Li Z, Pruneda-Paz JL, Blázquez MA, Botto JF. BBX24 Interacts with JAZ3 to Promote Growth by Reducing DELLA Activity in Shade Avoidance. PLANT & CELL PHYSIOLOGY 2023; 64:474-485. [PMID: 36715091 DOI: 10.1093/pcp/pcad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 05/17/2023]
Abstract
Shade avoidance syndrome (SAS) is a strategy of major adaptive significance and typically includes elongation of the stem and petiole, leaf hyponasty, reduced branching and phototropic orientation of the plant shoot toward canopy gaps. Both cryptochrome 1 and phytochrome B (phyB) are the major photoreceptors that sense the reduction in the blue light fluence rate and the low red:far-red ratio, respectively, and both light signals are associated with plant density and the resource reallocation when SAS responses are triggered. The B-box (BBX)-containing zinc finger transcription factor BBX24 has been implicated in the SAS as a regulator of DELLA activity, but this interaction does not explain all the observed BBX24-dependent regulation in shade light. Here, through a combination of transcriptional meta-analysis and large-scale identification of BBX24-interacting transcription factors, we found that JAZ3, a jasmonic acid signaling component, is a direct target of BBX24. Furthermore, we demonstrated that joint loss of BBX24 and JAZ3 function causes insensitivity to DELLA accumulation, and the defective shade-induced elongation in this mutant is rescued by loss of DELLA or phyB function. Therefore, we propose that JAZ3 is part of the regulatory network that controls the plant growth in response to shade, through a mechanism in which BBX24 and JAZ3 jointly regulate DELLA activity. Our results provide new insights into the participation of BBX24 and JA signaling in the hypocotyl shade avoidance response in Arabidopsis.
Collapse
Affiliation(s)
- Maite Saura-Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Tai Sabrina Chiriotto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jimena Cascales
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Gabriel Gómez-Ocampo
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Zheng Li
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0348, USA
| | - José Luis Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0348, USA
| | - Miguel Angel Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Javier Francisco Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| |
Collapse
|
16
|
Song L, Jiao Y, Song H, Shao Y, Zhang D, Ding C, An D, Ge M, Li Y, Shen L, Wang F, Yang J. NbMLP43 Ubiquitination and Proteasomal Degradation via the Light Responsive Factor NbBBX24 to Promote Viral Infection. Cells 2023; 12:cells12040590. [PMID: 36831257 PMCID: PMC9954743 DOI: 10.3390/cells12040590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in virus-host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana benthamiana against potato virus Y (PVY) infection. PVY infection strongly induced NbMLP43 transcription but decreased NbMLP43 at the protein level. We verified that B-box zinc finger protein 24 (NbBBX24) interacted directly with NbMLP43 and that NbBBX24, a light responsive factor, acted as an essential intermediate component targeting NbMLP43 for its ubiquitination and degradation via the UPS. PVY, tobacco mosaic virus, (TMV) and cucumber mosaic virus (CMV) infections could promote NbMLP43 ubiquitination and proteasomal degradation to enhance viral infection. Ubiquitination occurred at lysine 38 (K38) within NbMLP43, and non-ubiquitinated NbMLP43(K38R) conferred stronger resistance to RNA viruses. Overall, our results indicate that the novel NbMLP43 protein is a target of the UPS in the competition between defense and viral anti-defense and enriches existing theoretical studies on the use of UPS by viruses to promote infection.
Collapse
Affiliation(s)
- Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yubing Jiao
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongping Song
- Hubei Engineering Research Center for Pest Forewarning and Management, Agricultural College, Yangtze University, Jingzhou 434025, China
| | - Yuzun Shao
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Daoshun Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Agricultural College, Yangtze University, Jingzhou 434025, China
| | - Chengying Ding
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Dong An
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ming Ge
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (F.W.); (J.Y.)
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (F.W.); (J.Y.)
| |
Collapse
|
17
|
Chen Z, Dong Y, Huang X. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. STRESS BIOLOGY 2022; 2:51. [PMID: 37676395 PMCID: PMC10441900 DOI: 10.1007/s44154-022-00076-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/22/2022] [Indexed: 09/08/2023]
Abstract
Ultraviolet-B (UV-B) light is an intrinsic part of sunlight that reaches the earth's surface, and affects plant survival and adaptation. How plants respond to UV-B light is regulated by the wavelength, intensity and duration of UV-B radiation, and is also regulated by photosynthetically active radiation perceived by phytochrome and cryptochrome photoreceptors. Non-damaging UV-B light promotes plant photomorphogenesis and UV-B acclimation which enhances plant tolerance against UV-B stress. However, high-level UV-B radiation induces DNA damage, generates reactive oxygen species (ROS) and impairs photosynthesis. Plants have evolved efficient mechanisms to utilize informational UV-B signal, and protect themselves from UV-B stress. UV RESISTANCE LOCUS8 (UVR8) is a conserved plant-specific UV-B photoreceptor. It interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate UV-B-specific light signaling and regulate UV-B responsive gene expression. A set of transcription factors such as ELONGATED HYPOCOTYL5 (HY5) function downstream of the UVR8-COP1 module to promote seedling de-etiolation for photomorphogenic development and biosynthesis of sunscreen flavonoids for UV-B stress tolerance. In addition to UVR8 signaling pathways, plants subjected to damaging UV-B radiation initiate stress protection and repair mechanisms through UVR8-independent pathways. In this review, we summarize the emerging mechanisms underlying UV-B stress acclimation and protection in plants, primarily revealed in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhiren Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
18
|
Xuefen D, Wei X, Wang B, Xiaolin Z, Xian W, Jincheng L. Genome-wide identification and expression pattern analysis of quinoa BBX family. PeerJ 2022; 10:e14463. [PMID: 36523472 PMCID: PMC9745916 DOI: 10.7717/peerj.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/03/2022] [Indexed: 12/11/2022] Open
Abstract
BBX is a transcription factor encoding zinc finger protein that plays a key role in plant growth and development as well as in responding to abiotic stresses. However, in quinoa, which is known as a "super grain" and has extremely high nutritional value, this gene family has not yet been thoroughly studied. In this study, in order to fully understand the family function of the BBX in quinoa, a total of 31 BBX members were identified by bioinformatics methods. These BBX members were mainly acidic proteins, and most of their secondary structures were random coil s, 31 CqBBX members were unevenly distributed on 17 chromosomes, and the analysis of replication events found that quinoa BBX genes produced a total of 14 pairs of gene replication. The BBX genes were divided into five subfamilies according to phylogenetics, and its gene structure and conserved motif were basically consistent with the classification of its phylogenetic tree. In addition, a total of 43 light response elements, hormone response elements, tissue-specific expression response elements, and abiotic stress response elements were found in the promoter region, involving stress elements such as drought and low temperature. Finally, the expression patterns of CqBBX genes in different tissues and abiotic stresses were studied by combining transcriptome data and qRT-PCR , and all 13 genes responded to drought, salt, and low-temperature stress to varying degrees. This study is the first comprehensive study of the BBX family of quinoa, and its results provide important clues for further analysis of the function of the abiotic stress response.
