1
|
Sharma S, Sundaram S, Kesavadas C, Thomas B. An Algorithmic Approach to MR Imaging of Hypomyelinating Leukodystrophies. J Magn Reson Imaging 2025; 61:1531-1551. [PMID: 39165110 DOI: 10.1002/jmri.29558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) are a heterogeneous group of white matter diseases characterized by permanent deficiency of myelin deposition in brain. MRI is instrumental in the diagnosis and recommending genetic analysis, and is especially useful as many patients have a considerable clinical overlap, with the primary presenting complains being global developmental delay with psychomotor regression. Hypomyelination is defined as deficient myelination on two successive MR scans, taken at least 6 months apart, one of which should have been obtained after 1 year of age. Due to subtle differences in MRI features, the need for a systematic imaging approach to diagnose and classify hypomyelinating disorders is reiterated. The presented article provides an explicit review of imaging features of a myriad of primary and secondary HLDs, using state of the art genetically proven MR cases. A systematic pattern-based approach using MR features and specific clinical clues is illustrated for a quick yet optimal diagnosis of common as well as rare hypomyelinating disorders. The major MR features helping to narrow the differential diagnosis include extent of involvement like diffuse or patchy hypomyelination with selective involvement or sparing of certain white matter structures like optic radiations, median lemniscus, posterior limb of internal capsule and periventricular white matter; cerebellar atrophy; brainstem, corpus callosal or basal ganglia involvement; T2 hypointense signal of the thalami; and presence of calcifications. The authors also discuss the genetic and pathophysiologic basis of HLDs and recent methods to quantify myelin in vivo using advanced neuroradiology tools. The proposed algorithmic approach provides an improved understanding of these rare yet important disorders, enhancing diagnostic precision and improving patient outcomes. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Smily Sharma
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Soumya Sundaram
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
2
|
Ramanzini LG, Frare JM, Lopes TF, Fighera MR. Developmental Delay, Hypomyelination, and Nystagmus: Case and Approach. Neuroophthalmology 2024; 48:369-372. [PMID: 39145320 PMCID: PMC11321408 DOI: 10.1080/01658107.2024.2329120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 08/16/2024] Open
Abstract
Pelizaeus-Merzbacher-like disease (PMLD, OMIM #608804) is an autosomal recessive hypomyelinating leukodystrophy caused by homozygous variants in the GJC2 gene. It usually presents in the first months of life with nystagmus, developmental delay, and diffuse hypomyelination on brain magnetic resonance imaging (MRI). We report a case of a 3-year-old boy that presented with nystagmus and global developmental delay. MRI showed diffuse hypomyelination, including the cerebellum. Pelizaeus-Merzbacher disease (PMD) was suspected; however, no pathological variants of the PLP1 gene were found. Exome sequencing found variants in the GJC2 gene, leading to a diagnosis of PMLD. The combination of global developmental delay, hypomyelination, and nystagmus in a child should raise suspicion of PMD and PMLD. Unlike PMD, however, hypomyelination of the brainstem and cerebellum are frequently seen and brainstem auditory evoked potentials are usually normal in PMLD. The latter has an overall better prognosis than the former as well. Epidemiological studies on leukodystrophies have found conflicting results on which disease is more common. However, PMLD is a rare leukodystrophy and both PMLD and PMD should be considered in any child with developmental delay, hypomyelination, and nystagmus.
Collapse
Affiliation(s)
- L. G. Ramanzini
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - J. M. Frare
- Graduated Program in Biological Science, Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - T. F. Lopes
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - M. R. Fighera
- Medical School, Department of Neuropsychiatry, Center of Health Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
3
|
Jaunmuktane Z. Neuropathology of white matter disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:3-20. [PMID: 39322386 DOI: 10.1016/b978-0-323-99209-1.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The hallmark neuropathologic feature of all leukodystrophies is depletion or alteration of the white matter of the central nervous system; however increasing genetic discoveries highlight the genetic heterogeneity of white matter disorders. These discoveries have significantly helped to advance the understanding of the complexity of molecular mechanisms involved in the biogenesis and maintenance of healthy white matter. Accordingly, genetic discoveries and functional studies have enabled us to firmly establish that multiple distinct structural defects can lead to white matter pathology. Leukodystrophies can develop not only due to defects in proteins essential for myelin biogenesis and maintenance or oligodendrocyte function, but also due to mutations encoding myriad of proteins involved in the function of neurons, astrocytes, microglial cells as well as blood vessels. To a variable extent, some leukodystrophies also show gray matter, peripheral nervous system, or multisystem involvement. Depending on the genetic defect and its role in the formation or maintenance of the white matter, leukodystrophies can present either in early childhood or adulthood. In this chapter, the classification of leukodystrophies will be discussed from the cellular defect point of view, followed by a description of known neuropathologic alterations for all leukodystrophies.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
4
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Ghasemi A, Tavasoli AR, Khojasteh M, Rohani M, Alavi A. Description of Phenotypic Heterogeneity in a GJC2-Related Family and Literature Review. Mol Syndromol 2023; 14:405-415. [PMID: 37915394 PMCID: PMC10617252 DOI: 10.1159/000529678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/12/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Homozygous and compound heterozygous variants in GJC2, the gene encoding connexin-47 protein, cause Pelizaeus-Merzbacher-like disease type 1 or hypomyelinating leukodystrophy 2 (HLD2), a severe infantile-onset hypomyelinating leukodystrophy, and rarely some milder phenotypes like hereditary spastic paraplegia (HSP) type 44 (SPG44) and subclinical leukodystrophy. Herein, we report an Iranian GJC2-related family with intrafamilial phenotypic heterogeneity and review the literatures. Methods Whole-exome sequencing was performed for an Iranian proband, who was initially diagnosed as HSP case. Data were analyzed and the candidate variant was confirmed by PCR and Sanger sequencing subsequently checked in family members to co-segregation analysis. A careful clinical and paraclinical evaluation of all affected individuals of the family was done and compared with previous reported GJC2-related families. Results A novel homozygous variant, c.G14T:p.Ser5Ile, in the GJC2 gene was identified. The variant was co-segregated with the disease status in the family members. Clinical evaluation of all patients showed two distinct GJC2-related phenotypes in this family; the proband presented a complicated form of HSP, whereas both his affected sisters presented a HLD2 phenotype. Discussion Up to now, correlation between HSP and GJC2 variants has been reported once. Here, the second case of SPG44 was identified that emphasizes on GJC2 as a HSP-causing gene. So, the screening of GJC2 in patients with HSP or HSP-like phenotypes especially with hypomyelination in their brain MRI is recommended. Also, for the first time, intrafamilial phenotypic heterogeneity for "two distinct GJC2-related phenotypes: HLD2 and HSP" was reported. Such intrafamilial phenotypic heterogeneity for GJC2 can emphasize on the shared pathophysiology of these disorders.
