1
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
2
|
Karaatmaca B, Cagdas D, Esenboga S, Erman B, Tan C, Turul Ozgur T, Boztug K, van der Burg M, Sanal O, Tezcan I. Heterogeneity in RAG1 and RAG2 deficiency: 35 cases from a single-centre. Clin Exp Immunol 2024; 215:160-176. [PMID: 37724703 PMCID: PMC10847812 DOI: 10.1093/cei/uxad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
Recombination activating genes (RAG)1 and RAG2 deficiency leads to combined T/B-cell deficiency with varying clinical presentations. This study aimed to define the clinical/laboratory spectrum of RAG1 and RAG2 deficiency. We retrospectively reviewed the clinical/laboratory data of 35 patients, grouped them as severe combined immunodeficiency (SCID), Omenn syndrome (OS), and delayed-onset combined immunodeficiency (CID) and reported nine novel mutations. The male/female ratio was 23/12. Median age of clinical manifestations was 1 months (mo) (0.5-2), 2 mo (1.25-5), and 14 mo (3.63-27), age at diagnosis was 4 mo (3-6), 4.5 mo (2.5-9.75), and 27 mo (14.5-70) in SCID (n = 25; 71.4%), OS (n = 5; 14.3%), and CID (n = 5; 14.3%) patients, respectively. Common clinical manifestations were recurrent sinopulmonary infections 82.9%, oral moniliasis 62.9%, diarrhea 51.4%, and eczema/dermatitis 42.9%. Autoimmune features were present in 31.4% of the patients; 80% were in CID patients. Lymphopenia was present in 92% of SCID, 80% of OS, and 80% of CID patients. All SCID and CID patients had low T (CD3, CD4, and CD8), low B, and increased NK cell numbers. Twenty-eight patients underwent hematopoietic stem cell transplantation (HSCT), whereas seven patients died before HSCT. Median age at HSCT was 7 mo (4-13.5). Survival differed in groups; maximum in SCID patients who had an HLA-matched family donor, minimum in OS. Totally 19 (54.3%) patients survived. Early molecular genetic studies will give both individualized therapy options, and a survival advantage because of timely diagnosis and treatment. Further improvement in therapeutic outcomes will be possible if clinicians gain time for HSCT.
Collapse
Affiliation(s)
- Betul Karaatmaca
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Baran Erman
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Tuba Turul Ozgur
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Ozden Sanal
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Erickson RP. Autosomal recessive diseases among the Athabaskans of the southwestern United States: anthropological, medical, and scientific aspects. J Appl Genet 2021; 62:445-453. [PMID: 33880741 PMCID: PMC8057858 DOI: 10.1007/s13353-021-00630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
The peopling of the Americas by Native Americans occurred in 4 waves of which the last was Nadene language speakers of whom Athabaskans are the largest group. As the Europeans were entering the Southwestern states of the USA, Athabaskan hunting-gathering tribes were migrating South from Canada along the Rocky Mountains and undergoing potential bottlenecks reflected in autosomal recessive diseases shared by Apaches and Navajos. About 300 years ago, the Navajo developing a sedentary culture learned from Pueblo Indians while the Apache remained hunter-gathers. Although most of the tribe was rounded up and forced to relocate to Bosque Redondo, the adult breeding population was large enough to prevent a genetic bottleneck. However, some Navajo underwent further population bottlenecks while hiding from the brutal US Army action (under Kit Carson’s guidance). This led to an increased frequency of other autosomal recessive diseases. Recent advances in population genetics, pathophysiology of the diseases, and social/ethical issues concerning their study are reviewed.