Collapse
Affiliation(s)
- Du Xuefen
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China
| | - Xiaohong Wei
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China,Gansu Agricultural University, College of Agronomy, Gansu, Lanzhou, China
| | - Baoqiang Wang
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China
| | - Zhu Xiaolin
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China,Gansu Agricultural University, College of Agronomy, Gansu, Lanzhou, China
| | - Wang Xian
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China
| | - Luo Jincheng
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu, Lanzhou, China,Gansu Agricultural University, College of Life Science and Technology, Gansu, Lanzhou, China
| |
Collapse
|
19
|
Li XY, Wang Y, Hou XY, Chen Y, Li CX, Ma XR. Flexible response and rapid recovery strategies of the plateau forage Poa crymophila to cold and drought. FRONTIERS IN PLANT SCIENCE 2022; 13:970496. [PMID: 36426156 PMCID: PMC9681527 DOI: 10.3389/fpls.2022.970496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Cold and drought stress are the two most severe abiotic stresses in alpine regions. Poa crymophila is widely grown in the Qinghai-Tibet Plateau with strong tolerance. Here, by profiling gene expression patterns and metabolomics-associated transcriptomics co-expression network, the acclimation of Poa crymophila to the two stresses was characterized. (1) The genes and metabolites with stress tolerance were induced by cold and drought, while those related with growth were inhibited, and most of them were restored faster after stresses disappeared. In particular, the genes for the photosynthesis system had strong resilience. (2) Additionally, cold and drought activated hypoxia and UV-B adaptation genes, indicating long-term life on the plateau could produce special adaptations. (3) Phenolamines, polyamines, and amino acids, especially N',N″,N'″-p-coumaroyl-cinnamoyl-caffeoyl spermidine, putrescine, and arginine, play key roles in harsh environments. Flexible response and quick recovery are strategies for adaptation to drought and cold in P. crymophila, accounting for its robust tolerance and resilience. In this study, we presented a comprehensive stress response profile of P. crymophila and provided many candidate genes or metabolites for future forage improvement.
Collapse
Affiliation(s)
- Xin-Yu Li
- Chinese Academy of Sciences, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Chinese Academy of Sciences, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chengdu, Sichuan, China
| | - Xin-Yi Hou
- Chinese Academy of Sciences, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- Chinese Academy of Sciences, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Xia Li
- Chinese Academy of Sciences, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chengdu, Sichuan, China
| | - Xin-Rong Ma
- Chinese Academy of Sciences, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Sipari N, Lihavainen J, Keinänen M. Metabolite Profiling of Paraquat Tolerant Arabidopsis thaliana Radical-induced Cell Death1 ( rcd1)-A Mediator of Antioxidant Defence Mechanisms. Antioxidants (Basel) 2022; 11:antiox11102034. [PMID: 36290757 PMCID: PMC9598866 DOI: 10.3390/antiox11102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
RADICAL-INDUCED CELL DEATH1 (RCD1) is an Arabidopsis thaliana nuclear protein that is disrupted during oxidative stress. RCD1 is considered an important integrative node in development and stress responses, and the rcd1 plants have several phenotypes and altered resistance to a variety of abiotic and biotic stresses. One of the phenotypes of rcd1 is resistance to the herbicide paraquat, but the mechanisms behind it are unknown. Paraquat causes a rapid burst of reactive oxygen species (ROS) initially in the chloroplast. We performed multi-platform metabolomic analyses in wild type Col-0 and paraquat resistant rcd1 plants to identify pathways conveying resistance and the function of RCD1 in this respect. Wild type and rcd1 plants were clearly distinguished by their abundance of antioxidants and specialized metabolites and their responses to paraquat. The lack of response in rcd1 suggested constitutively active defense against ROS via elevated flavonoid, glutathione, β-carotene, and tocopherol levels, whereas its ascorbic acid levels were compromised under non-stressed control conditions when compared to Col-0. We propose that RCD1 acts as a hub that maintains basal antioxidant system, and its inactivation induces defense responses by enhancing the biosynthesis and redox cycling of low molecular weight antioxidants and specialized metabolites with profound antioxidant activities alleviating oxidative stress.
Collapse
Affiliation(s)
- Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- Correspondence: (N.S.); (M.K.)
| | - Jenna Lihavainen
- Umeå Plant Science Center, Department of Plant Physiology, Umeå Universitet, 90 187 Umeå, Sweden
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- Institute of Photonics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- Correspondence: (N.S.); (M.K.)
| |
Collapse
|
21
|
Job N, Lingwan M, Masakapalli SK, Datta S. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. PLANT PHYSIOLOGY 2022; 189:2467-2480. [PMID: 35511140 PMCID: PMC9342961 DOI: 10.1093/plphys/kiac195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
UV-B radiation acts as a developmental cue and a stress factor for plants, depending on dose. Activation of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) in a UV RESISTANCE LOCUS 8 (UVR8)-dependent manner leads to the induction of a broad set of genes under UV-B. However, the underlying molecular mechanisms regulating this process are less understood. Here, we use molecular, biochemical, genetic, and metabolomic tools to identify the B-BOX transcription factor B-BOX PROTEIN 11 (BBX11) as a component of the molecular response to UV-B in Arabidopsis (Arabidopsis thaliana). BBX11 expression is induced by UV-B in a dose-dependent manner. Under low UV-B, BBX11 regulates hypocotyl growth suppression, whereas it protects plants exposed to high UV-B radiation by promoting the accumulation of photo-protective phenolics and antioxidants, and inducing DNA repair genes. Our genetic studies indicate that BBX11 regulates hypocotyl elongation under UV-B partially dependent on HY5. Overexpression of BBX11 can partially rescue the high UV-B sensitivity of hy5, suggesting that HY5-mediated UV-B stress tolerance is partially dependent on BBX11. HY5 regulates the UV-B-mediated induction of BBX11 by directly binding to its promoter. BBX11 reciprocally regulates the mRNA and protein levels of HY5. We report here the role of a BBX11-HY5 feedback loop in regulating photomorphogenesis and stress tolerance under UV-B.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Maneesh Lingwan
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
22
|
Bandara WW, Wijesundera WSS, Hettiarachchi C. Rice and Arabidopsis BBX proteins: toward genetic engineering of abiotic stress resistant crops. 3 Biotech 2022; 12:164. [PMID: 36092969 PMCID: PMC9452616 DOI: 10.1007/s13205-022-03228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/17/2022] [Indexed: 11/01/2022] Open
Abstract
Productivity of crop plants are enormously affected by biotic and abiotic stresses. The co-occurrence of several abiotic stresses may lead to death of crop plants. Hence, it is the responsibility of plant scientists to develop crop plants equipped with multistress tolerance pathways. A subgroup of zinc finger transcription factor family, known as B-box (BBX) proteins, play a key role in light and hormonal regulation pathways. In addition, BBX proteins act as key regulatory proteins in many abiotic stress regulatory pathways, including Ultraviolet-B (UV-B), salinity, drought, heat and cold, and heavy metal stresses. Most of the BBX proteins identified in Arabidopsis and rice respond to more than one abiotic stress. Considering the requirement of improving rice for multistress tolerance, this review discusses functionally characterized Arabidopsis and rice BBX proteins in the development of abiotic stress responses. Furthermore, it highlights the participation of BBX proteins in multistress regulation and crop improvement through genetic engineering.