Collapse
Affiliation(s)
- Aida Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mana Khojasteh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Abrams CK. Mechanisms of Diseases Associated with Mutation in GJC2/Connexin 47. Biomolecules 2023; 13:biom13040712. [PMID: 37189458 DOI: 10.3390/biom13040712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Connexins are members of a family of integral membrane proteins that provide a pathway for both electrical and metabolic coupling between cells. Astroglia express connexin 30 (Cx30)-GJB6 and Cx43-GJA1, while oligodendroglia express Cx29/Cx31.3-GJC3, Cx32-GJB1, and Cx47-GJC2. Connexins organize into hexameric hemichannels (homomeric if all subunits are identical or heteromeric if one or more differs). Hemichannels from one cell then form cell-cell channels with a hemichannel from an apposed cell. (These are termed homotypic if the hemichannels are identical and heterotypic if the hemichannels differ). Oligodendrocytes couple to each other through Cx32/Cx32 or Cx47/Cx47 homotypic channels and they couple to astrocytes via Cx32/Cx30 or Cx47/Cx43 heterotypic channels. Astrocytes couple via Cx30/Cx30 and Cx43/Cx43 homotypic channels. Though Cx32 and Cx47 may be expressed in the same cells, all available data suggest that Cx32 and Cx47 cannot interact heteromerically. Animal models wherein one or in some cases two different CNS glial connexins have been deleted have helped to clarify the role of these molecules in CNS function. Mutations in a number of different CNS glial connexin genes cause human disease. Mutations in GJC2 lead to three distinct phenotypes, Pelizaeus Merzbacher like disease, hereditary spastic paraparesis (SPG44) and subclinical leukodystrophy.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Zlomuzica A, Plank L, Kodzaga I, Dere E. A fatal alliance: Glial connexins, myelin pathology and mental disorders. J Psychiatr Res 2023; 159:97-115. [PMID: 36701970 DOI: 10.1016/j.jpsychires.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Mature oligodendrocytes are myelin forming glial cells which are responsible for myelination of neuronal axons in the white matter of the central nervous system. Myelin pathology is a major feature of severe neurological disorders. Oligodendrocyte-specific gene mutations and/or white matter alterations have also been addressed in a variety of mental disorders. Breakdown of myelin integrity and demyelination is associated with severe symptoms, including impairments in motor coordination, breathing, dysarthria, perception (vision and hearing), and cognition. Furthermore, there is evidence indicating that myelin sheath defects and white matter pathology contributes to the affective and cognitive symptoms of patients with mental disorders. Oligodendrocytes express the connexins GJC2; mCx47 [human (GJC2) and mouse (mCx47) connexin gene nomenclature according to Söhl and Willecke (2003)], GJB1; mCx32, and GJD1; mCx29 in both white and gray matter. Preclinical findings indicate that alterations in connexin expression in oligodendrocytes and astrocytes can induce myelin defects. GJC2; mCx47 is expressed at early embryonic stages in oligodendrocyte precursors cells which precedes central nervous system myelination. In adult humans and animals GJC2, respectively mCx47 expression is essential for oligodendrocyte function and ensures adequate myelination as well as myelin maintenance in the central nervous system. In the past decade, evidence has accumulated suggesting that mental disorders can be accompanied by changes in connexin expression, myelin sheath defects and corresponding white matter alterations. This dual pathology could compromise inter-neuronal information transfer, processing and communication and eventually contribute to behavioral, sensory-motor, affective and cognitive symptoms in patients with mental disorders. The induction of myelin repair and remyelination in the central nervous system of patients with mental disorders could help to restore normal neuronal information propagation and ameliorate behavioral and cognitive symptoms in individuals with mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Iris Kodzaga
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany; Sorbonne Université, UFR des Sciences de la Vie, 9 quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
8
|
Komachali SR, Sheikholeslami M, Salehi M. A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder. Genomics Inform 2022; 20:e24. [PMID: 35794704 PMCID: PMC9299563 DOI: 10.5808/gi.22008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.
