1
|
Lee C, Lepore D, Lee SH, Kim TG, Buwa N, Lee J, Munson M, Yoon TY. Exocyst stimulates multiple steps of exocytic SNARE complex assembly and vesicle fusion. Nat Struct Mol Biol 2025; 32:150-160. [PMID: 39242980 DOI: 10.1038/s41594-024-01388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Exocyst is a large multisubunit tethering complex essential for targeting and fusion of secretory vesicles in eukaryotic cells. Although the assembled exocyst complex has been proposed to tether vesicles to the plasma membrane and activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion, the key biochemical steps that exocyst stimulates in SNARE-mediated fusion are undetermined. Here we use a combination of single-molecule and bulk fluorescence assays to investigate the roles of purified octameric yeast exocyst complexes in a reconstituted yeast exocytic SNARE assembly and vesicle fusion system. Exocyst had stimulatory roles in multiple distinct steps ranging from SNARE protein activation to binary and ternary complex assembly. Importantly, exocyst had a downstream role in driving membrane fusion and full content mixing of vesicle lumens. Our data suggest that exocyst provides extensive chaperoning functions across the entire process of SNARE complex assembly and fusion, thereby governing exocytosis at multiple steps.
Collapse
Affiliation(s)
- Chanwoo Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Dante Lepore
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Seung-Hak Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Tae Gyun Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Natasha Buwa
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jongchan Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Mary Munson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Song H, Lopes K, Orr A, Wickner W. After their membrane assembly, Sec18 (NSF) and Sec17 (SNAP) promote membrane fusion. Mol Biol Cell 2024; 35:ar150. [PMID: 39475713 PMCID: PMC11656465 DOI: 10.1091/mbc.e24-10-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The energy that drives membrane fusion can come from either complete SNARE zippering, from Sec17 and Sec18, or both. Sec17 and Sec18 initially form a complex which binds membranes. Sec17, Sec18, and the apolarity of a loop on the N-domain of Sec17 are required for their interdependent membrane association. To determine whether Sec18 and the Sec17 loop apolarity are still required for fusion after their membrane arrival, a hydrophobic transmembrane (TM) anchor was affixed to the N-terminus of Sec17, forming TM-Sec17. Fusion without energy from complete SNARE zippering requires Sec18 as well as either Sec17 or TM-Sec17. Even without the need for membrane targeting, the TM-Sec17 apolar loop strongly stimulates Sec17/18-driven fusion. Thus, Sec18 and the Sec17 apolar loop are first required for membrane targeting, and once bound, drive rapid fusion. Each of these variables-the absence or presence of Sec17, its N-loop apolarity, addition or omission of Sec18, and unimpeded or diminished energy from SNARE zippering-has almost no effect on the amount of trans-SNARE complex, but instead regulates the capacity of docked membranes to fuse.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Karina Lopes
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
3
|
Lopes K, Orr A, Wickner W. Membrane fusion reactions limited by defective SNARE zippering or stiff lipid fatty acyl composition have distinct requirements for Sec17, Sec18, and adenine nucleotide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623832. [PMID: 39605500 PMCID: PMC11601375 DOI: 10.1101/2024.11.15.623832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Intracellular membrane fusion is catalyzed by SNAREs, Rab GTPases, SM proteins, tethers, Sec18/NSF and Sec17/SNAP. Membrane fusion has been reconstituted with purified vacuolar proteins and lipids to address 3 salient questions: whether ATP hydrolysis by Sec18 affects its promotion of fusion, whether fusion promotion by Sec17 and Sec18 is only seen with mutant SNAREs or can also be seen with wild-type SNAREs, and whether Sec17 and Sec18 only promote fusion when they work together or whether they can each work separately. Fusion is driven by two engines, completion of SNARE zippering (which does not need Sec17/Sec18) and Sec17/Sec18-mediated fusion (needing SNAREs but not the energy from their complete zippering). Sec17 is required to rescue fusion that is blocked by incomplete zippering, though optimal rescue also needs the ATPase Sec18. ATP is an essential Sec18 ligand, but at limiting Sec17 levels Sec18 ATP hydrolysis also drives release of Sec17 without concomitant trans-SNARE complex disassembly. At higher (physiological) Sec17 levels, or without ATP hydrolysis, fusion prevails over Sec17 release. Stiff 16:0, 18:1 fatty acyl chain lipids provide an alternative route to suppressing fusion, with entirely wild-type SNAREs and without impediment to zippering. In this case, Sec17 and Sec18 restore comparable fusion with either ATP or a nonhydrolyzable analog. Fusion blocked by impaired zippering can be restored by concentrated Sec17 alone (but not by Sec18), while fusion inhibited by stiff fatty acyl chains is partially restored by Sec18 alone (but not by Sec17). With distinct fusion impediments, Sec18 and Sec17 have both shared roles and independent roles in promoting fusion.
Collapse
Affiliation(s)
- Karina Lopes
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, N.H. 03755
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, N.H. 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, N.H. 03755
| |
Collapse
|
4
|
Hodgens C, Flaherty DT, Pullen AM, Khan I, English NJ, Gillan L, Rojas-Pierce M, Akpa BS. Model-based inference of a dual role for HOPS in regulating guard cell vacuole fusion. IN SILICO PLANTS 2024; 6:diae015. [PMID: 39611053 PMCID: PMC11599693 DOI: 10.1093/insilicoplants/diae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/28/2024] [Indexed: 11/30/2024]
Abstract
Guard cell movements depend, in part, on the remodelling of vacuoles from a highly fragmented state to a fused morphology during stomata opening. Indeed, full opening of plant stomata requires vacuole fusion to occur. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. In plants, recruitment of HOPS subunits to the tonoplast has been shown to require the presence of the phosphoinositide phosphatidylinositol 3-phosphate. However, chemically depleting this lipid induces vacuole fusion. To resolve this counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we defined a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by using simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening-as induced by two distinct chemical treatments-we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signalling pathway, promoting the formation of SNARE complexes, but limiting their activity.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - D T Flaherty
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Anne-Marie Pullen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Imran Khan
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Nolan J English
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Belinda S Akpa
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
5
|
Shvarev D, König C, Susan N, Langemeyer L, Walter S, Perz A, Fröhlich F, Ungermann C, Moeller A. Structure of the endosomal CORVET tethering complex. Nat Commun 2024; 15:5227. [PMID: 38898033 PMCID: PMC11187117 DOI: 10.1038/s41467-024-49137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Caroline König
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Nicole Susan
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Angela Perz
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Florian Fröhlich
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany.