Collapse
|
23
|
BBX24 Interacts with DELLA to Regulate UV-B-Induced Photomorphogenesis in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23137386. [PMID: 35806395 PMCID: PMC9266986 DOI: 10.3390/ijms23137386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
UV-B radiation, sensed by the photoreceptor UVR8, induces signal transduction for plant photomorphogenesis. UV-B radiation affects the concentration of the endogenous plant hormone gibberellin (GA), which in turn triggers DELLA protein degradation through the 26S proteasome pathway. DELLA is a negative regulator in GA signaling, partially relieving the inhibition of hypocotyl growth induced by UV-B in Arabidopsis thaliana. However, GAs do usually not work independently but integrate in complex networks linking to other plant hormones and responses to external environmental signals. Until now, our understanding of the regulatory network underlying GA-involved UV-B photomorphogenesis had remained elusive. In the present research, we investigate the crosstalk between the GA and UV-B signaling pathways in UV-B-induced photomorphogenesis of Arabidopsis thaliana. Compared with wild type Landsberg erecta (Ler), the abundance of HY5, CHS, FLS, and UF3GT were found to be down-regulated in rga-24 and gai-t6 mutants under UV-B radiation, indicating that DELLA is a positive regulator in UV-B-induced photomorphogenesis. Our results indicate that BBX24 interacts with RGA (one of the functional DELLA family members). Furthermore, we also found that RGA interacts with HY5 (the master regulator in plant photomorphogenesis). Collectively, our findings suggest that the HY5−BBX24−DELLA module serves as an important signal regulating network, in which GA is involved in UV-B signaling to regulate hypocotyl inhibition.
Collapse
|
24
|
Liu B, Zhao F, Zhou H, Xia Y, Wang X. Photoprotection conferring plant tolerance to freezing stress through rescuing photosystem in evergreen Rhododendron. PLANT, CELL & ENVIRONMENT 2022; 45:2093-2108. [PMID: 35357711 DOI: 10.1111/pce.14322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Light stress is one of the important stresses for winter survival in evergreens, especially for plants with broad leaves, like evergreen rhododendrons. Photoprotection has been shown to upregulate dramatically in rhododendrons during winter, but whether it directly contributes to enhancing the freezing tolerance is still unknown. In this study, we found that the expression and circadian rhythm of an early light-induced protein (ELIP)-RhELIP3-which exerts photoprotection in Rhododendron 'Elsie Lee', could be impacted by both photoperiod and low temperature, with low temperature being the predominant inducer. Arabidopsis overexpressing RhELIP3 displayed significantly stronger freezing tolerance and better photosystem II function after a 3-day recovery from freezing treatment. Moreover, RhHY5 binds with the RhELIP3 promoter to activate its expression. Arabidopsis overexpressing RhHY5 exhibited stronger freezing tolerance and better photosystem II function. AtELIP1 and AtELIP2 were significantly induced in RhHY5-overexpressed Arabidopsis at low temperatures. We also discovered that RhBBX24 binds directly to RhELIP3 promoter and suppresses its expression. RhBBX24 can also interact with RhHY5 and inhibit the interaction of RhHY5-RhELIP3. RhELIP3, RhHY5, and RhBBX24 exhibited similar circadian rhythms under low temperature with short period. Overall, our investigation highlights that photoprotection is involved in improving the freezing tolerance of evergreen rhododendrons.
Collapse
Affiliation(s)
- Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Fangmeng Zhao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
25
|
Podolec R, Wagnon TB, Leonardelli M, Johansson H, Ulm R. Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:422-439. [PMID: 35555928 PMCID: PMC9541035 DOI: 10.1111/tpj.15806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 06/01/2023]
Abstract
Plants undergo photomorphogenic development in the presence of light. Photomorphogenesis is repressed by the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), which binds to substrates through their valine-proline (VP) motifs. The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor senses UV-B and inhibits COP1 through the cooperative binding of its own VP motif and photosensing core to COP1, thereby preventing COP1 binding to substrates, including the basic leucine zipper (bZIP) transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5). As a key promoter of visible light and UV-B photomorphogenesis, HY5 requires coregulators for its function. The B-box family transcription factors BBX20-BBX22 were recently described as HY5 rate-limiting coactivators under red light, but their role in UVR8 signaling was unknown. Here we describe a hypermorphic bbx21-3D mutant with enhanced photomorphogenesis, carrying a proline-to-leucine mutation at position 314 in the VP motif that impairs the interaction with and regulation by COP1. We show that BBX21 and BBX22 are UVR8-dependently stabilized after UV-B exposure, which is counteracted by a repressor induced by HY5/BBX activity. bbx20 bbx21 bbx22 mutants under UV-B are impaired in hypocotyl growth inhibition, photoprotective pigment accumulation and the expression of several HY5-dependent genes under continuous UV-B, but the immediate induction of marker genes after exposure to UV-B remains surprisingly rather unaffected. We conclude that BBX20-BBX22 contribute to HY5 activity in a subset of UV-B responses, but that additional, presently unknown, coactivators for HY5 are functional in early UVR8 signaling.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaGenevaSwitzerland
| | - Timothée B. Wagnon
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Manuela Leonardelli
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Henrik Johansson
- Institute of Biology/Applied GeneticsDahlem Centre of Plant Sciences (DCPS), Freie Universität BerlinBerlinGermany
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
26
|
UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings. PLANTS 2022; 11:plants11121618. [PMID: 35736769 PMCID: PMC9229965 DOI: 10.3390/plants11121618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022]
Abstract
Global warming accelerates the destruction of the ozone layer, increasing the amount of UVB reaching the Earth’s surface, which in turn alters plant growth and development. The effects of UVB-induced alterations of plant secondary and cell wall metabolism were previously documented; however, there is little knowledge of its effects on rice seedlings during the developmental phase of leaves. In this study, we examined secondary metabolic responses to UVB stress using a transcriptomic approach, focusing on the biosynthetic pathways for lignin, flavonoid, and indole/tryptophan-auxin responses. As new leaves emerged, they were irradiated with UVB for 5 days (for 3 h/day−1). The genes encoding the enzymes related to lignin (4CL, CAD, and POD) and flavonoid biosynthesis (CHS, CHI, and FLS) were highly expressed on day 1 (younger leaves) and day 5 (older leaves) after UVB irradiation. The expression of the genes encoding the enzymes related to tryptophan biosynthesis (AS, PRT, PRAI, IGPS, and TS) increased on day 3 of UVB irradiation, and the level of tryptophan increased and showed the same temporal pattern of occurrence as the expression of the cognate gene. Interestingly, the genes encoding BBX4 and BBX11, negative regulators of UVB signaling, and SAUR27 and SAUR55, auxin response enzymes, were downregulated on day 3 of UVB irradiation. When these results are taken together, they suggest that secondary metabolic pathways in rice seedlings are influenced by the interaction between UVB irradiation and the leaf developmental stage. Thus, the strategies of protection against, adaptation to, and mitigation of UVB might be delicately regulated, and, in this context, our data provide valuable information to understand UVB-induced secondary metabolism in rice seedlings.