Collapse
Affiliation(s)
- Sajad Rafiee Komachali
- Department of Biology, University of Sistan and Baluchestan, Zahedan 98167-45845, Iran.,Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan 81759-54319, Iran
| | | | - Mansoor Salehi
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan 81759-54319, Iran
| |
Collapse
|
9
|
MRI CNS Atrophy Pattern and the Etiologies of Progressive Ataxias. Tomography 2022; 8:423-437. [PMID: 35202200 PMCID: PMC8877967 DOI: 10.3390/tomography8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
MRI shows the three archetypal patterns of CNS volume loss underlying progressive ataxias in vivo, namely spinal atrophy (SA), cortical cerebellar atrophy (CCA) and olivopontocerebellar atrophy (OPCA). The MRI-based CNS atrophy pattern was reviewed in 128 progressive ataxias. A CNS atrophy pattern was identified in 91 conditions: SA in Friedreich’s ataxia, CCA in 5 acquired and 72 (24 dominant, 47 recessive,1 X-linked) inherited ataxias, OPCA in Multi-System Atrophy and 12 (9 dominant, 2 recessive,1 X-linked) inherited ataxias. The MRI-based CNS atrophy pattern may be useful for genetic assessment, identification of shared cellular targets, repurposing therapies or the enlargement of drug indications in progressive ataxias.
Collapse
|
10
|
Hattori K, Tago K, Memezawa S, Ochiai A, Sawaguchi S, Kato Y, Sato T, Tomizuka K, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J. The Infantile Leukoencephalopathy-Associated Mutation of C11ORF73/HIKESHI Proteins Generates de novo Interactive Activity with Filamin A, Inhibiting Oligodendroglial Cell Morphological Differentiation. MEDICINES (BASEL, SWITZERLAND) 2021; 8:medicines8020009. [PMID: 33535532 PMCID: PMC7912763 DOI: 10.3390/medicines8020009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 04/20/2023]
Abstract
Genetic hypomyelinating diseases are a heterogeneous group of disorders involving the white matter. One infantile hypomyelinating leukoencephalopathy is associated with the homozygous variant (Cys4-to-Ser (C4S)) of the c11orf73 gene. Methods: We observed that in mouse oligodendroglial FBD-102b cells, the C4S mutant proteins but not the wild type ones of C11orf73 are microscopically localized in the lysosome. And, they downregulate lysosome-related signaling in an immunoblotting technique. Results: The C4S mutant proteins specifically interact with Filamin A, which is known to anchor transmembrane proteins to the actin cytoskeleton; the C4S mutant proteins and Filamin A are also observed in the lysosome fraction. While parental FBD-102b cells and cells harboring the wild type constructs exhibit morphological differentiation, cells harboring C4S mutant constructs do not. It may be that morphological differentiation is inhibited because expression of these C4S mutant proteins leads to defects in the actin cytoskeletal network involving Filamin A. Conclusions: The findings that leukoencephalopathy-associated C11ORF73 mutant proteins specifically interact with Filamin A, are localized in the lysosome, and inhibit morphological differentiation shed light on the molecular and cellular pathological mechanisms that underlie infantile hypomyelinating leukoencephalopathy.
Collapse
Affiliation(s)
- Kohei Hattori
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi 321-0498, Japan;
| | - Shiori Memezawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Arisa Ochiai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Yukino Kato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan;
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan;
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
11
|
Mustacich DJ, Kylat RI, Bernas MJ, Myles RJ, Jones JA, Kanady JD, Simon AM, Georgieva TG, Witte MH, Erickson RP, Pires PW. Abnormal lymphatic phenotype in a CRISPR mouse model of the human lymphedema-causing Connexin47 R260C point mutation. Lymphology 2021; 54:78-91. [PMID: 34735753 PMCID: PMC11740318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Connexin proteins form gap junctions controlling exchange of ions and small molecules between cells and play an important role in movement of lymph within lymphatic vessels. Connexin47 (CX47) is highly expressed in lymphatic endothelial cells and CX47 missense mutations, i.e., R260C, cosegregate with primary lymphedema in humans. However, studies utilizing CX47 knockout mice have failed to demonstrate any lymphatic anomalies. To unravel the lymphatic consequences of expressing a mutant CX47 protein, we used CRISPR technology to create a mouse carrying a Cx47 missense mutation (Cx47R259C) equivalent to the human CX47R260C missense mutation associated with human primary lymphedema. Intradermal Evans Blue dye injection identified a 2-fold increase in regional lymph nodes in homozygous Cx47R259C mice compared to wildtype, particularly in the jugular region (4.8 ± 0.4 and 2.0 ± 0.0, respectively, p<0.01). Associated lymphatic channels were increased in Cx47R259C mice and mesenteric lymph reflux occurred in homozygous Cx47R259C mice but not in wildtype. Contractility of superficial cervical lymphatics, assessed by pressure myography, was reduced in homozygous Cx47R259C mice compared to wildtype. In conclusion, our data are the first to demonstrate a role for the Cx47 protein in lymphatic anatomy and function. This phenotype is similar to that found with other valve deficient mouse mutants, e.g., in Foxc2. Of significance, this study is the first to use CRISPR technology to develop a pre-clinical model of primary lymphedema and demonstrates the importance of distinguishing between lack of and presence of mutant protein when developing clinically relevant animal models for translation of pre-clinical findings.