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany.
| |
Collapse
|
6
|
Orr A, Wickner W. Sec18 binds the tethering/SM complex HOPS to engage the Qc-SNARE for membrane fusion. Mol Biol Cell 2024; 35:ar71. [PMID: 38536444 PMCID: PMC11151092 DOI: 10.1091/mbc.e24-02-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024] Open
Abstract
Membrane fusion is regulated by Rab GTPases, their tethering effectors such as HOPS, SNARE proteins on each fusion partner, SM proteins to catalyze SNARE assembly, Sec17 (SNAP), and Sec18 (NSF). Though concentrated HOPS can support fusion without Sec18, we now report that fusion falls off sharply at lower HOPS levels, where direct Sec18 binding to HOPS restores fusion. This Sec18-dependent fusion needs adenine nucleotide but neither ATP hydrolysis nor Sec17. Sec18 enhances HOPS recognition of the Qc-SNARE. With high levels of HOPS, Qc has a Km for fusion of a few nM. Either lower HOPS levels, or substitution of a synthetic tether for HOPS, strikingly increases the Km for Qc to several hundred nM. With dilute HOPS, Sec18 returns the Km for Qc to low nM. In contrast, HOPS concentration and Sec18 have no effect on Qb-SNARE recognition. Just as Qc is required for fusion but not for the initial assembly of SNAREs in trans, impaired Qc recognition by limiting HOPS without Sec18 still allows substantial trans-SNARE assembly. Thus, in addition to the known Sec18 functions of disassembling SNARE complexes, oligomerizing Sec17 for membrane association, and allowing Sec17 to drive fusion without complete SNARE zippering, we report a fourth Sec18 function, the Sec17-independent binding of Sec18 to HOPS to enhance functional Qc-SNARE engagement.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
7
|
Hodgens C, Flaherty DT, Pullen AM, Khan I, English NJ, Gillan L, Rojas-Pierce M, Akpa BS. Model-based inference of a plant-specific dual role for HOPS in regulating guard cell vacuole fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565947. [PMID: 37986942 PMCID: PMC10659295 DOI: 10.1101/2023.11.07.565947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Stomata are the pores on a leaf surface that regulate gas exchange. Each stoma consists of two guard cells whose movements regulate pore opening and thereby control CO2 fixation and water loss. Guard cell movements depend in part on the remodeling of vacuoles, which have been observed to change from a highly fragmented state to a fused morphology during stomata opening. This change in morphology requires a membrane fusion mechanism that responds rapidly to environmental signals, allowing plants to respond to diurnal and stress cues. With guard cell vacuoles being both large and responsive to external signals, stomata represent a unique system in which to delineate mechanisms of membrane fusion. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. To resolve a counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we derived a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by applying simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening - as induced by two distinct chemical treatments - we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signaling pathway, promoting the formation of SNARE complexes, but limiting their activity.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - DT Flaherty
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Anne-Marie Pullen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Imran Khan
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Nolan J English
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Belinda S Akpa
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
8
|
Orr A, Wickner W. MARCKS Effector Domain, a reversible lipid ligand, illuminates late stages of membrane fusion. Mol Biol Cell 2023; 34:ar123. [PMID: 37672336 PMCID: PMC10846624 DOI: 10.1091/mbc.e23-06-0228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Yeast vacuolar HOPS tethers membranes, catalyzes trans-SNARE assembly between R- and Q-SNAREs, and shepherds SNAREs past early inhibition by Sec17. After partial SNARE zippering, fusion is driven slowly by either completion of SNARE zippering or by Sec17/Sec18, but rapid fusion needs zippering and Sec17/Sec18. Using reconstituted-vacuolar fusion, we find that MARCKS Effector Domain (MED) peptide, a lipid ligand, blocks fusion reversibly at a late reaction stage. The MED fusion blockade is overcome by either salt extraction, inactivation with the MED ligand calmodulin, or addition of Sec17/Sec18. During incubation with MED, SNAREs assemble stable complexes in trans and fusion becomes resistant to antibody to the Qa SNARE. When Q-SNAREs are preassembled, a synthetic tether can replace HOPS for fusion. With a synthetic tether, fusion needs both complete SNARE zippering and Sec17/Sec18 to overcome a MED block. In contrast, when SNARE domains are only two-third zippered, only HOPS will support Sec17/Sec18 driven fusion without needing complete zippering. HOPS thus remains engaged with SNAREs during zippering. MED facilitates the study of distinct fusion stages: tethering, initial trans-SNARE assembly and its sensitivity to Sec17, SNARE zippering, Sec17/Sec18 engagement, and lipid and lumenal mixing.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
9
|
Wickner W, Lopes K, Song H, Rizo J, Orr A. Efficient fusion requires a membrane anchor on the vacuolar Qa-SNARE. Mol Biol Cell 2023; 34:ar88. [PMID: 37314849 PMCID: PMC10398888 DOI: 10.1091/mbc.e23-02-0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
As a prelude to fusion, the R-SNARE on one membrane zippers with Qa-, Qb-, and Qc-SNAREs from its apposed fusion partner, forming a four-helical bundle that draws the two membranes together. Because Qa- and Qb-SNAREs are anchored to the same membrane and are adjacent in the 4-SNARE bundle, their two anchors might be redundant. Using the recombinant pure protein catalysts of yeast vacuole fusion, we now report that the specific distribution of transmembrane (TM) anchors on the Q-SNAREs is critical for efficient fusion. A TM anchor on the Qa-SNARE supports rapid fusion even when the other two Q-SNAREs are unanchored, while a TM anchor on the Qb-SNARE is dispensable and is insufficient for rapid fusion as the sole Q-SNARE anchor. This does not depend on which specific TM domain is attached to the Qa-SNARE but rather is due to the Qa-SNARE being anchored per se. The need for Qa-SNARE anchoring is even seen when the homotypic fusion and vacuole protein sorting protein (HOPS), the physiological catalyst of tethering and SNARE assembly, is replaced by an artificial tether. The need for a Qa TM anchor is thus a fundamental property of vacuolar SNARE zippering-induced fusion and may reflect the need for the Qa juxtamembrane (JxQa) region to be anchored between its SNARE and TM domains. This requirement for Qa-SNARE anchoring and correct JxQa position is bypassed by Sec17/Sec18, exploiting a platform of partially zippered SNAREs. Because Qa is the only synaptic Q-SNARE with a TM anchor, the need for Qa-specific anchoring may reflect a general requirement for SNARE-mediated fusion.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Karina Lopes
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Insmed, Inc, Lebanon, NH 03756
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
10
|