Collapse
|
27
|
Lucas JA, García-Villaraco A, Ramos-Solano B, Akdi K, Gutierrez-Mañero FJ. Lipo-Chitooligosaccharides (LCOs) as Elicitors of the Enzymatic Activities Related to ROS Scavenging to Alleviate Oxidative Stress Generated in Tomato Plants under Stress by UV-B Radiation. PLANTS 2022; 11:plants11091246. [PMID: 35567247 PMCID: PMC9101198 DOI: 10.3390/plants11091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022]
Abstract
Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants, increasing reactive oxygen species (ROS) production. To overcome ROS burst, plants have antioxidant mechanisms related to ROS scavenging which can be improved by elicitation with biological agents or derived molecules (elicitors), as they can trigger a physiological alert state called “priming”. This work describes the effects of lipo-chitooligosaccharides (LCOs) treatment applied to tomato plants under UV-B stress. The LCOs used in the study are produced by three species of the genus Ensifer (formerly Sinorhizobium) (SinCEU-1, SinCEU-2, and SinCEU-3) were assayed on tomato plants under UV-B stress. LCOs were able to significantly increase most of the enzymatic activities related to ROS scavenging while non-enzymatic antioxidants were not modified. This response was associated with a lower oxidative stress, according to malondialdehyde (MDA) levels and the higher antioxidant capacity of the plants. Furthermore, the photosynthetic efficiency of LCOs-treated plants indicated a better physiological state than the control plants. Therefore, although more studies and deepening of certain aspects are necessary, LCOs have shown great potential to protect plants from high UV-B radiation conditions.
Collapse
Affiliation(s)
- José A. Lucas
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
- Correspondence:
| | - Ana García-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Beatriz Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Khalid Akdi
- Trichodex S.A., Polígono Industrial La Isla, Rio Viejo 57-59, 41703 Sevilla, Spain;
| | - Francisco Javier Gutierrez-Mañero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| |
Collapse
|
28
|
Ma Z, Wei C, Cheng Y, Shang Z, Guo X, Guan J. RNA-Seq Analysis Identifies Transcription Factors Involved in Anthocyanin Biosynthesis of 'Red Zaosu' Pear Peel and Functional Study of PpPIF8. Int J Mol Sci 2022; 23:4798. [PMID: 35563188 PMCID: PMC9099880 DOI: 10.3390/ijms23094798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Red-skinned pears are favored by people for their attractive appearance and abundance of anthocyanins. However, the molecular basis of anthocyanin biosynthesis in red pears remains elusive. Here, a comprehensive transcriptome analysis was conducted to explore the potential regulatory mechanism of anthocyanin biosynthesis in 'Red Zaosu' pear (Pyrus pyrifolia × Pyrus communis). Gene co-expression analysis and transcription factor mining identified 263 transcription factors, which accounted for 6.59% of the total number of transcription factors in the pear genome in two gene modules that are highly correlated with anthocyanin biosynthesis. Clustering, gene network modeling with STRING-DB, and local motif enrichment analysis (CentriMo) analysis suggested that PpPIF8 may play a role in anthocyanin biosynthesis. Furthermore, eight PIFs were identified in the pear genome, of which only PpPIF8 was rapidly induced by light. Functional studies showed that PpPIF8 localizes in the nucleus and is preferentially expressed in the tissue of higher levels of anthocyanin. The overexpression of PpPIF8 in pear peel and pear calli promotes anthocyanin biosynthesis and upregulates the expression of anthocyanin biosynthesis genes. Yeast-one hybrid and transgenic analyses indicated that PpPIF8 binds to the PpCHS promoter to induce PpCHS expression. The positive effect of PpPIF8 on anthocyanin biosynthesis is different from previously identified negative regulators of PyPIF5 and MdPIF7 in pear and apple. Taken together, our data not only provide a comprehensive view of transcription events during the coloration of pear peel, but also resolved the regulatory role of PpPIF8 in the anthocyanin biosynthesis pathway.
Collapse
Affiliation(s)
- Zhenyu Ma
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (Z.M.); (Z.S.)
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Chuangqi Wei
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Zhonglin Shang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (Z.M.); (Z.S.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
29
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
30
|
Xin J, Zhao C, Li Y, Ma S, Tian R. Transcriptional, secondary metabolic, and antioxidative investigations elucidate the rapid response mechanism of Pontederia cordata to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113236. [PMID: 35093809 DOI: 10.1016/j.ecoenv.2022.113236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Pontederia cordata is previously demonstrated a cadmium (Cd) tolerant plant, and also a candidate for the phytoremediation of heavy-metal-contaminated wetlands. A hydroponic experiment was used to investigate variations in photosynthetic gas exchange parameters, antioxidative activities, chlorophyll and secondary metabolite contents, and transcriptome in leaves of the plant exposed to 0.44 mM Cd2+ for 0 h, 24 h, and 48 h. Under Cd2+ exposure for 24 h, the plant presented a favorable photosynthesis by maintaining relatively higher antioxidant activity. Cd2+ exposure for 48 h accelerated membrane peroxidation, declined photosynthetic pigment content, and increased polyphenol oxidase activity, thus interfering with photosynthesis. The phenylpropane pathway served as a chemical rather than physical defense against Cd2+ in the plant leaves. A total of 20,998, 4743, and 4413 differentially expressed genes (DEGs) were identified in the groups of 0 h vs 24 h, 0 h vs 48 h, and 24 h vs 48 h, respectively. The primary metabolic pathways of the DEGs were mainly enriched in nitrogen metabolism, starch and sucrose metabolism, fructose and mannose metabolism, as well as pentose-phosphate pathway, contributing to a stable cell structure and function. Flavonoid biosynthesis directly or indirectly played an antioxidative role against Cd2+ in the leaves. Forty-nine transcription factor (TF) families were identified, and 8 TF families were shared among the three groups. The present study provides a theoretical foundation for investigating tolerance mechanisms of wetland plants to Cd stress in terms of secondary metabolism and transcriptional regulation.
Collapse
Affiliation(s)
- Jianpan Xin
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chu Zhao
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yan Li
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Sisi Ma
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Runan Tian
- Colledge of Architecture Landscape, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
31
|
Spies FP, Raineri J, Miguel VN, Cho Y, Hong JC, Chan RL. The Arabidopsis transcription factors AtPHL1 and AtHB23 act together promoting carbohydrate transport from pedicel-silique nodes to seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111133. [PMID: 35067303 DOI: 10.1016/j.plantsci.2021.111133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Carbohydrates are produced in green tissues through photosynthesis and then transported to sink tissues. Carbon partitioning is a strategic process, fine regulated, involving specific sucrose transporters in each connecting tissue. Here we report that a screening of an Arabidopsis transcription factor (TF) library using the homeodomain-leucine zipper I member AtHB23 as bait, allowed identifying the TF AtPHL1 interacting with the former. An independent Y2H assay, and in planta by BiFC, confirmed such interaction. AtHB23 and AtPHL1 coexpressed in the pedicel-silique nodes and the funiculus. Mutant plants (phl1, and amiR23) showed a marked reduction of lipid content in seeds, although lipid composition did not change compared to the wild type. While protein and carbohydrate contents were not significantly different between mutants and control mature seeds, we observed a reduced carbohydrate content in mutant plants young siliques (7 days after pollination). Moreover, using a CFDA probe, we revealed an impaired transport to the seeds, and the gene encoding the carbohydrate transporters SWEET10 and SWEET11, usually expressed in connecting tissues, was repressed in the amiR23 and phl1 mutant plants. Altogether, the results indicated that AtHB23 and AtPHL1 act together, promoting sucrose transport, and the lack of any of them provoked a reduction in seeds lipid content.