Collapse
Affiliation(s)
- D J Mustacich
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - R I Kylat
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - M J Bernas
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
- Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, TX, USA
| | - R J Myles
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - J A Jones
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - J D Kanady
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - A M Simon
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - T G Georgieva
- GEMM Core, Bio5 Institute, University of Arizona, Tucson, Arizona, USA
| | - M H Witte
- Department of Surgery, University of Arizona, Tucson, Arizona, USA
| | - R P Erickson
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - P W Pires
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Miyamoto Y, Tanaka M, Ito H, Ooizumi H, Ohbuchi K, Mizoguchi K, Torii T, Yamauchi J. Expression of kinase-deficient MEK2 ameliorates Pelizaeus-Merzbacher disease phenotypes in mice. Biochem Biophys Res Commun 2020; 531:445-451. [PMID: 32800341 DOI: 10.1016/j.bbrc.2020.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is characterized as a congenital hypomyelinating disorder in oligodendrocytes, myelin-forming glial cells in the central nervous system (CNS). The responsible gene of PMD is plp1, whose multiplication, deletion, or mutation is associated with PMD. We previously reported that primary oligodendrocytes overexpressing proteolipid protein 1 (PLP1) do not have the ability to differentiate morphologically, whereas inhibition of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) by its cognate siRNA or chemical inhibitor reverses their undifferentiated phenotypes. Here, we show that oligodendrocyte-specific expression of kinase-deficient dominant-inhibitory mutant (MEK2K101A) of MAPK/ERK kinase 2 (MEK2), as the direct upstream molecule of MAPK/ERK in PMD model mice, promotes myelination in CNS tissues. Expression of MEK2K101A in PMD model mice also improves Rotor-rod test performance, which is often used to assess motor coordination in a rodent model with neuropathy. These results suggest that in PMD model mice, MEK2K101A can ameliorate impairments of myelination and motor function and that the signaling through MAPK/ERK may involve potential therapeutic target molecules of PMD in vivo.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan; Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Marina Tanaka
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan
| | - Hisanaka Ito
- Laboratory of Bioorganic Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan; Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
13
|
Takeuchi Y, Tanaka M, Okura N, Fukui Y, Noguchi K, Hayashi Y, Torii T, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J. Rare Neurologic Disease-Associated Mutations of AIMP1 are Related with Inhibitory Neuronal Differentiation Which is Reversed by Ibuprofen. MEDICINES 2020; 7:medicines7050025. [PMID: 32384815 PMCID: PMC7281511 DOI: 10.3390/medicines7050025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023]
Abstract
Background: Hypomyelinating leukodystrophy 3 (HLD3), previously characterized as a congenital diseases associated with oligodendrocyte myelination, is increasingly regarded as primarily affecting neuronal cells. Methods: We used N1E-115 cells as the neuronal cell model to investigate whether HLD3-associated mutant proteins of cytoplasmic aminoacyl-tRNA synthase complex-interacting multifunctional protein 1 (AIMP1) aggregate in organelles and affect neuronal differentiation. Results: 292CA frame-shift type mutant proteins harboring a two-base (CA) deletion at the 292th nucleotide are mainly localized in the lysosome where they form aggregates. Similar results are observed in mutant proteins harboring the Gln39-to-Ter (Q39X) mutation. Interestingly, the frame-shift mutant-specific peptide specifically interacts with actin to block actin fiber formation. The presence of actin with 292CA mutant proteins, but not with wild type or Q39X ones, in the lysosome is detectable by immunoprecipitation of the lysosome. Furthermore, expression of 292CA or Q39X mutants in cells inhibits neuronal differentiation. Treatment with ibuprofen reverses mutant-mediated inhibitory differentiation as well as the localization in the lysosome. Conclusions: These results not only explain the cell pathological mechanisms inhibiting phenotype differentiation in cells expressing HLD3-associated mutants but also identify the first chemical that restores such cells in vitro.
Collapse
Affiliation(s)
- Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Marina Tanaka
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Nanako Okura
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Yasuyuki Fukui
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Ko Noguchi
- Laboratory of Applied Ecology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Yoshihiro Hayashi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan;
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: (+81)-42-676-7164
| |
Collapse
|
14
|
PP1C and PP2A are p70S6K Phosphatases Whose Inhibition Ameliorates HLD12-Associated Inhibition of Oligodendroglial Cell Morphological Differentiation. Biomedicines 2020; 8:biomedicines8040089. [PMID: 32316234 PMCID: PMC7235839 DOI: 10.3390/biomedicines8040089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 01/27/2023] Open
Abstract
Myelin sheaths created by oligodendroglial cells encase neuronal axons to achieve saltatory conduction and protect axons. Pelizaeus-Merzbacher disease (PMD) is a prototypic, hereditary demyelinating oligodendroglial disease of the central nervous system (CNS), and is currently known as hypomyelinating leukodystrophy 1 (HLD1). HLD12 is an autosomal recessive disorder responsible for the gene that encodes vacuolar protein sorting-associated protein 11 homolog (VPS11). VPS11 is a member of the molecular group controlling the early endosome antigen 1 (EEA1)- and Rab7-positive vesicle-mediated protein trafficking to the lysosomal compartments. Herein, we show that the HLD12-associated Cys846-to-Gly (C846G) mutation of VPS11 leads to its aggregate formation with downregulated signaling through 70 kDa S6 protein kinase (p70S6K) in the oligodendroglial cell line FBD-102b as the model. In contrast, wild-type proteins are localized in both EEA1- and Rab7-positive vesicles. Cells harboring the C846G mutant constructs decrease differentiated phenotypes with web-like structures following differentiation, whereas parental cells exhibit them suitably. It is of note that we identify PP1C and PP2A as the protein phosphatases for phosphorylated Thr-389 of p70S6K essential for kinase activation in cells. The respective knockdown experiments or inhibitor treatment stimulates phosphorylation of p70S6K and ameliorates the inhibition of morphological differentiation, as well as the formation of protein aggregates. These results indicate that inhibition of p70S6K phosphatases PP1C and PP2A improves the defective morphological differentiation associated with HLD12 mutation, thereby hinting at amelioration based on a possible molecular and cellular pathological mechanism underlying HLD12.