Collapse
|
4
|
Vignesh P, Rawat A, Kumrah R, Singh A, Gummadi A, Sharma M, Kaur A, Nameirakpam J, Jindal A, Suri D, Gupta A, Khadwal A, Saikia B, Minz RW, Sharma K, Desai M, Taur P, Gowri V, Pandrowala A, Dalvi A, Jodhawat N, Kambli P, Madkaikar MR, Bhattad S, Ramprakash S, CP R, Jayaram A, Sivasankaran M, Munirathnam D, Balaji S, Rajendran A, Aggarwal A, Singh K, Na F, George B, Mehta A, Lashkari HP, Uppuluri R, Raj R, Bartakke S, Gupta K, Sreedharanunni S, Ogura Y, Kato T, Imai K, Chan KW, Leung D, Ohara O, Nonoyama S, Hershfield M, Lau YL, Singh S. Clinical, Immunological, and Molecular Features of Severe Combined Immune Deficiency: A Multi-Institutional Experience From India. Front Immunol 2021; 11:619146. [PMID: 33628209 PMCID: PMC7897653 DOI: 10.3389/fimmu.2020.619146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Severe Combined Immune Deficiency (SCID) is an inherited defect in lymphocyte development and function that results in life-threatening opportunistic infections in early infancy. Data on SCID from developing countries are scarce. OBJECTIVE To describe clinical and laboratory features of SCID diagnosed at immunology centers across India. METHODS A detailed case proforma in an Excel format was prepared by one of the authors (PV) and was sent to centers in India that care for patients with primary immunodeficiency diseases. We collated clinical, laboratory, and molecular details of patients with clinical profile suggestive of SCID and their outcomes. Twelve (12) centers provided necessary details which were then compiled and analyzed. Diagnosis of SCID/combined immune deficiency (CID) was based on 2018 European Society for Immunodeficiencies working definition for SCID. RESULTS We obtained data on 277 children; 254 were categorized as SCID and 23 as CID. Male-female ratio was 196:81. Median (inter-quartile range) age of onset of clinical symptoms and diagnosis was 2.5 months (1, 5) and 5 months (3.5, 8), respectively. Molecular diagnosis was obtained in 162 patients - IL2RG (36), RAG1 (26), ADA (19), RAG2 (17), JAK3 (15), DCLRE1C (13), IL7RA (9), PNP (3), RFXAP (3), CIITA (2), RFXANK (2), NHEJ1 (2), CD3E (2), CD3D (2), RFX5 (2), ZAP70 (2), STK4 (1), CORO1A (1), STIM1 (1), PRKDC (1), AK2 (1), DOCK2 (1), and SP100 (1). Only 23 children (8.3%) received hematopoietic stem cell transplantation (HSCT). Of these, 11 are doing well post-HSCT. Mortality was recorded in 210 children (75.8%). CONCLUSION We document an exponential rise in number of cases diagnosed to have SCID over the last 10 years, probably as a result of increasing awareness and improvement in diagnostic facilities at various centers in India. We suspect that these numbers are just the tip of the iceberg. Majority of patients with SCID in India are probably not being recognized and diagnosed at present. Newborn screening for SCID is the need of the hour. Easy access to pediatric HSCT services would ensure that these patients are offered HSCT at an early age.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anjani Gummadi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Johnson Nameirakpam
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Bone Marrow Transplantation Unit, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Bone Marrow Transplantation Unit, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Aparna Dalvi
- ICMR-National Institute of Immunohematology, Mumbai, India
| | - Neha Jodhawat
- ICMR-National Institute of Immunohematology, Mumbai, India
| | | | | | - Sagar Bhattad
- Pediatric Immunology and Rheumatology, Aster CMI hospital, Bengaluru, India
| | - Stalin Ramprakash
- Pediatric Hemat-oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | - Raghuram CP
- Pediatric Hemat-oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | | | | | | | - Sarath Balaji
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Aruna Rajendran
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Amita Aggarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Komal Singh
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Fouzia Na
- Christian Medical College, Vellore, India
| | | | | | | | | | | | | | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Yumi Ogura
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, Notarangelo LD, Pan-Hammarström Q, Hammarström L. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol 2014; 134:1375-1380. [PMID: 24996264 DOI: 10.1016/j.jaci.2014.04.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recombination-activating gene 1 (RAG1) deficiency presents with a varied spectrum of combined immunodeficiency, ranging from a T(-)B(-)NK(+) type of disease to a T(+)B(+)NK(+) phenotype. OBJECTIVE We sought to assess the genetic background of patients with common variable immunodeficiency (CVID). METHODS A patient given a diagnosis of CVID, who was born to a consanguineous family and thus would be expected to show an autosomal recessive inheritance, was subjected to clinical evaluation, immunologic assays, homozygosity gene mapping, exome sequencing, Sanger sequencing, and functional analysis. RESULTS The 14-year-old patient, who had liver granuloma, extranodal marginal zone B-cell lymphoma, and autoimmune neutropenia, presented with a clinical picture resembling CVID. Genetic analysis of this patient showed a homozygous hypomorphic RAG1 mutation (c.1073 G>A, p.C358Y) with a residual functional capacity of 48% of wild-type protein. CONCLUSION Our finding broadens the range of disorders associated with RAG1 mutations and might have important therapeutic implications.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ning Wang