Collapse
Affiliation(s)
- Fiorella Paola Spies
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Virginia Natalí Miguel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Yuhan Cho
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, 65211-7310, USA.
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| |
Collapse
|
32
|
Zhang H, Wang Z, Li X, Gao X, Dai Z, Cui Y, Zhi Y, Liu Q, Zhai H, Gao S, Zhao N, He S. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. THE NEW PHYTOLOGIST 2022; 233:1133-1152. [PMID: 34773641 DOI: 10.1111/nph.17860] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 05/15/2023]
Abstract
Soil salinity and drought limit sweet potato yield. Scavenging of reactive oxygen species (ROS) by peroxidases (PRXs) is essential during plant stress responses, but how PRX expression is regulated under abiotic stress is not well understood. Here, we report that the B-box (BBX) family transcription factor IbBBX24 activates the expression of the class III peroxidase gene IbPRX17 by binding to its promoter. Overexpression of IbBBX24 and IbPRX17 significantly improved the tolerance of sweet potato to salt and drought stresses, whereas reducing IbBBX24 expression increased their susceptibility. Under abiotic stress, IbBBX24- and IbPRX17-overexpression lines showed higher peroxidase activity and lower H2 O2 accumulation compared with the wild-type. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes encoding ROS scavenging enzymes, including PRXs. Moreover, interaction between IbBBX24 and the APETALA2 (AP2) protein IbTOE3 enhances the ability of IbBBX24 to activate IbPRX17 transcription. Overexpression of IbTOE3 improved the tolerance of tobacco plants to salt and drought stresses by scavenging ROS. Together, our findings elucidate the mechanism underlying the IbBBX24-IbTOE3-IbPRX17 module in response to abiotic stress in sweet potato and identify candidate genes for developing elite crop varieties with enhanced abiotic stress tolerance.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xiaoru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yufei Cui
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yuhai Zhi
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
33
|
Shan B, Wang W, Cao J, Xia S, Li R, Bian S, Li X. Soybean GmMYB133 Inhibits Hypocotyl Elongation and Confers Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:764074. [PMID: 35003158 PMCID: PMC8732865 DOI: 10.3389/fpls.2021.764074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
REVEILLE (RVE) genes generally act as core circadian oscillators to regulate multiple developmental events and stress responses in plants. It is of importance to document their roles in crops for utilizing them to improve agronomic traits. Soybean is one of the most important crops worldwide. However, the knowledge regarding the functional roles of RVEs is extremely limited in soybean. In this study, the soybean gene GmMYB133 was shown to be homologous to the RVE8 clade genes of Arabidopsis. GmMYB133 displayed a non-rhythmical but salt-inducible expression pattern. Like AtRVE8, overexpression of GmMYB133 in Arabidopsis led to developmental defects such as short hypocotyl and late flowering. Seven light-responsive or auxin-associated genes including AtPIF4 were transcriptionally depressed by GmMYB133, suggesting that GmMYB133 might negatively regulate plant growth. Noticeably, the overexpression of GmMYB133 in Arabidopsis promoted seed germination and plant growth under salt stress, and the contents of chlorophylls and malondialdehyde (MDA) were also enhanced and decreased, respectively. Consistently, the expressions of four positive regulators responsive to salt tolerance were remarkably elevated by GmMYB133 overexpression, indicating that GmMYB133 might confer salt stress tolerance. Further observation showed that GmMYB133 overexpression perturbed the clock rhythm of AtPRR5, and yeast one-hybrid assay indicated that GmMYB133 could bind to the AtPRR5 promoter. Moreover, the retrieved ChIP-Seq data showed that AtPRR5 could directly target five clients including AtPIF4. Thus, a regulatory module GmMYB133-PRR5-PIF4 was proposed to regulate plant growth and salt stress tolerance. These findings laid a foundation to further address the functional roles of GmMYB133 and its regulatory mechanisms in soybean.
Collapse
Affiliation(s)
- Binghui Shan
- College of Plant Science, Jilin University, Changchun, China
| | - Wei Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
- Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Jinfeng Cao
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
- Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Siqi Xia
- College of Plant Science, Jilin University, Changchun, China
| | - Ruihua Li
- College of Plant Science, Jilin University, Changchun, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
34
|
Shi C, Liu H. How plants protect themselves from ultraviolet-B radiation stress. PLANT PHYSIOLOGY 2021; 187:1096-1103. [PMID: 34734275 PMCID: PMC8566272 DOI: 10.1093/plphys/kiab245] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B) radiation has a wavelength range of 280-315 nm. Plants perceive UV-B as an environmental signal and a potential abiotic stress factor that affects development and acclimation. UV-B regulates photomorphogenesis including hypocotyl elongation inhibition, cotyledon expansion, and flavonoid accumulation, but high intensity UV-B can also harm plants by damaging DNA, triggering accumulation of reactive oxygen species, and impairing photosynthesis. Plants have evolved "sunscreen" flavonoids that accumulate under UV-B stress to prevent or limit damage. The UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) plays a critical role in promoting flavonoid biosynthesis to enhance UV-B stress tolerance. Recent studies have clarified several UVR8-mediated and UVR8-independent pathways that regulate UV-B stress tolerance. Here, we review these additions to our understanding of the molecular pathways involved in UV-B stress tolerance, highlighting the important roles of ELONGATED HYPOCOTYL 5, BRI1-EMS-SUPPRESSOR1, MYB DOMAIN PROTEIN 13, MAP KINASE PHOSPHATASE 1, and ATM- and RAD3-RELATED. We also summarize the known interactions with visible light receptors and the contribution of melatonin to UV-B stress responses. Finally, we update a working model of the UV-B stress tolerance pathway.
Collapse
Affiliation(s)
- Chen Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
35
|
Miao T, Li D, Huang Z, Huang Y, Li S, Wang Y. Gibberellin regulates UV-B-induced hypocotyl growth inhibition in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1966587. [PMID: 34463604 PMCID: PMC8526026 DOI: 10.1080/15592324.2021.1966587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plant response to light is a complex and diverse phenomenon. Several studies have elucidated the mechanisms via which light and hormones regulate hypocotyl growth. However, the hormone-dependent ultraviolet-B (UV-B) response in plants remains obscure. Involvement of gibberellins (GAs) in UV-B-induced hypocotyl inhibition and its mechanisms in Arabidopsis thaliana were investigated in the present research. UV-B exposure remarkably decreased the endogenous GA3 content through the UV RESISTANCE LOCUS 8 (UVR8) receptor pathway, and exogenous GA3 partially restored the hypocotyl growth. UV-B irradiation affected the expression levels of GA metabolism-related genes (GA20ox1, GA2ox1 and GA3ox1) in the hy5-215 mutant, resulting in increased GA content.ELONGATED HYPOCOTYL 5 (HY5) promoted the accumulation of DELLA proteins under UV-B radiation; HY5 appeared to regulate the abundance of DELLAs at the transcriptional level under UV-B. As a result, the GA3 content decreased, which eventually led to the shortening of the hypocotyl. To conclude, the present study provides new insight into the regulation of plant photomorphogenesis under UV-B.