Orr A, Wickner W. PI3P regulates multiple stages of membrane fusion. Mol Biol Cell 2023; 34:ar17. [PMID: 36735517 PMCID: PMC10011722 DOI: 10.1091/mbc.e22-10-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The conserved catalysts of intracellular membrane fusion are Rab-family GTPases, effector complexes that bind Rabs for membrane tethering, SNARE proteins of the R, Qa, Qb, and Qc families, and SNARE chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. Yeast vacuole fusion is regulated by phosphatidylinositol-3-phosphate (PI3P). PI3P binds directly to the vacuolar Qc-SNARE and to HOPS, the vacuolar tethering/SM complex. We now report several distinct functions of PI3P in fusion. PI3P binds the N-terminal PX domain of the Qc-SNARE to enhance its engagement for fusion. Even when Qc has been preassembled with the Qa- and Qb-SNAREs, PI3P still promotes trans-SNARE assembly and fusion between these 3Q proteoliposomes and those with R-SNARE, whether with the natural HOPS tether or with a synthetic tether. With HOPS, efficient trans-SNARE complex formation needs PI3P on the 3Q-SNARE proteoliposomes, in cis to the Qc. PI3P is also needed for HOPS to confer resistance to Sec17/Sec18. With a synthetic tether, fusion is supported by PI3P on either fusion partner membrane, but this fusion is blocked by Sec17/Sec18. PI3P thus supports multiple stages of fusion: the engagement of the Qc-SNARE, trans-SNARE complex formation with preassembled Q-SNAREs, HOPS protection of SNARE complexes from Sec17/Sec18, and fusion per se after tethering and Q-SNARE assembly.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
11
|
Abstract
Membrane fusion is driven by Sec17, Sec18, and SNARE zippering. Sec17 bound to SNAREs promotes fusion through its membrane-proximal N-terminal apolar loop domain. At its membrane-distal end, Sec17 serves as a high-affinity receptor for Sec18. At that distance from the fusion site, it has been unclear how Sec18 can aid Sec17 to promote fusion. We now report that Sec18, with ATPγS, lowers the Km of Sec17 for fusion. A C-terminal and membrane-distal Sec17 mutation, L291A,L292A, diminishes Sec17 affinity for Sec18. High levels of wild-type Sec17 or Sec17-L291AL292A show equivalent fusion without Sec18, but Sec18 causes far less fusion enhancement with low levels of Sec17-L291AL292A than with wild-type Sec17. Another mutant, Sec17-F21SM22S, has reduced N-loop apolarity. Only very high levels of this mutant protein support fusion, but Sec18 still lowers the apparent fusion Km for Sec17-F21SM22S. Thus Sec18 stimulates fusion through Sec17 and acts at the well-described interface between Sec18 and Sec17. ATP acts as a ligand to activate Sec18 for Sec17-dependent fusion, but ATP hydrolysis is not required. Even without SNAREs, Sec18 and Sec17 exhibit interdependent stable association with lipids, with several Sec17 bound for each Sec18 hexamer, explaining how Sec18 stabilization of surface-concentrated clusters of Sec17 lowers the Sec17 Km for assembly with SNAREs. Each of the associations, between SNARE complex, Sec18, Sec17, and lipid, helps assemble the fusion machinery.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755,*Address correspondence to: William Wickner ()
| |
Collapse
|
12
|
Langemeyer L, Ungermann C. Vesicle transport: Exocyst follows PIP 2 to tether membranes. Curr Biol 2022; 32:R748-R750. [PMID: 35820387 DOI: 10.1016/j.cub.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A new study uses reconstituted, functional octameric exocyst complex to provide new insights into the assembly of this tethering complex and reveal how the activity of the lipid kinase PIP5K1C stimulated by Arf6 on exocytic vesicles allows for exocyst-mediated tethering at the plasma membrane.
Collapse
Affiliation(s)
- Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section and Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 13, 49076 Osnabrück, Germany.
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section and Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 13, 49076 Osnabrück, Germany.
| |
Collapse
|
13
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
14
|
Orr A, Song H, Wickner W. Fusion with wild-type SNARE domains is controlled by juxtamembrane domains, transmembrane anchors, and Sec17. Mol Biol Cell 2022; 33:ar38. [PMID: 35171720 PMCID: PMC9282010 DOI: 10.1091/mbc.e21-11-0583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Membrane fusion requires tethers, SNAREs of R, Qa, Qb, and Qc families, and chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. SNAREs have N-domains, SNARE domains that zipper into 4-helical RQaQbQc coiled coils, a short juxtamembrane (Jx) domain, and (often) a C-terminal transmembrane anchor. We reconstitute fusion with purified components from yeast vacuoles, where the HOPS protein combines tethering and SM functions. The vacuolar Rab, lipids, and R-SNARE activate HOPS to bind Q-SNAREs and catalyze trans-SNARE associations. With SNAREs initially disassembled, as they are on the organelle, we now report that R- and Qa-SNAREs require their physiological juxtamembrane (Jx) regions for fusion. Swap of the Jx domain between the R- and Qa-SNAREs blocks fusion after SNARE association in trans. This block is bypassed by either Sec17, which drives fusion without requiring complete SNARE zippering, or transmembrane-anchored Qb-SNARE in complex with Qa. The abundance of the trans-SNARE complex is not the sole fusion determinant, as it is unaltered by Sec17, Jx swap, or the Qb-transmembrane anchor. The sensitivity of fusion to Jx swap in the absence of a Qb transmembrane anchor is inherent to the SNAREs, because it remains when a synthetic tether replaces HOPS.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| |
Collapse
|
15
|
SNARE proteins: zip codes in vesicle targeting? Biochem J 2022; 479:273-288. [PMID: 35119456 PMCID: PMC8883487 DOI: 10.1042/bcj20210719] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic.
Collapse
|
16
|
Torng T, Wickner W. Phosphatidylinositol and phosphatidylinositol-3-phosphate activate HOPS to catalyze SNARE assembly, allowing small headgroup lipids to support the terminal steps of membrane fusion. Mol Biol Cell 2021; 32:ar19. [PMID: 34495682 PMCID: PMC8693972 DOI: 10.1091/mbc.e21-07-0373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular membrane fusion requires Rab GTPases, tethers, SNAREs of the R, Qa, Qb, and Qc families, and SNARE chaperones of the Sec17 (SNAP), Sec18 (NSF), and SM (Sec1/Munc18) families. The vacuolar HOPS complex combines the functions of membrane tethering and SM catalysis of SNARE assembly. HOPS is activated for this catalysis by binding to the vacuolar lipids and Rab. Of the eight major vacuolar lipids, we now report that phosphatidylinositol and phosphatidylinositol-3-phosphate are required to activate HOPS for SNARE complex assembly. These lipids plus ergosterol also allow full trans-SNARE complex assembly, yet do not support fusion, which is reliant on either phosphatidylethanolamine (PE) or on phosphatidic acid (PA), phosphatidylserine (PS), and diacylglycerol (DAG). Fusion with a synthetic tether and without HOPS, or even without SNAREs, still relies on either PE or on PS, PA, and DAG. These lipids are thus required for the terminal bilayer rearrangement step of fusion, distinct from the lipid requirements for the earlier step of activating HOPS for trans-SNARE assembly.