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yu Nee Lee
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Francesco Frugoni
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Luigi D Notarangelo
- Division of Immunology and the Manton Center for Orphan Disease Research, Boston Children's Hospital, and the Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
6
|
Kerfoot SA, Jung S, Golob K, Torgerson TR, Hahn SH. Tryptic peptide screening for primary immunodeficiency disease by LC/MS-MS. Proteomics Clin Appl 2013; 6:394-402. [PMID: 22927353 DOI: 10.1002/prca.201100096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PURPOSE Early diagnosis of primary immunodeficiency disorders (PIDDs) is critical for maximizing patient survival and clinical outcomes. Consequently, there is significant interest in developing broad-based, high-throughput, screening approaches capable of utilizing small blood volumes to identify patients with PIDD. EXPERIMENTAL DESIGN We developed a novel proteomic screening approach using tandem mass spectrometry to simultaneously identify specific signature peptides derived from the transmembrane protein cluster of differentiation 3 (CD3)ɛ and the intracellular proteins Wiskott-Aldrich syndrome protein (WASP) and Bruton's tyrosine kinase (BTK) as markers of three life-threatening PIDDs; severe combined immunodeficiency, Wiskott-Aldrich syndrome, and X-linked Agammaglobulinemia. Signature peptides were analyzed by LC/MS-MS in proteolytically digested lysates from cell lines and white blood cells (WBCs). The amount of each peptide was determined by the ratio of the signature peptide peak area to that of a known amount of labeled standard peptide. Peptide concentrations were normalized to actin. RESULTS We show that signature peptides from CD3ɛ, WASP, and BTK were readily detected in proteolytically digested cell lysate and their absence could correctly identify PIDD patients. CONCLUSIONS AND CLINICAL RELEVANCE This proof of concept study demonstrates the applicability of this approach to screen for PIDD and raises the possibility that it could be further multiplexed to identify additional PIDDs and potentially other disorders.
Collapse
Affiliation(s)
- Sandra A Kerfoot
- Seattle Children's Hospital Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
7
|
Increased Artemis levels confer radioresistance to both high and low LET radiation exposures. Radiat Oncol 2012; 7:96. [PMID: 22713703 PMCID: PMC3585927 DOI: 10.1186/1748-717x-7-96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/18/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation. RESULTS Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage. CONCLUSIONS These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies.
Collapse
|
8
|
Kutukculer N, Gulez N, Karaca NE, Aksu G, Berdeli A. Novel mutatıons and diverse clinical phenotypes in recombinase-activating gene 1 deficiency. Ital J Pediatr 2012; 38:8. [PMID: 22424479 PMCID: PMC3394211 DOI: 10.1186/1824-7288-38-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 03/16/2012] [Indexed: 06/22/2024] Open
Abstract
Background Severe combined immunodeficiency is within a heterogeneous group of inherited defects throughout the development of T- and/or B-lymphocytes. Mutations in recombinase-activating genes 1 or 2 (RAG1/2) represent approximately 10% of all SCID cases. RAG1/2 are essential for V(D)J rearrangement of the B- and T-cell receptors. Objectives The aim of this study was to review clinical, immunological and molecular findings of Turkish SCID patients with RAG1 defects and to draw attention to novel mutations, genotype-phenotype correlations and the high rate of BCG infections within this group. Methods Eleven patients (F/M: 6/5) were included. Molecular, immunological and clinical data were evaluated. Results Five patients were classified as T-B-NK + SCID, four patients as T + B-NK + SCID (two of these patients were diagnosed as classical Omenn syndrome) and two patients as T + B + NK + SCID with respect to clinical presentations and immunological data. Mean age of the whole study group, mean age at onset of symptoms and mean age at diagnosis were: 33.0 ± 42.8, 3.1 ± 3.3 and 10.4 ± 13.5 months, respectively. Consanguinity rate was 54%. Some novel mutations were found in RAG1 gene in addition to previously reported mutations. Genotype-phenotype correlation was not significantly apparent in most of the cases. BCG infection was observed in 36.4% of patients (two BCG-osis and two BCG-itis). Conclusion Epigenetic factors such as compound genetic defects, enviromental factors, and exposure to recurrent infections may modify phenotypical characteristics of RAG deficiencies. Inoculation of live vaccines such as BCG should be postponed until primary immunodeficiency disease is excluded with appropriate screening tests in suspected cases.