Collapse
|
15
|
Tabarki B, Hakami W, Alkhuraish N, Tlili-Graies K, Alfadhel M. Spinal Cord Involvement in Pediatric-Onset Metabolic Disorders With Mendelian and Mitochondrial Inheritance. Front Pediatr 2020; 8:599861. [PMID: 33520891 PMCID: PMC7841137 DOI: 10.3389/fped.2020.599861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
Previous reviews have described the features of brain involvement in pediatric-onset metabolic disorders with Mendelian and mitochondrial inheritance, but only a few have focused on spinal cord abnormalities. An increasing number of metabolic disorders with Mendelian and mitochondrial inheritance in children with predominant spinal cord involvement has been recognized. Spinal cord involvement may be isolated or may occur more frequently with brain involvement. Timely diagnosis and occasional genetic counseling are needed for timely therapy. Therefore, clinicians must be aware of the clinical, laboratory, and radiographic features of these disorders. In this review, we describe pediatric-onset metabolic disorders with Mendelian and mitochondrial inheritance and predominant spinal cord involvement. Furthermore, we provide an overview of these conditions, including background information and examples that require rapid identification, focusing on treatable conditions; that would be catastrophic if they are not recognized.
Collapse
Affiliation(s)
- Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Wejdan Hakami
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nader Alkhuraish
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kalthoum Tlili-Graies
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia.,Genetics and Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Abdullah Specialist Children's Hospital, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Llaci L, Ramsey K, Belnap N, Claasen AM, Balak CD, Szelinger S, Jepsen WM, Siniard AL, Richholt R, Izat T, Naymik M, De Both M, Piras IS, Craig DW, Huentelman MJ, Narayanan V, Schrauwen I, Rangasamy S. Compound heterozygous mutations in SNAP29 is associated with Pelizaeus-Merzbacher-like disorder (PMLD). Hum Genet 2019; 138:1409-1417. [DOI: 10.1007/s00439-019-02077-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
|
17
|
Molina-Gonzalez I, Miron VE. Astrocytes in myelination and remyelination. Neurosci Lett 2019; 713:134532. [PMID: 31589903 DOI: 10.1016/j.neulet.2019.134532] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are known to play critical roles in central nervous system development, homeostasis, and response to injury. In addition to well-defined functions in synaptic signalling and blood-brain barrier control, astrocytes are now emerging as important contributors to white matter health. Here, we review the roles of astrocytes in myelin formation and regeneration (remyelination), focusing on both direct interactions with oligodendrocyte lineage cells, and indirect influences via crosstalk with central nervous system resident macrophages, microglia.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
18
|
Matsumoto N, Watanabe N, Iibe N, Tatsumi Y, Hattori K, Takeuchi Y, Oizumi H, Ohbuchi K, Torii T, Miyamoto Y, Yamauchi J. Hypomyelinating leukodystrophy-associated mutation of RARS leads it to the lysosome, inhibiting oligodendroglial morphological differentiation. Biochem Biophys Rep 2019; 20:100705. [PMID: 31737794 PMCID: PMC6849085 DOI: 10.1016/j.bbrep.2019.100705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/16/2019] [Accepted: 10/30/2019] [Indexed: 01/25/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a central nervous system (CNS) demyelinating disease in human, currently known as prototypic hypomyelinating leukodystrophy 1 (HLD1). The gene responsible for HLD1 encodes proteolipid protein 1 (PLP1), which is the major myelin protein produced by oligodendrocytes. HLD9 is an autosomal recessive disorder responsible for the gene differing from the plp1 gene. The hld9 gene encodes arginyl-tRNA synthetase (RARS), which belongs to a family of cytoplasmic aminoacyl-tRNA synthetases. Herein we show that HLD9-associated missense mutation of Ser456-to-Leu (S456L) localizes RARS proteins as aggregates into the lysosome but not into the endoplasmic reticulum (ER) and the Golgi body. In contrast, wild-type proteins indeed distribute throughout the cytoplasm. Expression of S456L mutant constructs in cells decreases lysosome-related signaling through ribosomal S6 protein phosphorylation, which is known to be required for myelin formation. Cells harboring the S456L mutant constructs fail to exhibit phenotypes with myelin web-like structures following differentiation in FBD-102b cells, as part of the mammalian oligodendroglial cell model, whereas parental cells exhibit them. Collectively, HLD9-associated RARS mutant proteins are specifically localized in the lysosome with downregulation of S6 phosphorylation involved in myelin formation, inhibiting differentiation in FBD-102b cells. These results present some of the molecular and cellular pathological mechanisms for defect in myelin formation underlying HLD9.
Collapse
Affiliation(s)
- Naoto Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriko Iibe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuriko Tatsumi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kohei Hattori
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
19
|
Amin M, Elsayed L, Ahmed AE. Clinical and Genetic Characteristics of Leukodystrophies in Africa. J Neurosci Rural Pract 2019; 8:S89-S93. [PMID: 28936078 PMCID: PMC5602269 DOI: 10.4103/jnrp.jnrp_511_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent understanding of the genetic basis of neurological disorders in Africa has grown rapidly in the last two decades. Africa harbors the largest genetic repertoire in the world which gives unique opportunity to discover novel variant, genes, and molecular pathways associated with various neurological diseases. Despite that, large-scale genomic and exome studies are severely lacking especially for neglected diseases such as leukodystrophies. This review aims to shed light on the currently developed research in leukodystrophies in Africa. We reviewed all research articles related to “Leukodystrophy in Africa” published in Medline/PubMed and Google Scholar databases up to date. We found very few studies in leukodystrophy from Africa, especially from the Sub-Saharan regions. Metachromatic leukodystrophy was the most studied type of leukodystrophy. Published studies from North Africa (Tunisia, Morocco, and Egypt) were very limited in either sample size (case studies or single/few family studies) or molecular methods (targeted sequencing or polymerase chain reaction-restriction fragment length polymorphisms). More studies (GWAS or large family studies) with advanced techniques such as exome or whole genome sequencing are needed to unveil the genetic basis of leukodystrophy in Africa. Unmasking novel genes and molecular pathways of leukodystrophies invariably lead to better detection and treatment for both Africans and worldwide populations.