Collapse
Affiliation(s)
- Thomas Torng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
17
|
Song H, Wickner WT. Fusion of tethered membranes can be driven by Sec18/NSF and Sec17/αSNAP without HOPS. eLife 2021; 10:73240. [PMID: 34698639 PMCID: PMC8560088 DOI: 10.7554/elife.73240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Yeast vacuolar membrane fusion has been reconstituted with R, Qa, Qb, and Qc-family SNAREs, Sec17/αSNAP, Sec18/NSF, and the hexameric HOPS complex. HOPS tethers membranes and catalyzes SNARE assembly into RQaQbQc trans-complexes which zipper through their SNARE domains to promote fusion. Previously, we demonstrated that Sec17 and Sec18 can bypass the requirement of complete zippering for fusion (Song et al., 2021), but it has been unclear whether this activity of Sec17 and Sec18 is directly coupled to HOPS. HOPS can be replaced for fusion by a synthetic tether when the three Q-SNAREs are pre-assembled. We now report that fusion intermediates with arrested SNARE zippering, formed with a synthetic tether but without HOPS, support Sec17/Sec18-triggered fusion. This zippering-bypass fusion is thus a direct result of Sec17 and Sec18 interactions: with each other, with the platform of partially zippered SNAREs, and with the apposed tethered membranes. As these fusion elements are shared among all exocytic and endocytic traffic, Sec17 and Sec18 may have a general role in directly promoting fusion.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
18
|
Rizo J, Jaczynska K, Stepien KP. Molecular machinery turns full circle. eLife 2021; 10:70298. [PMID: 34137372 PMCID: PMC8211446 DOI: 10.7554/elife.70298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Two proteins called Sec17 and Sec18 may have a larger role in membrane fusion than is commonly assumed in textbook models.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Klaudia Jaczynska
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karolina P Stepien
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
19
|
Song H, Torng TL, Orr AS, Brunger AT, Wickner WT. Sec17/Sec18 can support membrane fusion without help from completion of SNARE zippering. eLife 2021; 10:67578. [PMID: 33944780 PMCID: PMC8143792 DOI: 10.7554/elife.67578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/αSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 can drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE that face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Thomas L Torng
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Amy S Orr
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Axel T Brunger
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology Stanford University, Stanford, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
20
|
A Rab prenyl membrane-anchor allows effector recognition to be regulated by guanine nucleotide. Proc Natl Acad Sci U S A 2020; 117:7739-7744. [PMID: 32213587 DOI: 10.1073/pnas.2000923117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Membrane fusion is catalyzed by conserved proteins R, Qa, Qb, and Qc SNAREs, which form tetrameric RQaQbQc complexes between membranes; SNARE chaperones of the SM, Sec17/αSNAP, and Sec18/NSF families; Rab-GTPases (Rabs); and Rab effectors. Rabs are anchored to membranes by C-terminal prenyl groups, but can also function when anchored by an apolar polypeptide. Rabs are regulated by GTPase-activating proteins (GAPs), activating the hydrolysis of bound GTP. We have reconstituted fusion with pure components from yeast vacuoles including SNAREs, the HOPS (homotypic fusion and vacuole protein sorting) tethering and SNARE-assembly complex, and the Rab Ypt7, bound to membranes by either C-terminal prenyl groups (Ypt7-pr) or a recombinant transmembrane anchor (Ypt7-tm). We now report that HOPS-dependent fusion occurs with Ypt7 anchored by either means, but only Ypt7-pr requires GTP for activation and is inactive either with bound GDP or without bound guanine nucleotide. In contrast, Ypt7-tm is constitutively active for HOPS-dependent fusion, independent of bound guanine nucleotide. Fusion inhibition by the GAP Gyp1-46 is not limited to Ypt7-tm with bound GTP, indicating that this GAP has an additional mode of regulating fusion. Phosphorylation of HOPS by the vacuolar kinase Yck3 renders fusion strictly dependent on GTP-activated Ypt7, whether bound to membranes by prenyl or transmembrane anchor. The binding of GTP or GDP constitutes a selective switch for Ypt7, but with Ypt7-tm, this switch is only read by HOPS after phosphorylation to P-HOPS by its physiological kinase Yck3. The prenyl anchor of Ypt7 allows both HOPS and P-HOPS to be regulated by Ypt7-bound guanine nucleotide.
Collapse
|
21
|
Torng T, Song H, Wickner W. Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly. Mol Biol Cell 2020; 31:1060-1068. [PMID: 32160129 PMCID: PMC7346727 DOI: 10.1091/mbc.e20-01-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular membrane fusion requires Rab-family GTPases, their effector tethers, soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, and SNARE chaperones of the Sec1/Munc18 (SM), Sec17/α-SNAP, and Sec18/NSF families. We have developed an assay using fluorescence resonance energy transfer to measure SNARE complex formation in real time. We now show that yeast vacuolar SNAREs assemble spontaneously into RQaQbQc complexes when the R- and Qa-SNAREs are concentrated in the same micelles or in cis on the same membrane. When SNAREs are free in solution or are tethered to distinct membranes, assembly requires catalysis by HOPS, the vacuolar SM and tethering complex. The Rab Ypt7 and vacuole lipids together allosterically activate the bound HOPS for catalyzing SNARE assembly, even if none of the SNAREs are membrane bound. HOPS-dependent fusion between proteoliposomes bearing R- or Qa-SNAREs shows a strict requirement for Ypt7 on the R-SNARE proteoliposomes but not on the Qa-SNARE proteoliposomes. This asymmetry is reflected in the strikingly different capacity of Ypt7 in cis to either the R- or Qa-SNARE to stimulate SNARE complex assembly. Membrane-bound Ypt7 activates HOPS to catalyze 4-SNARE complex assembly when it is on the same membrane as the R-SNARE but not the Qa-SNARE, thus explaining the asymmetric need for Ypt7 for fusion.
