1
|
Liu D, Wang X, Xu L, Al-Delfi ZNS, Mekonnen ZA, Gao S, Grubor-Bauk B, Zhao CX. Screening lipid nanoparticles using DNA barcoding and qPCR. Colloids Surf B Biointerfaces 2025; 251:114598. [PMID: 40023120 DOI: 10.1016/j.colsurfb.2025.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Quantifying the biodistribution of lipid nanoparticles (LNPs) is critical for optimizing mRNA delivery systems, yet current approaches have inherent limitations. This study introduces a cost-effective method utilizing double-stranded DNA (dsDNA) barcodes and quantitative polymerase chain reaction (qPCR) for rapid analysis of a small library of mRNA-LNPs biodistribution and functional delivery in vivo. Three unique 100-bp dsDNA barcodes were designed to represent for three FDA-approved LNP formulations. Concurrently, these three formulations carrying luciferase mRNA were mixed with DNA-barcoding LNPs as a pool. Following intravenous administration of the pooled LNPs in mice, qPCR analysis revealed the highest abundance of DNA barcodes and accumulation of luciferase mRNA in spleen, with positive correlation between barcodes presence and mRNA localization across organs, validating DNA barcodes as reliable indicators of mRNA-LNPs biodistribution in vivo. Bioluminescence imaging further confirmed successful delivery and protein translation of luciferase mRNA facilitated by the LNPs in vivo. Integrating DNA barcodes for biodistribution analysis and luciferase mRNA for assessing functional delivery enabled comprehensive evaluation of LNP performance. This robust methodology provides valuable insights into the localization patterns and mRNA delivery capabilities of different LNP formulations, paving the way for the development of more effective and targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Dawei Liu
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xing Wang
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Letao Xu
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zahraa Nima Saeed Al-Delfi
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Zelalem Addis Mekonnen
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Song Gao
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia.
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
3
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Masjedi M, Montahaei T, Sharafi Z, Jalali A. Pulmonary vaccine delivery: An emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Liang J, Zhao X. Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biol Med 2021; 18:j.issn.2095-3941.2021.0004. [PMID: 33979069 PMCID: PMC8185868 DOI: 10.20892/j.issn.2095-3941.2021.0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Nanomaterial-based delivery vehicles such as lipid-based, polymer-based, inorganics-based, and bio-inspired vehicles often carry distinct and attractive advantages in the development of therapeutic cancer vaccines. Based on various delivery vehicles, specifically designed nanomaterials-based vaccines are highly advantageous in boosting therapeutic and prophylactic antitumor immunities. Specifically, therapeutic vaccines featuring unique properties have made major contributions to the enhancement of antigen immunogenicity, encapsulation efficiency, biocompatibility, and stability, as well as promoting antigen cross-presentation and specific CD8+ T cell responses. However, for clinical applications, tumor-associated antigen-derived vaccines could be an obstacle, involving immune tolerance and deficiency of tumor specificities, in achieving maximum therapeutic indices. However, when using bioinformatics predictions with emerging innovations of in silico tools, neoantigen-based therapeutic vaccines might become potent personalized vaccines for tumor treatments. In this review, we summarize the development of preclinical therapeutic cancer vaccines and the advancements of nanomaterial-based delivery vehicles for cancer immunotherapies, which provide the basis for a personalized vaccine delivery platform. Moreover, we review the existing challenges and future perspectives of nanomaterial-based personalized vaccines for novel tumor immunotherapies.
Collapse
Affiliation(s)
- Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Niosomal virosome derived by vesicular stomatitis virus glycoprotein as a new gene carrier. Biochem Biophys Res Commun 2020; 534:980-987. [PMID: 33131770 DOI: 10.1016/j.bbrc.2020.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/17/2020] [Indexed: 11/23/2022]
Abstract
Virosomes as membranous vesicles with viral fusion protein in their membrane are versatile vehicles for cargo delivery. The vesicular stomatitis virus glycoprotein (VSV-G) is a common fusogenic protein used in virosome preparation. This glycoprotein has been used in liposomal systems so far, but in this study, we have tried to use the niosomal form instead of liposome for. Niosomes are vesicular systems composed of non-ionic surfactants. Niosomes were constructed by the thin-film hydration method. VSV-G gene in pMD2.G plasmid was expressed in the HEK293T cell line and then was reconstituted in the niosome bilayer. The formation of niosomal virosomes was confirmed with different methods such as SDS-PAGE gel, western blotting, and transmission electron microscopy (TEM). The efficiency of niosomal virosome was investigated with the pmCherry reporter gene. SDS-PAGE and western blotting proved the expression and successful insertion of protein into the bilayer. The TEM images showed the spike projection of VSV-G on the surface of niosomes. The transfection results showed high efficiency of niosomal virosomes as a novel carrier. This report has verified that niosome could be used as an efficient bilayer instead of liposome to construct virosomes.