Collapse
Affiliation(s)
- Mutaz Amin
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena Elsayed
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ammar Eltahir Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
20
|
Owczarek-Lipska M, Mulahasanovic L, Obermaier CD, Hörtnagel K, Neubauer BA, Korenke GC, Biskup S, Neidhardt J. Novel mutations in the GJC2 gene associated with Pelizaeus–Merzbacher-like disease. Mol Biol Rep 2019; 46:4507-4516. [DOI: 10.1007/s11033-019-04906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
|
21
|
Harting I, Karch S, Moog U, Seitz A, Pouwels PJW, Wolf NI. Oculodentodigital Dysplasia: A Hypomyelinating Leukodystrophy with a Characteristic MRI Pattern of Brain Stem Involvement. AJNR Am J Neuroradiol 2019; 40:903-907. [PMID: 31048294 DOI: 10.3174/ajnr.a6051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/12/2019] [Indexed: 11/07/2022]
Abstract
Oculodentodigital dysplasia, a rare genetic disorder caused by mutations in the gene encoding gap junction protein 1, classically presents with typical facial features, dental and ocular anomalies, and syndactyly. Oligosymptomatic patients are common and difficult to recognize, in particular if syndactyly is absent. Neurologic manifestation occurs in approximately 30% of patients, and leukodystrophy or T2 hypointensity of gray matter structures or both have been noted in individual patients. To investigate MR imaging changes in oculodentodigital dysplasia, we retrospectively and systematically reviewed 12 MRIs from 6 genetically confirmed patients. Diffuse supratentorial hypomyelination, T2-hypointense Rolandic and primary visual cortex, and symmetric involvement of middle cerebellar peduncle, pyramidal tract, and medial lemniscus was present in all, T2-hypointense pallidum and dentate nucleus in 2 patients each. This consistent, characteristic pattern of diffuse supratentorial hypomyelination and brain stem involvement differs from other hypomyelinating and nonhypomyelinating leukodystrophies with brain stem involvement, and its recognition should trigger genetic testing for oculodentodigital dysplasia.
Collapse
Affiliation(s)
- I Harting
- From the Department of Neuroradiology (I.H., A.S.)
| | - S Karch
- Centre for Child and Adolescent Medicine (S.K.), Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - U Moog
- Institute of Human Genetics (U.M.), Heidelberg University, Heidelberg, Germany
| | - A Seitz
- From the Department of Neuroradiology (I.H., A.S.)
| | - P J W Pouwels
- Departments of Radiology and Nuclear Medicine (P.J.W.P.)
| | - N I Wolf
- Child Neurology (N.I.W.), VU University Medical Center and Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Diseases of connexins expressed in myelinating glia. Neurosci Lett 2019; 695:91-99. [DOI: 10.1016/j.neulet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
23
|
Min R, van der Knaap MS. Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathol 2019; 28:372-387. [PMID: 29740942 PMCID: PMC8028498 DOI: 10.1111/bpa.12602] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Electrical activity of neurons in the brain, caused by the movement of ions between intracellular and extracellular compartments, is the basis of all our thoughts and actions. Maintaining the correct ionic concentration gradients is therefore crucial for brain functioning. Ion fluxes are accompanied by the displacement of osmotically obliged water. Since even minor brain swelling leads to severe brain damage and even death, brain ion and water movement has to be tightly regulated. Glial cells, in particular astrocytes, play a key role in ion and water homeostasis. They are endowed with specific channels, pumps and carriers to regulate ion and water flow. Glial cells form a large panglial syncytium to aid the uptake and dispersal of ions and water, and make extensive contacts with brain fluid barriers for disposal of excess ions and water. Genetic defects in glial proteins involved in ion and water homeostasis disrupt brain functioning, thereby leading to neurological diseases. Since white matter edema is often a hallmark disease feature, many of these diseases are characterized as leukodystrophies. In this review we summarize our current understanding of inherited glial diseases characterized by disturbed brain ion and water homeostasis by integrating findings from MRI, genetics, neuropathology and animal models for disease. We discuss how mutations in different glial proteins lead to disease, and highlight the similarities and differences between these diseases. To come to effective therapies for this group of diseases, a better mechanistic understanding of how glial cells shape ion and water movement in the brain is crucial.
Collapse
Affiliation(s)
- Rogier Min
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutations in the PLP1 gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination associated with early neurologic dysfunction, progressive deterioration, and ultimately death. PMD has been classified into three major subtypes, according to the age of presentation: connatal PMD, classic PMD, and transitional PMD, combining features of both connatal and classic forms. Two other less severe phenotypes were subsequently described, including the spastic paraplegia syndrome and PLP1-null disease. These disorders may be associated with duplications, as well as with point, missense, and null mutations within the PLP1 gene. A number of clinically similar Pelizaeus-Merzbacher-like disorders (PMLD) are considered in the differential diagnosis of PMD, the most prominent of which is PMLD-1, caused by misexpression of the GJC2 gene encoding connexin-47. No effective therapy for PMD exists. Yet, as a relatively pure central nervous system hypomyelinating disorder, with limited involvement of the peripheral nervous system and little attendant neuronal pathology, PMD is an attractive therapeutic target for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of centers internationally.