Collapse
Affiliation(s)
- Thomas Torng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
22
|
Song H, Orr AS, Lee M, Harner ME, Wickner WT. HOPS recognizes each SNARE, assembling ternary trans-complexes for rapid fusion upon engagement with the 4th SNARE. eLife 2020; 9:53559. [PMID: 31961324 PMCID: PMC6994237 DOI: 10.7554/elife.53559] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/19/2020] [Indexed: 01/23/2023] Open
Abstract
Yeast vacuole fusion requires R-SNARE, Q-SNAREs, and HOPS. A HOPS SM-family subunit binds the R- and Qa-SNAREs. We now report that HOPS binds each of the four SNAREs. HOPS catalyzes fusion when the Q-SNAREs are not pre-assembled, ushering them into a functional complex. Co-incubation of HOPS, proteoliposomes bearing R-SNARE, and proteoliposomes with any two Q-SNAREs yields a rapid-fusion complex with 3 SNAREs in a trans-assembly. The missing Q-SNARE then induces sudden fusion. HOPS can 'template' SNARE complex assembly through SM recognition of R- and Qa-SNAREs. Though the Qa-SNARE is essential for spontaneous SNARE assembly, HOPS also assembles a rapid-fusion complex between R- and QbQc-SNARE proteoliposomes in the absence of Qa-SNARE, awaiting Qa for fusion. HOPS-dependent fusion is saturable at low concentrations of each Q-SNARE, showing binding site functionality. HOPS thus tethers membranes and recognizes each SNARE, assembling R+Qa or R+QbQc rapid fusion intermediates.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Amy S Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Max E Harner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
23
|
A formal methods approach to predicting new features of the eukaryotic vesicle traffic system. ACTA INFORM 2019. [DOI: 10.1007/s00236-019-00357-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proc Natl Acad Sci U S A 2019; 116:23573-23581. [PMID: 31685636 DOI: 10.1073/pnas.1913985116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Membrane fusion at each organelle requires conserved proteins: Rab-GTPases, effector tethering complexes, Sec1/Munc18 (SM)-family SNARE chaperones, SNAREs of the R, Qa, Qb, and Qc families, and the Sec17/α-SNAP and ATP-dependent Sec18/NSF SNARE chaperone system. The basis of organelle-specific fusion, which is essential for accurate protein compartmentation, has been elusive. Rab family GTPases, SM proteins, and R- and Q-SNAREs may contribute to this specificity. We now report that the fusion supported by SNAREs alone is both inefficient and promiscuous with respect to organelle identity and to stimulation by SM family proteins or complexes. SNARE-only fusion is abolished by the disassembly chaperones Sec17 and Sec18. Efficient fusion in the presence of Sec17 and Sec18 requires a tripartite match between the organellar identities of the R-SNARE, the Q-SNAREs, and the SM protein or complex. The functions of Sec17 and Sec18 are not simply negative regulation; they stimulate fusion with either vacuolar SNAREs and their SM protein complex HOPS or endoplasmic reticulum/cis-Golgi SNAREs and their SM protein Sly1. The fusion complex of each organelle is assembled from its own functionally matching pieces to engage Sec17/Sec18 for fusion stimulation rather than inhibition.
Collapse
|
25
|
Abstract
Many bacterial species contain dynamin-like proteins (DLPs). However, so far the functional mechanisms of bacterial DLPs are poorly understood. DynA in Bacillus subtilis is a 2-headed DLP, mediating nucleotide-independent membrane tethering in vitro and contributing to the innate immunity of bacteria against membrane stress and phage infection. Here, we employed content mixing and lipid mixing assays in reconstituted systems to study if DynA induces membrane full fusion, characterize its subunits in membrane fusion, and further test the possibility that GTP hydrolysis of DynA may act on the fusion-through-hemifusion pathway. Our results based on fluorescence resonance energy transfer indicated that DynA could induce aqueous content mixing even in the absence of GTP. Moreover, DynA-induced membrane fusion in vitro is a thermo-promoted slow process, and it has phospholipid and membrane curvature preferences. The D1 part of DynA is crucial for membrane binding and fusion, whereas D2 subunit plays a role in facilitating membrane fusion. Surprisingly, digestion of DynA mediated an instant rise of content exchange, supporting the assumption that disassembly of DynA is a driving force for fusion-through-hemifusion. DynA is a rare example of a membrane fusion catalyst that lacks a transmembrane domain and hence sets this system apart from well-characterized fusion systems such as the soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes.-Guo, L., Bramkamp, M. Bacterial dynamin-like protein DynA mediates lipid and content mixing.
Collapse
Affiliation(s)
- Lijun Guo
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Abstract
R-SNAREs (soluble N-ethylmaleimide-sensitive factor receptor), Q-SNAREs, and Sec1/Munc18 (SM)-family proteins are essential for membrane fusion in exocytic and endocytic trafficking. The yeast vacuolar tethering/SM complex HOPS (homotypic fusion and vacuole protein sorting) increases the fusion of membranes bearing R-SNARE to those with 3Q-SNAREs far more than it enhances their trans-SNARE pairings. We now report that the fusion of these proteoliposomes is also supported by GST-PX or GST-FYVE, recombinant dimeric proteins which tether by binding the phosphoinositides in both membranes. GST-PX is purely a tether, as it supports fusion without SNARE recognition. GST-PX tethering supports the assembly of new, active SNARE complexes rather than enhancing the function of the fusion-inactive SNARE complexes which had spontaneously formed in the absence of a tether. When SNAREs are more disassembled, as by Sec17, Sec18, and ATP (adenosine triphosphate), HOPS is required, and GST-PX does not suffice. We propose a working model where tethering orients SNARE domains for parallel, active assembly.
Collapse
|
27
|
Ungermann C, Kümmel D. Structure of membrane tethers and their role in fusion. Traffic 2019; 20:479-490. [DOI: 10.1111/tra.12655] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Christian Ungermann
- Biochemistry Section, Department of Biology/ChemistryUniversity of Osnabrück Osnabrück Germany
- Center for Cellular Nanoanalytics (CellNanOs)University of Osnabrück Osnabrück Germany
| | - Daniel Kümmel
- Biochemistry & Structural Biology Section, Institute of BiochemistryUniversity of Münster Münster Germany
| |
Collapse
|
28
|
Structural dynamics and transient lipid binding of synaptobrevin-2 tune SNARE assembly and membrane fusion. Proc Natl Acad Sci U S A 2019; 116:8699-8708. [PMID: 30975750 PMCID: PMC6500178 DOI: 10.1073/pnas.1813194116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The vesicular membrane protein synaptobrevin-2 (syb-2) plays an important role in vesicular membrane fusion at the neuronal synapse by participating in the dynamic formation of the SNARE complex. Here, by a combination of solution-state NMR and fluorescence spectroscopy, we find that syb-2 in its prefusion form, before forming the SNARE complex, shows high internal flexibility, characteristic for an intrinsically disordered protein (IDP). But it also reveals an increasing rigidity from the N to C terminus that correlates with an observed increase in lipid binding affinity as well as the known increased rate for C-terminal compared with N-terminal SNARE zippering. This provides a mechanistic perspective on how an IDP and its lipid interactions can lower the energy barrier for membrane fusion. Intrinsically disordered proteins (IDPs) and their conformational transitions play an important role in neurotransmitter release at the neuronal synapse. Here, the SNARE proteins are essential by forming the SNARE complex that drives vesicular membrane fusion. While it is widely accepted that the SNARE proteins are intrinsically disordered in their monomeric prefusion form, important mechanistic aspects of this prefusion conformation and its lipid interactions, before forming the SNARE complex, are not fully understood at the molecular level and remain controversial. Here, by a combination of NMR and fluorescence spectroscopy methods, we find that vesicular synaptobrevin-2 (syb-2) in its monomeric prefusion conformation shows high flexibility, characteristic for an IDP, but also a high dynamic range and increasing rigidity from the N to C terminus. The gradual increase in rigidity correlates with an increase in lipid binding affinity from the N to C terminus. It could also explain the increased rate for C-terminal SNARE zippering, known to be faster than N-terminal SNARE zippering. Also, the syb-2 SNARE motif and, in particular, the linker domain show transient and weak membrane binding, characterized by a high off-rate and low (millimolar) affinity. The transient membrane binding of syb-2 may compensate for the repulsive forces between the two membranes and/or the SNARE motifs and the membranes, helping to destabilize the hydrophilic-hydrophobic boundary in the bilayer. Therefore, we propose that optimum flexibility and membrane binding of syb-2 regulate SNARE assembly and minimize repulsive forces during membrane fusion.