Collapse
|
7
|
Aluminum Nanoparticles Acting as a Pulmonary Vaccine Adjuvant-Delivery System (VADS) Able to Safely Elicit Robust Systemic and Mucosal Immunity. J Inorg Organomet Polym Mater 2020; 30:4203-4217. [PMID: 32395098 PMCID: PMC7210793 DOI: 10.1007/s10904-020-01572-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
Abstract Vulnerability of respiratory mucosa to invasions of airborne pathogens, such as SARS-CoV, MERS-CoV and avian viruses which sometimes cause a life-threatening epidemic and even pandemic, underscores significance of developing a pulmonary vaccine adjuvant-delivery system (VADS). Herein, 30-nm aluminum nanoparticles (ANs), unlike the mostly used adjuvant alum which is unsuitable for delivering pulmonary vaccines due to side effects, proved able to act as a VADS fitting inhalation immunization to elicit wide-spread anti-antigen immunity. In vitro ANs facilitated cellular uptake of their cargos and, after pulmonary vaccination, induced mouse production of high levels of anti-antigen IgG in serum and IgA in saliva, nasal, bronchoalveolar and also vaginal fluids. Besides, IFN-γ and anti-antigen IgG2a enriched in immunized mice which meanwhile showed no obvious lung inflammation indicated balanced Th1/Th2 responses were safely induced. These outcomes suggest ANs may be an efficient pulmonary VADS for defending against pathogens, especially, the ones invading hosts via respiratory system. Graphic Abstract
Aluminum nanoparticles can safely induce humoral and cellular immunity at systemic and mucosal level through pulmonary vaccination to contrast the conventional adjuvant alum.![]()
Collapse
|
8
|
Safety Profile of a Multi-Antigenic DNA Vaccine Against Hepatitis C Virus. Vaccines (Basel) 2020; 8:vaccines8010053. [PMID: 32013228 PMCID: PMC7158683 DOI: 10.3390/vaccines8010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Despite direct acting antivirals (DAAs) curing >95% of individuals infected with hepatitis C (HCV), in order to achieve the World Health Organization HCV Global Elimination Goals by 2030 there are still major challenges that need to be overcome. DAAs alone are unlikely to eliminate HCV in the absence of a vaccine that can limit viral transmission. Consequently, a prophylactic HCV vaccine is necessary to relieve the worldwide burden of HCV disease. DNA vaccines are a promising vaccine platform due to their commercial viability and ability to elicit robust T-cell-mediated immunity (CMI). We have developed a novel cytolytic DNA vaccine that encodes non-structural HCV proteins and a truncated mouse perforin (PRF), which is more immunogenic than the respective canonical DNA vaccine lacking PRF. Initially we assessed the ability of the HCV pNS3-PRF and pNS4/5-PRF DNA vaccines to elicit robust long-term CMI without any adverse side-effects in mice. Interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay was used to evaluate CMI against NS3, NS4 and NS5B in a dose-dependent manner. This analysis showed a dose-dependent bell-curve of HCV-specific responses in vaccinated animals. We then thoroughly examined the effects associated with reactogenicity of cytolytic DNA vaccination with the multi-antigenic HCV DNA vaccine (pNS3/4/5B). Hematological, biochemical and histological studies were performed in male Sprague Dawley rats with a relative vaccine dose 10–20-fold higher than the proposed dose in Phase I clinical studies. The vaccine was well tolerated, and no toxicity was observed. Thus, the cytolytic multi-antigenic DNA vaccine is safe and elicits broad memory CMI.