Collapse
Affiliation(s)
- Necil Kutukculer
- Department of Pediatrics, Faculty of Medicine, Ege University, 35100 Bornova, Izmir, Turkey
| | | | | | | | | |
Collapse
|
9
|
Dvorak CC, Cowan MJ. Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin North Am 2010; 30:125-42. [PMID: 20113890 DOI: 10.1016/j.iac.2009.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inherited defects in components of the nonhomologous end-joining DNA repair mechanism produce a T-B-NK+ severe combined immunodeficiency disease (SCID) characterized by heightened sensitivity to ionizing radiation. Patients with the radiosensitive form of SCID may also have increased short- and long-term sensitivity to the alkylator-based chemotherapy regimens that are traditionally used for conditioning before allogeneic hematopoietic cell transplantation (HCT). Known causes of radiosensitive SCID include deficiencies of Artemis, DNA ligase IV, DNA-dependent protein kinase catalytic subunit, and Cernunnos-XLF, all of which have been treated with HCT. Because of these patients' sensitivity to certain forms of chemotherapy, the approach to donor selection and the type of conditioning regimen used for a patient with radiosensitive SCID requires careful consideration. Significantly more research needs to be done to determine the long-term outcomes of patients with radiosensitive SCID after HCT and to discover novel nontoxic approaches to HCT that might benefit those patients with intrinsic radiosensitivity and chemosensitivity as well as potentially all patients undergoing an HCT.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Blood and Marrow Transplantation, University of California, San Francisco, 505 Parnassus Avenue, M-659, San Francisco, CA 94143-1278, USA
| | | |
Collapse
|
10
|
Niehues T, Perez-Becker R, Schuetz C. More than just SCID--the phenotypic range of combined immunodeficiencies associated with mutations in the recombinase activating genes (RAG) 1 and 2. Clin Immunol 2010; 135:183-92. [PMID: 20172764 DOI: 10.1016/j.clim.2010.01.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/23/2010] [Accepted: 01/25/2010] [Indexed: 01/08/2023]
Abstract
Combined immunodeficiencies with impaired numbers and function of T- and B-cells can be attributed to defects in the recombinase activating genes (RAG). The products of these genes, the RAG1 and 2 proteins, are key players in the V(D)J recombination process leading to the assembly of antigen receptor genes. Complete RAG deficiency (RAGD) with no V(D)J (<1% recombination activity of wild type) is associated with classical SCID and absence of T- and B-cells. In RAGD with residual V(D)J activity (>1% recombination activity of wild type), several clinical and immunological subtypes have been described: RAGD with skin inflammation and alphabeta T-cell expansion (classical Omenn syndrome), RAGD with skin inflammation and without T-cell expansion (incomplete Omenn syndrome), RAGD with gammadelta T-cell expansion and RAGD with granulomas. Engraftment of maternal T-cells can add to variation in phenotype. The potential role of epigenetic factors that influence the emergence of these phenotypes is discussed. Thorough assessment and interpretation of clinical and immunological findings will guide treatment modalities as intense as hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Tim Niehues
- HELIOS Klinikum Krefeld, Center for Child and Adolescent Health, Krefeld, Germany.
| | | | | |
Collapse
|
11
|
Erickson RP. Autosomal recessive diseases among the Athabaskans of the southwestern United States: recent advances and implications for the future. Am J Med Genet A 2010; 149A:2602-11. [PMID: 19842189 DOI: 10.1002/ajmg.a.33052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Genetic and linguistic data suggest that the Na-Dene, of which the Athabaskans are the largest group, are part of a later immigration into the Americas than the first Amerind immigration. Whether a second and third immigration can be separated seems unlikely but continued cross-Bering Strait exchanges may have masked what was a greater separation in the past. The movement of tribes into Siberia appears to have involved a genetic bottleneck leading to at least one disease allele shared by Eskimo/Aleuts and Navajos and a second possibly shared by the Navajo and a Siberian population, but not the same Siberian population that share deep linguistic affinities with the Navajo. A second bottleneck appears to have occurred with the migration of Athabaskans from Northwest North America to the Southwestern United States along the Rocky Mountains. This bottleneck is reflected in several rare recessive diseases shared by the Navajo and Apache. Finally, the Navajo were captured and imprisoned under conditions which led to severe population loss. This, and the "hiding away" of a small number of Navajos in what is now the Western portion of the reservation, led to a Navajo-specific bottleneck(s) resulting in an increased frequency of several rare recessive diseases among the Navajo. Prejudice against human genetic research is high among the Southwestern Athabaskans but attempts to bridge the gap are now occurring. The involvement of Navajo scientists in this process is especially encouraging.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, Arizona 85701, USA.
| |
Collapse
|