Collapse
|
29
|
Starr ML, Sparks RP, Arango AS, Hurst LR, Zhao Z, Lihan M, Jenkins JL, Tajkhorshid E, Fratti RA. Phosphatidic acid induces conformational changes in Sec18 protomers that prevent SNARE priming. J Biol Chem 2019; 294:3100-3116. [PMID: 30617180 PMCID: PMC6398130 DOI: 10.1074/jbc.ra118.006552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/31/2018] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cell homeostasis requires transfer of cellular components among organelles and relies on membrane fusion catalyzed by SNARE proteins. Inactive SNARE bundles are reactivated by hexameric N-ethylmaleimide-sensitive factor, vesicle-fusing ATPase (Sec18/NSF)-driven disassembly that enables a new round of membrane fusion. We previously found that phosphatidic acid (PA) binds Sec18 and thereby sequesters it from SNAREs and that PA dephosphorylation dissociates Sec18 from the membrane, allowing it to engage SNARE complexes. We now report that PA also induces conformational changes in Sec18 protomers and that hexameric Sec18 cannot bind PA membranes. Molecular dynamics (MD) analyses revealed that the D1 and D2 domains of Sec18 contain PA-binding sites and that the residues needed for PA binding are masked in hexameric Sec18. Importantly, these simulations also disclosed that a major conformational change occurs in the linker region between the D1 and D2 domains, which is distinct from the conformational changes that occur in hexameric Sec18 during SNARE priming. Together, these findings indicate that PA regulates Sec18 function by altering its architecture and stabilizing membrane-bound Sec18 protomers.
Collapse
Affiliation(s)
- Matthew L Starr
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Robert P Sparks
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andres S Arango
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Logan R Hurst
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zhiyu Zhao
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Muyun Lihan
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jermaine L Jenkins
- the Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642
| | - Emad Tajkhorshid
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Rutilio A Fratti
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
- the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
30
|
Prinslow EA, Stepien KP, Pan YZ, Xu J, Rizo J. Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and αSNAP. eLife 2019; 8:38880. [PMID: 30657450 PMCID: PMC6353594 DOI: 10.7554/elife.38880] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter release requires formation of trans-SNARE complexes between the synaptic vesicle and plasma membranes, which likely underlies synaptic vesicle priming to a release-ready state. It is unknown whether Munc18-1, Munc13-1, complexin-1 and synaptotagmin-1 are important for priming because they mediate trans-SNARE complex assembly and/or because they prevent trans-SNARE complex disassembly by NSF-αSNAP, which can lead to de-priming. Here we show that trans-SNARE complex formation in the presence of NSF-αSNAP requires both Munc18-1 and Munc13-1, as proposed previously, and is facilitated by synaptotagmin-1. Our data also show that Munc18-1, Munc13-1, complexin-1 and likely synaptotagmin-1 contribute to maintaining assembled trans-SNARE complexes in the presence of NSF-αSNAP. We propose a model whereby Munc18-1 and Munc13-1 are critical not only for mediating vesicle priming but also for precluding de-priming by preventing trans-SNARE complex disassembly; in this model, complexin-1 also impairs de-priming, while synaptotagmin-1 may assist in priming and hinder de-priming.
Collapse
Affiliation(s)
- Eric A Prinslow
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
31
|
Abstract
Membrane fusion mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-family proteins is an essential process for intracellular membrane trafficking in all eukaryotic cells, which delivers proteins and lipids to their appropriate subcellular membrane compartments such as organelles and plasma membrane. The molecular basis of SNARE-mediated membrane fusion has been revealed by studying fusion of reconstituted proteoliposomes bearing purified SNARE-family proteins and chemically defined lipid species. This chapter describes the detailed experimental protocols for (1) purification of recombinant SNARE-family and SM (Sec1/Munc18-family) proteins in the yeast Saccharomyces cerevisiae; (2) preparation of reconstituted proteoliposomes bearing purified yeast SNARE proteins; and (3) developing an assay to monitor lipid mixing between reconstituted SNARE-bearing proteoliposomes. Lipid mixing assays for reconstituted SNARE-bearing proteoliposomes are useful for evaluating the intrinsic capacity of SNARE-family proteins to directly catalyze membrane fusion and to determine the specificity of membrane fusion.
Collapse
Affiliation(s)
- Joji Mima
- Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
32
|
Starr ML, Fratti RA. The Participation of Regulatory Lipids in Vacuole Homotypic Fusion. Trends Biochem Sci 2018; 44:546-554. [PMID: 30587414 DOI: 10.1016/j.tibs.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022]
Abstract
In eukaryotes, organelles and vesicles modulate their contents and identities through highly regulated membrane fusion events. Membrane trafficking and fusion are carried out through a series of stages that lead to the formation of SNARE complexes between cellular compartment membranes to trigger fusion. Although the protein catalysts of membrane fusion are well characterized, their response to their surrounding microenvironment, provided by the lipid composition of the membrane, remains to be fully understood. Membranes are composed of bulk lipids (e.g., phosphatidylcholine), as well as regulatory lipids that undergo constant modifications by kinases, phosphatases, and lipases. These lipids include phosphoinositides, diacylglycerol, phosphatidic acid, and cholesterol/ergosterol. Here we describe the roles of these lipids throughout the stages of yeast vacuole homotypic fusion.
