1
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
2
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
3
|
Ochang P, Eke D, Stahl BC. Towards an understanding of global brain data governance: ethical positions that underpin global brain data governance discourse. Front Big Data 2023; 6:1240660. [PMID: 38025947 PMCID: PMC10665841 DOI: 10.3389/fdata.2023.1240660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The study of the brain continues to generate substantial volumes of data, commonly referred to as "big brain data," which serves various purposes such as the treatment of brain-related diseases, the development of neurotechnological devices, and the training of algorithms. This big brain data, generated in different jurisdictions, is subject to distinct ethical and legal principles, giving rise to various ethical and legal concerns during collaborative efforts. Understanding these ethical and legal principles and concerns is crucial, as it catalyzes the development of a global governance framework, currently lacking in this field. While prior research has advocated for a contextual examination of brain data governance, such studies have been limited. Additionally, numerous challenges, issues, and concerns surround the development of a contextually informed brain data governance framework. Therefore, this study aims to bridge these gaps by exploring the ethical foundations that underlie contextual stakeholder discussions on brain data governance. Method In this study we conducted a secondary analysis of interviews with 21 neuroscientists drafted from the International Brain Initiative (IBI), LATBrain Initiative and the Society of Neuroscientists of Africa (SONA) who are involved in various brain projects globally and employing ethical theories. Ethical theories provide the philosophical frameworks and principles that inform the development and implementation of data governance policies and practices. Results The results of the study revealed various contextual ethical positions that underscore the ethical perspectives of neuroscientists engaged in brain data research globally. Discussion This research highlights the multitude of challenges and deliberations inherent in the pursuit of a globally informed framework for governing brain data. Furthermore, it sheds light on several critical considerations that require thorough examination in advancing global brain data governance.
Collapse
Affiliation(s)
- Paschal Ochang
- Centre for Computing and Social Responsibility, De Montfort University, Leicester, United Kingdom
| | - Damian Eke
- Centre for Computing and Social Responsibility, De Montfort University, Leicester, United Kingdom
| | - Bernd Carsten Stahl
- Centre for Computing and Social Responsibility, De Montfort University, Leicester, United Kingdom
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Tee LF, Young JJ, Maruyama K, Kimura S, Suzuki R, Endo Y, Kimura KD. Electric shock causes a fleeing-like persistent behavioral response in the nematode Caenorhabditis elegans. Genetics 2023; 225:iyad148. [PMID: 37595066 PMCID: PMC10550322 DOI: 10.1093/genetics/iyad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023] Open
Abstract
Behavioral persistency reflects internal brain states, which are the foundations of multiple brain functions. However, experimental paradigms enabling genetic analyses of behavioral persistency and its associated brain functions have been limited. Here, we report novel persistent behavioral responses caused by electric stimuli in the nematode Caenorhabditis elegans. When the animals on bacterial food are stimulated by alternating current, their movement speed suddenly increases 2- to 3-fold, persisting for more than 1 minute even after a 5-second stimulation. Genetic analyses reveal that voltage-gated channels in the neurons are required for the response, possibly as the sensors, and neuropeptide signaling regulates the duration of the persistent response. Additional behavioral analyses implicate that the animal's response to electric shock is scalable and has a negative valence. These properties, along with persistence, have been recently regarded as essential features of emotion, suggesting that C. elegans response to electric shock may reflect a form of emotion, akin to fear.
Collapse
Affiliation(s)
- Ling Fei Tee
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Jared J Young
- Mills College at Northeastern University, Oakland, CA 94613, USA
| | - Keisuke Maruyama
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Sota Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Ryoga Suzuki
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Yuto Endo
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
Garg V, André S, Giraldo D, Heyer L, Göpfert MC, Dosch R, Geurten BRH. A Markerless Pose Estimator Applicable to Limbless Animals. Front Behav Neurosci 2022; 16:819146. [PMID: 35418841 PMCID: PMC8997243 DOI: 10.3389/fnbeh.2022.819146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
The analysis of kinematics, locomotion, and spatial tasks relies on the accurate detection of animal positions and pose. Pose and position can be assessed with video analysis programs, the “trackers.” Most available trackers represent animals as single points in space (no pose information available) or use markers to build a skeletal representation of pose. Markers are either physical objects attached to the body (white balls, stickers, or paint) or they are defined in silico using recognizable body structures (e.g., joints, limbs, color patterns). Physical markers often cannot be used if the animals are small, lack prominent body structures on which the markers can be placed, or live in environments such as aquatic ones that might detach the marker. Here, we introduce a marker-free pose-estimator (LACE Limbless Animal traCkEr) that builds the pose of the animal de novo from its contour. LACE detects the contour of the animal and derives the body mid-line, building a pseudo-skeleton by defining vertices and edges. By applying LACE to analyse the pose of larval Drosophila melanogaster and adult zebrafish, we illustrate that LACE allows to quantify, for example, genetic alterations of peristaltic movements and gender-specific locomotion patterns that are associated with different body shapes. As illustrated by these examples, LACE provides a versatile method for assessing position, pose and movement patterns, even in animals without limbs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Selina André
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Diego Giraldo
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Luisa Heyer
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center Göttingen, Georg-August-University Göttingen, Gottingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
- *Correspondence: Bart R. H. Geurten
| |
Collapse
|
6
|
Ohnesorge N, Heinl C, Lewejohann L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front Neurosci 2021; 15:632634. [PMID: 33897350 PMCID: PMC8061727 DOI: 10.3389/fnins.2021.632634] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is an unpleasant, negative emotion and its debilitating effects are complex to manage. Mammalian models have long dominated research on nociception and pain, but there is increasing evidence for comparable processes in fish. The need to improve existing pain models for drug research and the obligation for 3R refinement of fish procedures facilitated the development of numerous new assays of nociception and pain in fish. The zebrafish is already a well-established animal model in many other research areas like toxicity testing, as model for diseases or regeneration and has great potential in pain research, too. Methods of electrophysiology, molecular biology, analysis of reflexive or non-reflexive behavior and fluorescent imaging are routinely applied but it is the combination of these tools what makes the zebrafish model so powerful. Simultaneously, observing complex behavior in free-swimming larvae, as well as their neuronal activity at the cellular level, opens new avenues for pain research. This review aims to supply a toolbox for researchers by summarizing current methods to study nociception and pain in zebrafish. We identify treatments with the best algogenic potential, be it chemical, thermal or electric stimuli and discuss options of analgesia to counter effects of nociception and pain by opioids, non-steroidal anti-inflammatory drugs (NSAIDs) or local anesthetics. In addition, we critically evaluate these practices, identify gaps of knowledge and outline potential future developments.
Collapse
Affiliation(s)
- Nils Ohnesorge
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Céline Heinl
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Brembs B. The brain as a dynamically active organ. Biochem Biophys Res Commun 2020; 564:55-69. [PMID: 33317833 DOI: 10.1016/j.bbrc.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Nervous systems are typically described as static networks passively responding to external stimuli (i.e., the 'sensorimotor hypothesis'). However, for more than a century now, evidence has been accumulating that this passive-static perspective is wrong. Instead, evidence suggests that nervous systems dynamically change their connectivity and actively generate behavior so their owners can achieve goals in the world, some of which involve controlling their sensory feedback. This review provides a brief overview of the different historical perspectives on general brain function and details some select modern examples falsifying the sensorimotor hypothesis.
Collapse
Affiliation(s)
- Björn Brembs
- Universität Regensburg, Institut für Zoologie - Neurogenetik, Regensburg, Germany.
| |
Collapse
|