Collapse
|
9
|
Abstract
Mucosal surfaces represent important routes of entry into the human body for the majority of pathogens, and they constitute unique sites for targeted vaccine delivery. Nanoparticle-based drug delivery systems are emerging technologies for delivering and improving the efficacy of mucosal vaccines. Recent studies have provided new insights into formulation and delivery aspects of importance for the design of safe and efficacious mucosal subunit vaccines based on nanoparticles. These include novel nanomaterials, their physicochemical properties and formulation approaches, nanoparticle interaction with immune cells in the mucosa, and mucosal immunization and delivery strategies. Here, we present recent progress in the application of nanoparticle-based approaches for mucosal vaccine delivery and discuss future research challenges and opportunities in the field.
Collapse
|
10
|
Mekonnen ZA, Grubor-Bauk B, English K, Leung P, Masavuli MG, Shrestha AC, Bertolino P, Bowen DG, Lloyd AR, Gowans EJ, Wijesundara DK. Single-Dose Vaccination with a Hepatotropic Adeno-associated Virus Efficiently Localizes T Cell Immunity in the Liver with the Potential To Confer Rapid Protection against Hepatitis C Virus. J Virol 2019; 93:e00202-19. [PMID: 31292249 PMCID: PMC6744243 DOI: 10.1128/jvi.00202-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) is a significant contributor to the global disease burden, and development of an effective vaccine is required to eliminate HCV infections worldwide. CD4+ and CD8+ T cell immunity correlates with viral clearance in primary HCV infection, and intrahepatic CD8+ tissue-resident memory T (TRM) cells provide lifelong and rapid protection against hepatotropic pathogens. Consequently, we aimed to develop a vaccine to elicit HCV-specific CD4+ and CD8+ T cells, including CD8+ TRM cells, in the liver, given that HCV primarily infects hepatocytes. To achieve this, we vaccinated wild-type BALB/c mice with a highly immunogenic cytolytic DNA vaccine encoding a model HCV (genotype 3a) nonstructural protein (NS5B) and a mutant perforin (pVAX-NS5B-PRF), as well as a recombinant adeno-associated virus (AAV) encoding NS5B (rAAV-NS5B). A novel fluorescent target array (FTA) was used to map immunodominant CD4+ T helper (TH) cell and cytotoxic CD8+ T cell epitopes of NS5B in vivo, which were subsequently used to design a KdNS5B451-459 tetramer and analyze NS5B-specific T cell responses in vaccinated mice in vivo The data showed that intradermal prime/boost vaccination with pVAX-NS5B-PRF was effective in eliciting TH and cytotoxic CD8+ T cell responses and intrahepatic CD8+ TRM cells, but a single intravenous dose of hepatotropic rAAV-NS5B was significantly more effective. As a T-cell-based vaccine against HCV should ideally result in localized T cell responses in the liver, this study describes primary observations in the context of HCV vaccination that can be used to achieve this goal.IMPORTANCE There are currently at least 71 million individuals with chronic HCV worldwide and almost two million new infections annually. Although the advent of direct-acting antivirals (DAAs) offers highly effective therapy, considerable remaining challenges argue against reliance on DAAs for HCV elimination, including high drug cost, poorly developed health infrastructure, low screening rates, and significant reinfection rates. Accordingly, development of an effective vaccine is crucial to HCV elimination. An HCV vaccine that elicits T cell immunity in the liver will be highly protective for the following reasons: (i) T cell responses against nonstructural proteins of the virus are associated with clearance of primary infection, and (ii) long-lived liver-resident T cells alone can protect against malaria infection of hepatocytes. Thus, in this study we exploit promising vaccination platforms to highlight strategies that can be used to evoke highly functional and long-lived T cell responses in the liver for protection against HCV.