Collapse
Affiliation(s)
- Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci 2018; 27:1364-1391. [PMID: 29893445 DOI: 10.1002/pro.3445] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N-ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18-1 and Munc13-1 orchestrate SNARE complex formation in an NSF-SNAP-resistant manner by a mechanism whereby Munc18-1 binds to synaptobrevin and to a self-inhibited "closed" conformation of syntaxin-1, thus forming a template to assemble the SNARE complex, and Munc13-1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin-1. Synaptotagmin-1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
34
|
Morlon-Guyot J, El Hajj H, Martin K, Fois A, Carrillo A, Berry L, Burchmore R, Meissner M, Lebrun M, Daher W. A proteomic analysis unravels novel CORVET and HOPS proteins involved in Toxoplasma gondii
secretory organelles biogenesis. Cell Microbiol 2018; 20:e12870. [DOI: 10.1111/cmi.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Hiba El Hajj
- Departments of Internal Medicine and Experimental Pathology, Immunology and Microbiology; American University of Beirut; Beirut Lebanon
| | - Kevin Martin
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Adrien Fois
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Amandine Carrillo
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | | | - Markus Meissner
- Wellcome Centre for Molecular Parasitology; University of Glasgow; Glasgow UK
- Department of Veterinary Sciences, Experimental Parasitology; Ludwig-Maximilians-Universität München; Munich Germany
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM; Université de Montpellier; Montpellier France
| |
Collapse
|
35
|
Ouahoud S, Fiet MD, Martínez-Montañés F, Ejsing CS, Kuss O, Roden M, Markgraf DF. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy. J Cell Sci 2018; 131:jcs.213876. [PMID: 29678904 DOI: 10.1242/jcs.213876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/13/2018] [Indexed: 01/19/2023] Open
Abstract
Lipid droplets (LDs) store neutral lipids and are integrated into a cellular metabolic network that relies on functional coupling with various organelles. Factors mediating efficient coupling and mechanisms regulating them remain unknown. Here, we conducted a global screen in S. cerevisiae to identify genes required for the functional coupling of LDs and other organelles during LD consumption. We show that LD utilization during growth resumption is coupled to vacuole homeostasis. ESCRT-, V-ATPase- and vacuole protein sorting-mutants negatively affect LD consumption, independent of lipophagy. Loss of ESCRT function leads to the accumulation of LD-derived diacylglycerol (DAG), preventing its conversion into phosphatidic acid (PA) and membrane lipids. In addition, channeling of DAG from LD-proximal sites to the vacuole is blocked. We demonstrate that utilization of LDs requires intact vacuolar signaling via TORC1 and its downstream effector Sit4p. These data suggest that vacuolar status is coupled to LD catabolism via TORC1-mediated regulation of DAG-PA interconversion and explain how cells coordinate organelle dynamics throughout cell growth.
Collapse
Affiliation(s)
- Sarah Ouahoud
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Mitchell D Fiet
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany .,German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany
| |
Collapse
|
36
|
Harner M, Wickner W. Assembly of intermediates for rapid membrane fusion. J Biol Chem 2017; 293:1346-1352. [PMID: 29208657 DOI: 10.1074/jbc.ra117.000791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Membrane fusion is essential for intracellular protein sorting, cell growth, hormone secretion, and neurotransmission. Rapid membrane fusion requires tethering and Sec1-Munc18 (SM) function to catalyze R-, Qa-, Qb-, and Qc-SNARE complex assembly in trans, as well as SNARE engagement by the SNARE-binding chaperone Sec17/αSNAP. The hexameric vacuolar HOPS (homotypic fusion and vacuole protein sorting) complex in the yeast Saccharomyces cerevisiae tethers membranes through its affinities for the membrane Rab GTPase Ypt7. HOPS also has specific affinities for the vacuolar SNAREs and catalyzes SNARE complex assembly, but the order of their assembly into a 4-SNARE complex is unclear. We now report defined assembly intermediates on the path to membrane fusion. We found that a prefusion intermediate will assemble with HOPS and the R, Qa, and Qc SNAREs, and that this assembly undergoes rapid fusion upon addition of Qb and Sec17. HOPS-tethered membranes and all four vacuolar SNAREs formed a complex that underwent an even more dramatic burst of fusion upon Sec17p addition. These findings provide initial insights into an ordered fusion pathway consisting of the following intermediates and events: 1) Rab- and HOPS-tethered membranes, 2) a HOPS:R:Qa:Qc trans-complex, 3) a HOPS:4-SNARE trans-complex, 4) an engagement with Sec17, and 5) the rapid lipid rearrangements during fusion. In conclusion, our results indicate that the R:Qa:Qc complex forms in the context of membrane, Ypt7, HOPS, and trans-SNARE assembly and serves as a functional intermediate for rapid fusion after addition of the Qb-SNARE and Sec17 proteins.
Collapse
Affiliation(s)
- Max Harner
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844
| | - William Wickner
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844
| |
Collapse
|
37
|
Langemeyer L, Perz A, Kümmel D, Ungermann C. A guanine nucleotide exchange factor (GEF) limits Rab GTPase-driven membrane fusion. J Biol Chem 2017; 293:731-739. [PMID: 29184002 DOI: 10.1074/jbc.m117.812941] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/14/2017] [Indexed: 11/06/2022] Open
Abstract
The identity of organelles in the endomembrane system of any eukaryotic cell critically depends on the correctly localized Rab GTPase, which binds effectors and thus promotes membrane remodeling or fusion. However, it is still unresolved which factors are required and therefore define the localization of the correct fusion machinery. Using SNARE-decorated proteoliposomes that cannot fuse on their own, we now demonstrate that full fusion activity can be achieved by just four soluble factors: a soluble SNARE (Vam7), a guanine nucleotide exchange factor (GEF, Mon1-Ccz1), a Rab-GDP dissociation inhibitor (GDI) complex (prenylated Ypt7-GDI), and a Rab effector complex (HOPS). Our findings reveal that the GEF Mon1-Ccz1 is necessary and sufficient for stabilizing prenylated Ypt7 on membranes. HOPS binding to Ypt7-GTP then drives SNARE-mediated fusion, which is fully GTP-dependent. We conclude that an entire fusion cascade can be controlled by a GEF.
Collapse
Affiliation(s)
| | | | - Daniel Kümmel
- Structural Biochemistry, Department of Biology/Chemistry, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | |
Collapse
|
38
|
Munc18a clusters SNARE-bearing liposomes prior to trans-SNARE zippering. Biochem J 2017; 474:3339-3354. [PMID: 28827281 DOI: 10.1042/bcj20170494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Sec1-Munc18 (SM) proteins co-operate with SNAREs {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] receptors} to mediate membrane fusion in eukaryotic cells. Studies of Munc18a/Munc18-1/Stxbp1 in neurotransmission suggest that SM proteins accelerate fusion kinetics primarily by activating the partially zippered trans-SNARE complex. However, accumulating evidence has argued for additional roles for SM proteins in earlier steps in the fusion cascade. Here, we investigate the function of Munc18a in reconstituted exocytic reactions mediated by neuronal and non-neuronal SNAREs. We show that Munc18a plays a direct role in promoting proteoliposome clustering, underlying vesicle docking during exocytosis. In the three different fusion reactions examined, Munc18a-dependent clustering requires an intact N-terminal peptide (N-peptide) motif in syntaxin that mediates the binary interaction between syntaxin and Munc18a. Importantly, clustering is preserved under inhibitory conditions that abolish both trans-SNARE complex formation and lipid mixing, indicating that Munc18a promotes membrane clustering in a step that is independent of trans-SNARE zippering and activation.