Collapse
Affiliation(s)
- Tingting Miao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Dezhi Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Ziyuan Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Yuewei Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
- CONTACT Shaoshan Li Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou510631, China
| | - Yan Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Yan Wang College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
36
|
Ravindran N, Ramachandran H, Job N, Yadav A, Vaishak K, Datta S. B-box protein BBX32 integrates light and brassinosteroid signals to inhibit cotyledon opening. PLANT PHYSIOLOGY 2021; 187:446-461. [PMID: 34618149 PMCID: PMC8418414 DOI: 10.1093/plphys/kiab304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/31/2021] [Indexed: 05/20/2023]
Abstract
Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.
Collapse
Affiliation(s)
- Nevedha Ravindran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Harshil Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - K.P. Vaishak
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
- Author for communication:
| |
Collapse
|
37
|
Li C, Pei J, Yan X, Cui X, Tsuruta M, Liu Y, Lian C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. PLANT, CELL & ENVIRONMENT 2021; 44:3015-3033. [PMID: 34114251 DOI: 10.1111/pce.14127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids, which modulate plant resistance to various stresses, can be induced by high light. B-box (BBX) transcription factors (TFs) play crucial roles in the transcriptional regulation of flavonoids biosynthesis, but limited information is available on the association of BBX proteins with high light. We present a detailed overview of 45 Populus trichocarpa BBX TFs. Phylogenetic relationships, gene structure, tissue-specific expression patterns and expression profiles were determined under 10 stress or phytohormone treatments to screen candidate BBX proteins associated with the flavonoid pathway. Sixteen candidate genes were identified, of which five were expressed predominantly in young leaves and roots, and BBX23 showed the most distinct response to high light. Overexpression of BBX23 in poplar activated expression of MYB TFs and structural genes in the flavonoid pathway, thereby promoting the accumulation of proanthocyanidins and anthocyanins. CRISPR/Cas9-generated knockout of BBX23 resulted in the opposite trend. Furthermore, the phenotype induced by BBX23 overexpression was enhanced under exposure to high light. BBX23 was capable of binding directly to the promoters of proanthocyanidin- and anthocyanin-specific genes, and its interaction with HY5 enhanced activation activity. We identified novel regulators of flavonoid biosynthesis in poplar, thereby enhancing our general understanding of the transcriptional regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Yan
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ying Liu
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Yuan L, Yu Y, Liu M, Song Y, Li H, Sun J, Wang Q, Xie Q, Wang L, Xu X. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. THE PLANT CELL 2021; 33:2602-2617. [PMID: 34164694 PMCID: PMC8408442 DOI: 10.1093/plcell/koab133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 05/19/2023]
Abstract
The core plant circadian oscillator is composed of multiple interlocked transcriptional-translational feedback loops, which synchronize endogenous diel physiological rhythms to the cyclic changes of environmental cues. PSEUDO-RESPONSE REGULATORS (PRRs) have been identified as negative components in the circadian clock, though their underlying molecular mechanisms remain largely unknown. Here, we found that a subfamily of zinc finger transcription factors, B-box (BBX)-containing proteins, have a critical role in fine-tuning circadian rhythm. We demonstrated that overexpressing Arabidopsis thaliana BBX19 and BBX18 significantly lengthened the circadian period, while the null mutation of BBX19 accelerated the circadian speed. Moreover, BBX19 and BBX18, which are expressed during the day, physically interacted with PRR9, PRR7, and PRR5 in the nucleus in precise temporal ordering from dawn to dusk, consistent with the respective protein accumulation pattern of PRRs. Our transcriptomic and genetic analysis indicated that BBX19 and PRR9, PRR7, and PRR5 cooperatively inhibited the expression of morning-phased clock genes. PRR proteins affected BBX19 recruitment to the CCA1, LHY, and RVE8 promoters. Collectively, our findings show that BBX19 interacts with PRRs to orchestrate circadian rhythms, and suggest the indispensable role of transcriptional regulators in fine-tuning the circadian clock.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hongmin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junqiu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiao Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| |
Collapse
|
39
|
Zhao J, Li H, Huang J, Shi T, Meng Z, Chen Q, Deng J. Genome-wide analysis of BBX gene family in Tartary buckwheat ( Fagopyrum tataricum). PeerJ 2021; 9:e11939. [PMID: 34447629 PMCID: PMC8364324 DOI: 10.7717/peerj.11939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
BBX (B-box), a zinc finger transcription factor with one or two B-box domains, plays an important role in plant photomorphogenesis, growth, and development as well as response to environmental changes. In this study, 28 Tartary buckwheat BBX (FtBBX) genes were identified and screened using a comparison program. Their physicochemical properties, gene structures, conserved motifs, distribution in chromosomal, and phylogeny of the coding proteins, as well as their expression patterns, were analyzed. In addition, multiple collinearity analysis in three monocots and three dicot species illustrated that the BBX proteins identified from monocots clustered separately from those of dicots. Moreover, the expression of 11 candidate BBX genes with probable involvement in the regulation of anthocyanin biosynthesis was analyzed in the sprouts of Tartary buckwheat during light treatment. The results of gene structure analysis showed that all the 28 BBX genes contained B-box domain, three genes lacked introns, and these genes were unevenly distributed on the other seven chromosomes except for chromosome 6. The 28 proteins contained 10 conserved motifs and could be divided into five subfamilies. BBX genes of Tartary buckwheat showed varying expression under different conditions demonstrating that FtBBXs might play important roles in Tartary buckwheat growth and development. This study lays a foundation for further understanding of Tartary buckwheat BBX genes and their functions in growth and development as well as regulation of pigmentation in Tartary buckwheat.
Collapse
Affiliation(s)
- Jiali Zhao
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Hongyou Li
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Juan Huang
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Ziye Meng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Qingfu Chen
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Jiao Deng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| |
Collapse
|
40
|
Podolec R, Demarsy E, Ulm R. Perception and Signaling of Ultraviolet-B Radiation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:793-822. [PMID: 33636992 DOI: 10.1146/annurev-arplant-050718-095946] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) radiation is an intrinsic fraction of sunlight that plants perceive through the UVR8 photoreceptor. UVR8 is a homodimer in its ground state that monomerizes upon UV-B photon absorption via distinct tryptophan residues. Monomeric UVR8 competitively binds to the substrate binding site of COP1, thus inhibiting its E3 ubiquitin ligase activity against target proteins, which include transcriptional regulators such as HY5. The UVR8-COP1 interaction also leads to the destabilization of PIF bHLH factor family members. Additionally, UVR8 directly interacts with and inhibits the DNA binding of a different set of transcription factors. Each of these UVR8 signaling mechanisms initiates nuclear gene expression changes leading to UV-B-induced photomorphogenesis and acclimation. The two WD40-repeat proteins RUP1 and RUP2 provide negative feedback regulation and inactivate UVR8 by facilitating redimerization. Here, we review the molecular mechanisms of the UVR8 pathway from UV-B perception and signal transduction to gene expression changes and physiological UV-B responses.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
41
|
Transcriptome Profile Analysis of Strawberry Leaves Reveals Flowering Regulation under Blue Light Treatment. Int J Genomics 2021; 2021:5572076. [PMID: 34235213 PMCID: PMC8216796 DOI: 10.1155/2021/5572076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
Blue light is an important signal that regulates the flowering of strawberry plants. To reveal the mechanism of early flowering under blue light treatment at the transcriptional regulation level, seedlings of cultivated strawberry (Fragaria × ananassa Duch.) "Benihoppe" were subjected to a white light treatment (WL) and blue light treatment (BL) until their flowering. To detect the expression patterns of genes in response to BL, a transcriptome analysis was performed based on RNA-Seq. The results identified a total of 6875 differentially expressed genes (DEGs) that responded to BL, consisting of 3138 (45.64%) downregulated ones and 3737 (54.36%) upregulated ones. These DEGs were significantly enriched into 98 GO terms and 71 KEGG pathways based on gene function annotation. Among the DEGs, the expression levels of genes that might participate in light signaling (PhyB, PIFs, and HY5) and circadian rhythm (FKF1, CCA1, LHY, and CO) in plants were altered under BL. The BBX transcription factors which responded to BL were also identified. The result showed that the FaBBX29, one of strawberry's BBX family genes, may play an important role in flowering regulation. Our results provide a timely, comprehensive view and a reliable reference data resource for further study of flowering regulation under different light qualities.