Collapse
Affiliation(s)
- Zelalem A Mekonnen
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Kieran English
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - Preston Leung
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Makutiro G Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Ashish C Shrestha
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Patrick Bertolino
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - David G Bowen
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
- Collaborative Transplantation Research Group, Bosch Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019; 10:751. [PMID: 31333467 PMCID: PMC6624236 DOI: 10.3389/fphar.2019.00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
There are still great challenges for the effective treatment of infectious diseases, although considerable achievement has been made by using antiviral and antimicrobial agents varying from small-molecule drugs, peptides/proteins, to nucleic acids. The nanomedicine approach is emerging as a new strategy capable of overcoming disadvantages of molecular therapeutics and amplifying their anti-infective activities, by localized delivery to infection sites, reducing off-target effects, and/or attenuating resistance development. Nanotechnology, in combination with bioinspired and biomimetic approaches, affords additional functions to nanoparticles derived from synthetic materials. Herein, we aim to provide a state-of-the-art review on recent progress in biomimetic and bioengineered nanotherapies for the treatment of infectious disease. Different biomimetic nanoparticles, derived from viruses, bacteria, and mammalian cells, are first described, with respect to their construction and biophysicochemical properties. Then, the applications of diverse biomimetic nanoparticles in anti-infective therapy are introduced, either by their intrinsic activity or by loading and site-specifically delivering various molecular drugs. Bioinspired and biomimetic nanovaccines for prevention and/or therapy of infectious diseases are also highlighted. At the end, major translation issues and future directions of this field are discussed.
Collapse
Affiliation(s)
- Guoyu Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
13
|
Induction of Genotype Cross-Reactive, Hepatitis C Virus-Specific, Cell-Mediated Immunity in DNA-Vaccinated Mice. J Virol 2018; 92:JVI.02133-17. [PMID: 29437963 DOI: 10.1128/jvi.02133-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
A universal hepatitis C virus (HCV) vaccine should elicit multiantigenic, multigenotypic responses, which are more likely to protect against challenge with the range of genotypes and subtypes circulating in the community. A vaccine cocktail and vaccines encoding consensus HCV sequences are attractive approaches to achieve this goal. Consequently, in a series of mouse vaccination studies, we compared the immunogenicity of a DNA vaccine encoding a consensus HCV nonstructural 5B (NS5B) protein to that of a cocktail of DNA plasmids encoding the genotype 1b (Gt1b) and Gt3a NS5B proteins. To complement this study, we assessed responses to a multiantigenic cocktail regimen by comparing a DNA vaccine cocktail encoding Gt1b and Gt3a NS3, NS4, and NS5B proteins to a single-genotype NS3/4/5B DNA vaccine. To thoroughly evaluate in vivo cytotoxic T lymphocyte (CTL) and T helper (Th) cell responses against Gt1b and Gt3a HCV peptide-pulsed target cells, we exploited a novel fluorescent-target array (FTA). FTA and enzyme-linked immunosorbent spot (ELISpot) analyses collectively indicated that the cocktail regimens elicited higher responses to Gt1b and Gt3a NS5B proteins than those with the consensus vaccine, while the multiantigenic DNA cocktail significantly increased the responses to NS3 and NS5B compared to those elicited by the single-genotype vaccines. Thus, a DNA cocktail vaccination regimen is more effective than a consensus vaccine or a monovalent vaccine at increasing the breadth of multigenotypic T cell responses, which has implications for the development of vaccines for communities where multiple HCV genotypes circulate.IMPORTANCE Despite the development of highly effective direct-acting antivirals (DAA), infections with hepatitis C virus (HCV) continue, particularly in countries where the supply of DAA is limited. Furthermore, patients who eliminate the virus as a result of DAA therapy can still be reinfected. Thus, a vaccine for HCV is urgently required, but the heterogeneity of HCV strains makes the development of a universal vaccine difficult. To address this, we developed a novel cytolytic DNA vaccine which elicits robust cell-mediated immunity (CMI) to the nonstructural (NS) proteins in vaccinated animals. We compared the immune responses against genotypes 1 and 3 that were elicited by a consensus DNA vaccine or a DNA vaccine cocktail and showed that the cocktail induced higher levels of CMI to the NS proteins of both genotypes. This study suggests that a universal HCV vaccine can most readily be achieved by use of a DNA vaccine cocktail.
Collapse
|
14
|
Cecílio P, Pérez-Cabezas B, Fernández L, Moreno J, Carrillo E, Requena JM, Fichera E, Reed SG, Coler RN, Kamhawi S, Oliveira F, Valenzuela JG, Gradoni L, Glueck R, Gupta G, Cordeiro-da-Silva A. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Negl Trop Dis 2017; 11:e0005951. [PMID: 29176865 PMCID: PMC5720812 DOI: 10.1371/journal.pntd.0005951] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 12/07/2017] [Accepted: 09/11/2017] [Indexed: 01/18/2023] Open
Abstract
The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".