Collapse
Affiliation(s)
- M Joana Osório
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
25
|
Barkovich AJ, Deon S. Reprint of "Hypomyelinating disorders: An MRI approach. Neurobiol Dis 2016; 92:46-54. [PMID: 27235001 DOI: 10.1016/j.nbd.2015.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022] Open
Abstract
In recent years, the concept of hypomyelinating disorders has been proposed as a group of disorders with varying systemic manifestations that are identified by MR findings of absence or near absence of the T2 hypointensity that develops in white matter as a result of myelination. Initially proposed as a separate group because they were the largest single category of undiagnosed leukodystrophies, their separation as a distinct group that can be recognized by looking for a specific MRI feature has resulted in a marked increase in their diagnosis and a better understanding of the different causes of hypomyelination. This review will discuss the clinical presentations, imaging findings on standard MRI, and new MRI-related techniques that allow a better understanding of these disorders and proposed methods for quantifying the myelination as a potential means of assessing disease course and the effects of proposed treatments. Disorders with hypomyelination of white matter, or hypomyelinating disorders (HMDs), represent the single largest category among undiagnosed genetic leukoencephalopathies (Schiffmann and van der Knaap, 2009; Steenweg et al., 2010). This group of inborn errors of metabolism is characterized by a magnetic resonance imaging (MRI) appearance of reduced or absent myelin development: delay in the development of T2 hypointensity and, often, T1 hyperintensity in the white matter of the brain. The concept of hypomyelination was first conceptualized by (Schiffmann and van der Knaap, 2009; Steenweg et al., 2010; Schiffmann et al., 1994) in a series of papers that showed that these MRI characteristics were easily recognized, were different from the MRI characteristics of dysmyelinating and demyelinating disorders, and that the combination of these imaging findings with specific other clinical and imaging features could be used to make diagnoses with some confidence. In this manuscript, we will discuss the physiologic and genetic bases of hypomyelinating disorders, as well as their classification, clinical manifestations and imaging characteristics.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, UCSF-Benioff Children's Hospital, San Francisco, Q6 CA, United States.
| | - Sean Deon
- University of Colorado Medical Center and Prof. Petra Pouwels, University of Amsterdam
| |
Collapse
|
26
|
Barkovich AJ, Deon S. Hypomyelinating disorders: An MRI approach. Neurobiol Dis 2015; 87:50-8. [PMID: 26477299 DOI: 10.1016/j.nbd.2015.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
In recent years, the concept of hypomyelinating disorders has been proposed as a group of disorders with varying systemic manifestations that are identified by MR findings of absence or near absence of the T2 hypointensity that develops in white matter as a result of myelination. Initially proposed as a separate group because they were the largest single category of undiagnosed leukodystrophies, their separation as a distinct group that can be recognized by looking for a specific MRI feature has resulted in a marked increase in their diagnosis and a better understanding of the different causes of hypomyelination. This review will discuss the clinical presentations, imaging findings on standard MRI, and new MRI-related techniques that allow a better understanding of these disorders and proposed methods for quantifying the myelination as a potential means of assessing disease course and the effects of proposed treatments. Disorders with hypomyelination of white matter, or hypomyelinating disorders (HMDs), represent the single largest category among undiagnosed genetic leukoencephalopathies (Schiffmann and van der Knaap, 2009; Steenweg et al., 2010). This group of inborn errors of metabolism is characterized by a magnetic resonance imaging (MRI) appearance of reduced or absent myelin development: delay in the development of T2 hypointensity and, often, T1 hyperintensity in the white matter of the brain. The concept of hypomyelination was first conceptualized by (Schiffmann and van der Knaap, 2009; Steenweg et al., 2010; Schiffmann et al., 1994) in a series of papers that showed that these MRI characteristics were easily recognized, were different from the MRI characteristics of dysmyelinating and demyelinating disorders, and that the combination of these imaging findings with specific other clinical and imaging features could be used to make diagnoses with some confidence. In this manuscript, we will discuss the physiologic and genetic bases of hypomyelinating disorders, as well as their classification, clinical manifestations and imaging characteristics.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, UCSF-Benioff Children's Hospital, San Francisco, Q6 CA, United States.
| | - Sean Deon
- University of Colorado Medical Center and Prof. Petra Pouwels, University of Amsterdam
| |
Collapse
|
27
|
Kelly JJ, Simek J, Laird DW. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res 2014; 360:701-21. [DOI: 10.1007/s00441-014-2024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|
28
|
Molica F, Meens MJP, Morel S, Kwak BR. Mutations in cardiovascular connexin genes. Biol Cell 2014; 106:269-93. [PMID: 24966059 DOI: 10.1111/boc.201400038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022]
Abstract
Connexins (Cxs) form a family of transmembrane proteins comprising 21 members in humans. Cxs differ in their expression patterns, biophysical properties and ability to combine into homomeric or heteromeric gap junction channels between neighbouring cells. The permeation of ions and small metabolites through gap junction channels or hemichannels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. Among others, Cx37, Cx40, Cx43, Cx45 and Cx47 are found in heart, blood and lymphatic vessels. Mutations or polymorphisms in the genes coding for these Cxs have not only been implicated in cardiovascular pathologies but also in a variety of other disorders. While mutations in Cx43 are mostly linked to oculodentodigital dysplasia, Cx47 mutations are associated with Pelizaeus-Merzbacher-like disease and lymphoedema. Cx40 mutations are principally linked to atrial fibrillation. Mutations in Cx37 have not yet been described, but polymorphisms in the Cx37 gene have been implicated in the development of arterial disease. This review addresses current knowledge on gene mutations in cardiovascular Cxs systematically and links them to alterations in channel properties and disease.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
29
|
Saunders NR, Noor NM, Dziegielewska KM, Wheaton BJ, Liddelow SA, Steer DL, Ek CJ, Habgood MD, Wakefield MJ, Lindsay H, Truettner J, Miller RD, Smith AI, Dietrich WD. Age-dependent transcriptome and proteome following transection of neonatal spinal cord of Monodelphis domestica (South American grey short-tailed opossum). PLoS One 2014; 9:e99080. [PMID: 24914927 PMCID: PMC4051688 DOI: 10.1371/journal.pone.0099080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/09/2014] [Indexed: 01/08/2023] Open
Abstract
This study describes a combined transcriptome and proteome analysis of Monodelphis domestica response to spinal cord injury at two different postnatal ages. Previously we showed that complete transection at postnatal day 7 (P7) is followed by profuse axon growth across the lesion with near-normal locomotion and swimming when adult. In contrast, at P28 there is no axon growth across the lesion, the animals exhibit weight-bearing locomotion, but cannot use hind limbs when swimming. Here we examined changes in gene and protein expression in the segment of spinal cord rostral to the lesion at 24 h after transection at P7 and at P28. Following injury at P7 only forty genes changed (all increased expression); most were immune/inflammatory genes. Following injury at P28 many more genes changed their expression and the magnitude of change for some genes was strikingly greater. Again many were associated with the immune/inflammation response. In functional groups known to be inhibitory to regeneration in adult cords the expression changes were generally muted, in some cases opposite to that required to account for neurite inhibition. For example myelin basic protein expression was reduced following injury at P28 both at the gene and protein levels. Only four genes from families with extracellular matrix functions thought to influence neurite outgrowth in adult injured cords showed substantial changes in expression following injury at P28: Olfactomedin 4 (Olfm4, 480 fold compared to controls), matrix metallopeptidase (Mmp1, 104 fold), papilin (Papln, 152 fold) and integrin α4 (Itga4, 57 fold). These data provide a resource for investigation of a priori hypotheses in future studies of mechanisms of spinal cord regeneration in immature animals compared to lack of regeneration at more mature stages.