Collapse
|
42
|
Idris M, Seo N, Jiang L, Kiyota S, Hidema J, Iino M. UV-B signalling in rice: Response identification, gene expression profiling and mutant isolation. PLANT, CELL & ENVIRONMENT 2021; 44:1468-1485. [PMID: 33377203 DOI: 10.1111/pce.13988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Responses of rice seedlings to UV-B radiation (UV-B) were investigated, aiming to establish rice as a model plant for UV-B signalling studies. The growth of japonica rice coleoptiles, grown under red light, was inhibited by brief irradiation with UV-B, but not with blue light. The effective UV-B fluences (10-1 -103 μmol m-2 ) were much lower than those reported in Arabidopsis. The response was much less in indica rice cultivars and its extent varied among Oryza species. We next identified UV-B-specific anthocyanin accumulation in the first leaf of purple rice and used this visible phenotype to isolate mutants. Some isolated mutants were further characterized, and one was found to have a defect in the growth response. Using microarrays, we identified a number of genes that are regulated by low-fluence-rate UV-B in japonica coleoptiles. Some up-regulated genes were analysed by real-time PCR for UV-B specificity and the difference between japonica and indica. More than 70% of UV-B-regulated rice genes had no homologs in UV-B-regulated Arabidopsis genes. Many UV-B-regulated rice genes are related to plant hormones and especially to jasmonate biosynthetic and responsive genes in apparent agreement with the growth response. Possible involvement of two rice homologs of UVR8, a UV-B photoreceptor, is discussed.
Collapse
Affiliation(s)
- Muhammad Idris
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Nobu Seo
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Lei Jiang
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Seiichiro Kiyota
- Office of General Administration, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Moritoshi Iino
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
43
|
Dong H, Liu X, Zhang C, Guo H, Liu Y, Chen H, Yin R, Lin L. Expression of Tomato UVR8 in Arabidopsis reveals conserved photoreceptor function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110766. [PMID: 33487351 DOI: 10.1016/j.plantsci.2020.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) is a photoreceptor that regulates UV-B photomorphogenesis in plants. UV-B photon perception promotes UVR8 homodimer dissociation into monomer, which is reverted to homodimer post UV-B, forming a complete photocycle. UVR8 monomer interacts with CONSTITUTIVELY PHOTOMORPHOGENEIC 1 (COP1) to initiate UV-B signaling. The function and mechanism of Arabidopsis UVR8 (AtUVR8) are extensively investigated, however, little is known about UVR8 and its signaling mechanisms in other plant species. Tomato is a widely used model plant for horticulture research. In this report we tested whether an ortholog of AtUVR8 in Tomato (SIUVR8) can complement Arabidopsis uvr8 mutant and whether the above-mentioned key signaling mechanisms of UVR8 are conserved. Heterologous expressed SIUVR8 in an Arabidopsis uvr8 null mutant rescued the uvr8 mutant in the tested UV-B responses including hypocotyl elongation, UV-B target gene expression and anthocyanin accumulation, demonstrating that the SIUVR8 is a putative UV-B photoreceptor. Moreover, in response to UV-B, SIUVR8 forms a protein complex with Arabidopsis COP1 in plants, suggesting conserved signaling mechanism. SIUVR8 exhibits similar photocycle as AtUVR8 in plants, which highlights conserved photoreceptor activation and inactivation mechanisms.
Collapse
Affiliation(s)
- Huaxi Dong
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Xiaorui Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Chunli Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Huicong Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Ruohe Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| | - Li Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, PR China.
| |
Collapse
|
44
|
Ponnu J, Hoecker U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:662793. [PMID: 33841486 PMCID: PMC8024647 DOI: 10.3389/fpls.2021.662793] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans.
Collapse
|
45
|
Lira BS, Oliveira MJ, Shiose L, Wu RTA, Rosado D, Lupi ACD, Freschi L, Rossi M. Light and ripening-regulated BBX protein-encoding genes in Solanum lycopersicum. Sci Rep 2020; 10:19235. [PMID: 33159121 PMCID: PMC7648751 DOI: 10.1038/s41598-020-76131-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Light controls several aspects of plant development through a complex signalling cascade. Several B-box domain containing proteins (BBX) were identified as regulators of Arabidopsis thaliana seedling photomorphogenesis. However, the knowledge about the role of this protein family in other physiological processes and species remains scarce. To fill this gap, here BBX protein encoding genes in tomato genome were characterised. The robust phylogeny obtained revealed how the domain diversity in this protein family evolved in Viridiplantae and allowed the precise identification of 31 tomato SlBBX proteins. The mRNA profiling in different organs revealed that SlBBX genes are regulated by light and their transcripts accumulation is directly affected by the chloroplast maturation status in both vegetative and fruit tissues. As tomato fruits develops, three SlBBXs were found to be upregulated in the early stages, controlled by the proper chloroplast differentiation and by the PHYTOCHROME (PHY)-dependent light perception. Upon ripening, other three SlBBXs were transcriptionally induced by RIPENING INHIBITOR master transcriptional factor, as well as by PHY-mediated signalling and proper plastid biogenesis. Altogether, the results obtained revealed a conserved role of SlBBX gene family in the light signalling cascade and identified putative members affecting tomato fruit development and ripening.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Maria José Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Lumi Shiose
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Raquel Tsu Ay Wu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brasil.
| |
Collapse
|
46
|
Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S. Light signaling and UV-B-mediated plant growth regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1270-1292. [PMID: 32237196 DOI: 10.1111/jipb.12932] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
Light plays an important role in plants' growth and development throughout their life cycle. Plants alter their morphological features in response to light cues of varying intensity and quality. Dedicated photoreceptors help plants to perceive light signals of different wavelengths. Activated photoreceptors stimulate the downstream signaling cascades that lead to extensive gene expression changes responsible for physiological and developmental responses. Proteins such as ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) act as important factors which modulate light-regulated gene expression, especially during seedling development. These factors function as central regulatory intermediates not only in red, far-red, and blue light pathways but also in the UV-B signaling pathway. UV-B radiation makes up only a minor fraction of sunlight, yet it imparts many positive and negative effects on plant growth. Studies on UV-B perception, signaling, and response in plants has considerably surged in recent times. Plants have developed different strategies to use UV-B as a developmental cue as well as to withstand high doses of UV-B radiation. Plants' responses to UV-B are an integration of its cross-talks with both environmental factors and phytohormones. This review outlines the current developments in light signaling with a major focus on UV-B-mediated plant growth regulation.