Collapse
Affiliation(s)
- Pedro Cecílio
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Laura Fernández
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Epifanio Fichera
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Steven G. Reed
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States of America
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States of America
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Reinhard Glueck
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Gaurav Gupta
- Etna Biotech S.R.L, via Vincenzo Lancia, 57—Zona Industriale Blocco Palma 1, Catania, Italy
| | - Anabela Cordeiro-da-Silva
- Parasite Disease group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Cytolytic DNA vaccine encoding lytic perforin augments the maturation of- and antigen presentation by- dendritic cells in a time-dependent manner. Sci Rep 2017; 7:8530. [PMID: 28819257 PMCID: PMC5561019 DOI: 10.1038/s41598-017-08063-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
The use of cost-effective vaccines capable of inducing robust CD8+ T cell immunity will contribute significantly towards the elimination of persistent viral infections and cancers worldwide. We have previously reported that a cytolytic DNA vaccine encoding an immunogen and a truncated mouse perforin (PRF) protein significantly augments anti-viral T cell (including CD8+ T cell) immunity. Thus, the current study investigated whether this vaccine enhances activation of dendritic cells (DCs) resulting in greater priming of CD8+ T cell immunity. In vitro data showed that transfection of HEK293T cells with the cytolytic DNA resulted in the release of lactate dehydrogenase, indicative of necrotic/lytic cell death. In vitro exposure of this lytic cell debris to purified DCs from naïve C57BL/6 mice resulted in maturation of DCs as determined by up-regulation of CD80/CD86. Using activation/proliferation of adoptively transferred OT-I CD8+ T cells to measure antigen presentation by DCs in vivo, it was determined that cytolytic DNA immunisation resulted in a time-dependent increase in the proliferation of OT-I CD8+ T cells compared to canonical DNA immunisation. Overall, the data suggest that the cytolytic DNA vaccine increases the activity of DCs which has important implications for the design of DNA vaccines to improve their translational prospects.
Collapse
|
16
|
Blom RAM, Amacker M, van Dijk RM, Moser C, Stumbles PA, Blank F, von Garnier C. Pulmonary Delivery of Virosome-Bound Antigen Enhances Antigen-Specific CD4 + T Cell Proliferation Compared to Liposome-Bound or Soluble Antigen. Front Immunol 2017; 8:359. [PMID: 28439267 PMCID: PMC5383731 DOI: 10.3389/fimmu.2017.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022] Open
Abstract
Pulmonary administration of biomimetic nanoparticles loaded with antigen may represent an effective strategy to directly modulate adaptive immune responses in the respiratory tract. Depending on the design, virosomes may not only serve as biomimetic antigen carriers but are also endowed with intrinsic immune-stimulatory properties. We designed fluorescently labeled influenza-derived virosomes and liposome controls coupled to the model antigen ovalbumin to investigate uptake, phenotype changes, and antigen processing by antigen-presenting cells exposed to such particles in different respiratory tract compartments. Both virosomes and liposomes were captured by pulmonary macrophages and dendritic cells alike and induced activation in particle-bearing cells by upregulation of costimulatory markers such as CD40, CD80, CD86, PD-L1, PD-L2, and ICOS-L. Though antigen processing and accumulation of both coupled and soluble antigen was similar between virosomes and liposomes, only ovalbumin-coupled virosomes generated a strong antigen-specific CD4+ T cell proliferation. Pulmonary administrated antigen-coupled virosomes therefore effectively induced adaptive immune responses and may be utilized in novel preventive or therapeutic approaches in the respiratory tract.
Collapse
Affiliation(s)
- Rebecca A M Blom
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | - Christian Moser
- Swiss Federal Institute of Intellectual Property, Bern, Switzerland
| | - Philip A Stumbles
- School of Veterinary and Life Sciences, Medical and Molecular Sciences, Murdoch University, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia
| | - Fabian Blank
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Christophe von Garnier
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Kalam MA, Khan AA, Alshamsan A. Non-invasive administration of biodegradable nano-carrier vaccines. Am J Transl Res 2017; 9:15-35. [PMID: 28123631 PMCID: PMC5250701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Polymeric nanoparticulate carriers play an important role and holding a significant potential for the development of novel immunomodulatory agents as easily they are taken up by antigen presenting cells. They allow an enhanced antigen stability, better immunogenicity and immunostimulatory effect with sustained and controlled release of the antigen to the target sites. Better information and vital understanding of mechanism of action, interaction of such vectors with the APCs and dendritic cells and antigen release kinetics in immunomodulatory effects, and improved knowledge of their in vivo fate and distribution are now needed, those collectively would speed up the rational strategies of nanoparticles as carriers for vaccines and other protein antigens. The evolution of such innovative adjuvants for protein and DNA immunizations are an exciting and growing zone in immunology, which may enhance the clinical outcomes in many infectious and non-infectious diseases. This review summarizes the recent advances in nano-vaccinology with polymeric (especially biodegradable) carriers, their methods of preparation, surface modification, their interaction with antigen presenting cells, release of antigens, its kinetics and mechanism in the delivery of vaccines via non-invasive routes.