Collapse
Affiliation(s)
- Norman R. Saunders
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- * E-mail:
| | - Natassya M. Noor
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | | | - Benjamin J. Wheaton
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Shane A. Liddelow
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - C. Joakim Ek
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mark D. Habgood
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Matthew J. Wakefield
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Genetics, The University of Melbourne, Victoria, Australia
| | - Helen Lindsay
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jessie Truettner
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Robert D. Miller
- Center for Evolutionary & Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - A. Ian Smith
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
30
|
Gotoh L, Inoue K, Helman G, Mora S, Maski K, Soul JS, Bloom M, Evans SH, Goto YI, Caldovic L, Hobson GM, Vanderver A. GJC2 promoter mutations causing Pelizaeus-Merzbacher-like disease. Mol Genet Metab 2014; 111:393-398. [PMID: 24374284 PMCID: PMC4183365 DOI: 10.1016/j.ymgme.2013.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Pelizaeus-Merzbacher-like disease is a rare hypomyelinating leukodystrophy caused by autosomal recessive mutations in GJC2, encoding a gap junction protein essential for production of a mature myelin sheath. A previously identified GJC2 mutation (c.-167A>G) in the promoter region is hypothesized to disrupt a putative SOX10 binding site; however, the lack of additional mutations in this region and contradictory functional data have limited the interpretation of this variant. METHODS We describe two independent Pelizaeus-Merzbacher-like disease families with a novel promoter region mutation and updated in vitro functional assays. RESULTS A novel GJC2 mutation (c.-170A>G) in the promoter region was identified in Pelizaeus-Merzbacher-like disease patients. In vitro functional assays using human GJC2 promoter constructs demonstrated that this mutation and the previously described c.-167A>G mutation similarly diminished the transcriptional activity driven by SOX10 and the binding affinity for SOX10. INTERPRETATION These findings support the role of GJC2 promoter mutations in Pelizaeus-Merzbacher-like disease. GJC2 promoter region mutation screening should be included in the evaluation of patients with unexplained hypomyelinating leukodystrophies.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Mental Retardation and Birth Defects Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defects Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Guy Helman
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Sara Mora
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Kiran Maski
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Miriam Bloom
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Sarah H Evans
- Department of Physical Medicine and Rehabilitation, Children's National Medical Center, Washington, DC, USA
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defects Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Adeline Vanderver
- Department of Neurology, Children's National Medical Center, Washington, DC, USA; Department of Pediatrics, Children's National Medical Center, Washington, DC, USA; Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
31
|
The distribution and functional properties of Pelizaeus-Merzbacher-like disease-linked Cx47 mutations on Cx47/Cx47 homotypic and Cx47/Cx43 heterotypic gap junctions. Biochem J 2013; 452:249-58. [PMID: 23544880 DOI: 10.1042/bj20121821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
GJs (gap junctions) allow direct intercellular communication, and consist of Cxs (connexins). In the mammalian central nervous system, oligodendrocytes express Cx47, Cx32 and Cx29, whereas astrocytes express Cx43, Cx30 and Cx26. Homotypic Cx47/Cx47 GJs couple oligodendrocytes, and heterotypic Cx47/Cx43 channels are the primary GJs at oligodendrocyte/astrocyte junctions. Interestingly, autosomal recessive mutations in the gene GJC2 encoding Cx47 have been linked to a central hypomyelinating disease termed PMLD (Pelizaeus-Merzbacher-like disease). The aim of the present study was to determine the cellular distribution and functional properties of PMLD-associated Cx47 mutants (I46M, G149S, G236R, G236S, M286T and T398I). Expressing GFP (green fluorescent protein)-tagged mutant versions of Cx47 in gap-junction-deficient model cells revealed that these mutants were detected at the cell-cell interface similar to that observed for wild-type Cx47. Furthermore, four of the six mutants showed no electrical coupling in both Cx47/Cx47 and Cx47/Cx43 GJ channels. These results suggest that most of the PMLD-linked Cx47 mutants disrupt Cx47/Cx47 and Cx47/Cx43 GJ function in the glial network, which may play a role in leading to PMLD symptoms.
Collapse
|