Collapse
Affiliation(s)
- Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Maneesh Lingwan
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Premachandran Yadukrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Shyam Kumar Masakapalli
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
47
|
Li J, Yang Y, Chai M, Ren M, Yuan J, Yang W, Dong Y, Liu B, Jian Q, Wang S, Peng B, Yuan H, Fan H. Gibberellins modulate local auxin biosynthesis and polar auxin transport by negatively affecting flavonoid biosynthesis in the root tips of rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110545. [PMID: 32771158 DOI: 10.1016/j.plantsci.2020.110545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 05/07/2023]
Abstract
As critical signalling molecules, both gibberellin (GA) and auxin play essential roles in regulating root elongation, and many studies have been shown that auxin influences GA biosynthesis and signalling. However, the mechanism by which GA affects auxin in root elongation is still unknown. In this study, root elongation and DR5-GUS activity were analyzed in rice seedlings. Paclobutrazol-induced short root phenotypes could be partially reversed by co-treatment with IAA, and the inhibition of root elongation caused by naphthylphthalamic acid could be partially reversed when plants were co-treated with GA. DR5-GUS activity was increased in the presence of GA and was reduced at the root tip of paclobutrazol-treated seedlings, indicating that GA could regulate local auxin biosynthesis and polar auxin transport (PAT) in rice root tips. Our RNA-seq analysis showed that GA was involved in the regulation of flavonoid biosynthesis. Flavonoid accumulation level in ks1 root tips was significantly increased and negatively correlated with GA content in GA- and PAC-treated seedlings. GA also rescued the decreased DR5-GUS activity induced by quercetin in rice root tips, confirming that flavonoids act as an intermediary in GA-mediated auxin biosynthesis and PAT. Based on RNA-seq and qPCR analyses, we determined that GA regulates local auxin biosynthesis and polar auxin transport by modulating the expression of OsYUCCA6 and PIN. Our findings provide valuable new insights into the interactions between GA and auxin in the root tips of rice.
Collapse
Affiliation(s)
- Jintao Li
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yuna Yang
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengmeng Chai
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengdi Ren
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Jingjia Yuan
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Wenqian Yang
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yu Dong
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - BinWen Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Qingmei Jian
- College of Bioengineering, Jingchu University of Technology, Jingmen, 448000, China
| | - Shouchuang Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Bo Peng
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Hongyu Yuan
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Haiyan Fan
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
48
|
Lyu G, Li D, Li S. Bioinformatics analysis of BBX family genes and its response to UV-B in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2020; 15:1782647. [PMID: 32552524 PMCID: PMC8550283 DOI: 10.1080/15592324.2020.1782647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 05/20/2023]
Abstract
The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s), which play important roles in plant growth and development. Though the Arabidopsis thaliana BBX family genes have been identified and named, no systematic study has taken on BBX family genes involved in the regulation of UV-B induced photomorphogenesis in Arabidopsis thaliana. In our previous report, BBX24/STO was demonstrated to be a negative regulator in UV-B signaling pathway in Arabidopsis. In the present study, the total 32 BBX family genes from Arabidopsis were analyzed, including their structures, conserved domains, phylogenetic relationships, promoter cis-regulatory elements, expression patterns under UV-B radiation. The expression profile of GEO Datasets (GSE117199) related to UV-B in NCBI database was analyzed. qRT-PCR was used to validate the expression profile of several BBX genes in Arabidopsis treated with UV-B. The promoters of AtBBXs contained cis-acting elements that respond to light and hormones, including ethylene, auxin (IAA), abscisic acid (ABA), gibberellin (GA) and methyl jasmonate (MeJA). BBX24 and BBX25 were collinear blocks, suggesting that BBX25 may also be involved in UV-B signal transduction. Expression profile analysis and qRT-PCR validation showed that UV-B induced up-regulation of BBX1, BBX7, BBX20, BBX25 and BBX32, suggesting that AtBBXs were mainly involved in UV-B photomorphogenesis. It is predicted that BBX1, BBX7, BBX20 and BBX25 may be new members in response to UV-B signaling.
Collapse
Affiliation(s)
- Guizhen Lyu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Dongbing Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
- CONTACT Shaoshan Li Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou510631, China
| |
Collapse
|
49
|
Quantitative Proteomic Analyses Identify STO/BBX24 -Related Proteins Induced by UV-B. Int J Mol Sci 2020; 21:ijms21072496. [PMID: 32260266 PMCID: PMC7178263 DOI: 10.3390/ijms21072496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Plants use solar radiation for photosynthesis and are inevitably exposed to UV-B. To adapt to UV-B radiation, plants have evolved a sophisticated strategy, but the mechanism is not well understood. We have previously reported that STO (salt tolerance)/BBX24 is a negative regulator of UV-B-induced photomorphogenesis. However, there is limited knowledge of the regulatory network of STO in UV-B signaling. Here, we report the identification of proteins differentially expressed in the wild type (WT) and sto mutant after UV-B radiation by iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomic analysis to explore differential proteins that depend on STO and UV-B signaling. A total of 8212 proteins were successfully identified, 221 of them were STO-dependent proteins in UV-B irradiated plants. The abundances of STO-dependent PSB and LHC (light-harvesting complex) proteins in sto mutants decreased under UV-B radiation, suggesting that STO is necessary to maintain the normal accumulation of photosynthetic system complex under UV-B radiation to facilitate photosynthesis photon capture. The abundance of phenylalanine lyase-1 (PAL1), chalcone synthetase (CHS), and flavonoid synthetase (FLS) increased significantly after UV-B irradiation, suggesting that the accumulation of flavonoids do not require STO, but UV-B is needed. Under UV-B radiation, STO stabilizes the structure of antenna protein complex by maintaining the accumulation of PSBs and LHCs, thereby enhancing the non-photochemical quenching (NPQ) ability, releasing extra energy, protecting photosynthesis, and ultimately promoting the elongation of hypocotyl. The accumulation of flavonoid synthesis key proteins is independent of STO under UV-B radiation. Overall, our results provide a comprehensive regulatory network of STO in UV-B signaling.
Collapse
|
50
|
Zhang H, Zhang Q, Zhai H, Gao S, Yang L, Wang Z, Xu Y, Huo J, Ren Z, Zhao N, Wang X, Li J, Liu Q, He S. IbBBX24 Promotes the Jasmonic Acid Pathway and Enhances Fusarium Wilt Resistance in Sweet Potato. THE PLANT CELL 2020; 32:1102-1123. [PMID: 32034034 PMCID: PMC7145486 DOI: 10.1105/tpc.19.00641] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 05/05/2023]
Abstract
Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10's repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2 The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10's repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Yang
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuetong Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinxi Huo
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhitong Ren
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|