Collapse
Affiliation(s)
- Mohd Abul Kalam
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud UniversityP. O. Box: 2457, Riyadh 11451, Saudi Arabia
| | - Abdul Arif Khan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud UniversityP. O. Box: 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud UniversityP. O. Box: 2457, Riyadh 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud UniversityP. O. Box: 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine 2016; 34:5488-5494. [PMID: 27742218 DOI: 10.1016/j.vaccine.2016.09.062] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022]
Abstract
DNA vaccines are ideal candidates for global vaccination purposes because they are inexpensive and easy to manufacture on a large scale such that even people living in low-income countries can benefit from vaccination. However, the potential of DNA vaccines has not been realized owing mainly to the poor cellular uptake of DNA in vivo resulting in the poor immunogenicity of DNA vaccines. In this review, we discuss the benefits and shortcomings of several promising and innovative non-biological methods of DNA delivery that can be used to increase cellular delivery and efficacy of DNA vaccines.
Collapse
Affiliation(s)
- S H T Jorritsma
- Virology Research Group, Discipline of Surgery, The Basil Hetzel Institute, The University of Adelaide, Australia
| | - E J Gowans
- Virology Research Group, Discipline of Surgery, The Basil Hetzel Institute, The University of Adelaide, Australia
| | - B Grubor-Bauk
- Virology Research Group, Discipline of Surgery, The Basil Hetzel Institute, The University of Adelaide, Australia
| | - D K Wijesundara
- Virology Research Group, Discipline of Surgery, The Basil Hetzel Institute, The University of Adelaide, Australia.
| |
Collapse
|
19
|
Zhang H, El Zowalaty ME. DNA-based influenza vaccines as immunoprophylactic agents toward universality. Future Microbiol 2015; 11:153-64. [PMID: 26673424 DOI: 10.2217/fmb.15.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mohamed E El Zowalaty
- Biomedical Research Center, Vice President Office for Research, Qatar University, Doha 2713, Qatar
| |
Collapse
|
20
|
Intradermal delivery of DNA encoding HCV NS3 and perforin elicits robust cell-mediated immunity in mice and pigs. Gene Ther 2015; 23:26-37. [PMID: 26262584 DOI: 10.1038/gt.2015.86] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 02/08/2023]
Abstract
Currently, no vaccine is available against hepatitis C virus (HCV), and although DNA vaccines have considerable potential, this has not been realised. Previously, the efficacy of DNA vaccines for human immunodeficiency virus (HIV) and HCV was shown to be enhanced by including the gene for a cytolytic protein, viz. perforin. In this study, we examined the mechanism of cell death by this bicistronic DNA vaccine, which encoded the HCV non-structural protein 3 (NS3) under the control of the CMV promoter and perforin is controlled by the SV40 promoter. Compared with a canonical DNA vaccine and a bicistronic DNA vaccine encoding NS3 and the proapoptotic gene NSP4, the perforin-containing vaccine elicited enhanced cell-mediated immune responses against the NS3 protein in vaccinated mice and pigs, as determined by ELISpot and intracellular cytokine staining, whereas a mouse challenge model suggested that the immunity was CD8(+) T-cell-dependent. The results of the study showed that the inclusion of perforin in the DNA vaccine altered the fate of NS3-positive cells from apoptosis to necrosis, and this resulted in more robust immune responses in mice and pigs, the latter of which represents an accepted large animal model in which to test vaccine efficacy.
Collapse
|
21
|
A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice. J Virol 2015; 89:7991-8002. [PMID: 26018154 DOI: 10.1128/jvi.00803-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.
Collapse
|