Collapse
|
39
|
Wickner W, Rizo J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 2017; 28:707-711. [PMID: 28292915 PMCID: PMC5349777 DOI: 10.1091/mbc.e16-07-0517] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 11/11/2022] Open
Abstract
Recent studies suggest revisions to the SNARE paradigm of membrane fusion. Membrane tethers and/or SNAREs recruit proteins of the Sec 1/Munc18 family to catalyze SNARE assembly into trans-complexes. SNARE-domain zippering draws the bilayers into immediate apposition and provides a platform to position fusion triggers such as Sec 17/α-SNAP and/or synaptotagmin, which insert their apolar "wedge" domains into the bilayers, initiating the lipid rearrangements of fusion.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 )
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390 )
| |
Collapse
|
40
|
Schwartz ML, Nickerson DP, Lobingier BT, Plemel RL, Duan M, Angers CG, Zick M, Merz AJ. Sec17 (α-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo. eLife 2017; 6:27396. [PMID: 28925353 PMCID: PMC5643095 DOI: 10.7554/elife.27396] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023] Open
Abstract
Zippering of SNARE complexes spanning docked membranes is essential for most intracellular fusion events. Here, we explore how SNARE regulators operate on discrete zippering states. The formation of a metastable trans-complex, catalyzed by HOPS and its SM subunit Vps33, is followed by subsequent zippering transitions that increase the probability of fusion. Operating independently of Sec18 (NSF) catalysis, Sec17 (α-SNAP) either inhibits or stimulates SNARE-mediated fusion. If HOPS or Vps33 are absent, Sec17 inhibits fusion at an early stage. Thus, Vps33/HOPS promotes productive SNARE assembly in the presence of otherwise inhibitory Sec17. Once SNAREs are partially zipped, Sec17 promotes fusion in either the presence or absence of HOPS, but with faster kinetics when HOPS is absent, suggesting that ejection of the SM is a rate-limiting step.
Collapse
Affiliation(s)
- Matthew L Schwartz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Daniel P Nickerson
- Department of Biology, California State University, San Bernardino, United States
| | - Braden T Lobingier
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Mengtong Duan
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Cortney G Angers
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Alexey J Merz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
41
|
Song H, Orr A, Duan M, Merz AJ, Wickner W. Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. eLife 2017; 6:e26646. [PMID: 28718762 PMCID: PMC5540461 DOI: 10.7554/elife.26646] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
At physiological protein levels, the slow HOPS- and SNARE-dependent fusion which occurs upon complete SNARE zippering is stimulated by Sec17 and Sec18:ATP without requiring ATP hydrolysis. To stimulate, Sec17 needs its central residues which bind the 0-layer of the SNARE complex and its N-terminal apolar loop. Adding a transmembrane anchor to the N-terminus of Sec17 bypasses this requirement for apolarity of the Sec17 loop, suggesting that the loop functions for membrane binding rather than to trigger bilayer rearrangement. In contrast, when complete C-terminal SNARE zippering is prevented, fusion strictly requires Sec18 and Sec17, and the Sec17 apolar loop has functions beyond membrane anchoring. Thus Sec17 and Sec18 act twice in the fusion cycle, binding to trans-SNARE complexes to accelerate fusion, then hydrolyzing ATP to disassemble cis-SNARE complexes.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| | - Mengtong Duan
- Departments of Biochemistry, University of Washington, Seattle, United States
| | - Alexey J Merz
- Departments of Biochemistry, University of Washington, Seattle, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| |
Collapse
|
42
|
Song H, Wickner W. A short region upstream of the yeast vacuolar Qa-SNARE heptad-repeats promotes membrane fusion through enhanced SNARE complex assembly. Mol Biol Cell 2017. [PMID: 28637767 PMCID: PMC5555656 DOI: 10.1091/mbc.e17-04-0218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane fusion requires that four SNARE domains form a complex. A short conserved region just upstream of the Qa-SNARE heptad-repeat domain promotes SNARE-complex assembly and hence fusion. Whereas SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor) heptad-repeats are well studied, SNAREs also have upstream N-domains of indeterminate function. The assembly of yeast vacuolar SNAREs into complexes for fusion can be studied in chemically defined reactions. Complementary proteoliposomes bearing a Rab:GTP and either the vacuolar R-SNARE or one of the three integrally anchored Q-SNAREs were incubated with the tethering/SM protein complex HOPS and the two other soluble SNAREs (lacking a transmembrane anchor) or their SNARE heptad-repeat domains. Fusion required a transmembrane-anchored R-SNARE on one membrane and an anchored Q-SNARE on the other. The N-domain of the Qb-SNARE was completely dispensable for fusion. Whereas fusion can be promoted by very high concentrations of the Qa-SNARE heptad-repeat domain alone, at physiological concentrations the Qa-SNARE heptad-repeat domain alone has almost no fusion activity. The 181–198 region of Qa, immediately upstream of the SNARE heptad-repeat domain, is required for normal fusion activity with HOPS. This region is needed for normal SNARE complex assembly.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
43
|
Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat Cell Biol 2017. [PMID: 28628083 DOI: 10.1038/ncb3560] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that undergo frequent fusion and fission. Optic atrophy 1 (OPA1) is an essential GTPase protein for both mitochondrial inner membrane (IM) fusion and cristae morphology. Under mitochondria-stress conditions, membrane-anchored L-OPA1 is proteolytically cleaved to form peripheral S-OPA1, leading to the selection of damaged mitochondria for mitophagy. However, molecular details of the selective mitochondrial fusion are less well understood. Here, we showed that L-OPA1 and cardiolipin (CL) cooperate in heterotypic mitochondrial IM fusion. We reconstituted an in vitro membrane fusion reaction using purified human L-OPA1 protein expressed in silkworm, and found that L-OPA1 on one side of the membrane and CL on the other side are sufficient for fusion. GTP-independent membrane tethering through L-OPA1 and CL primes the subsequent GTP-hydrolysis-dependent fusion, which can be modulated by the presence of S-OPA1. These results unveil the most minimal intracellular membrane fusion machinery. In contrast, independent of CL, a homotypic trans-OPA1 interaction mediates membrane tethering, thereby supporting the cristae structure. Thus, multiple OPA1 functions are modulated by local CL conditions for regulation of mitochondrial morphology and quality control.
Collapse
|
44
|
Orr A, Song H, Rusin SF, Kettenbach AN, Wickner W. HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Mol Biol Cell 2017; 28:975-983. [PMID: 28148647 PMCID: PMC5385945 DOI: 10.1091/mbc.e16-10-0743] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 11/15/2022] Open
Abstract
Sec1/Munc18 proteins are essential for fusion but of unknown function. The yeast vacuole SM protein is a subunit of the HOPS tethering complex. HOPS catalyzes the interdependent association among the vacuole SNAREs at a membrane surface, and the associated SNAREs can be disassembled by the physiological system Sec17/Sec18/ATP. Rab GTPases, their effectors, SNAREs of the R, Qa, Qb, and Qc families, and SM SNARE-binding proteins catalyze intracellular membrane fusion. At the vacuole/lysosome, they are integrated by the homotypic fusion and vacuole protein sorting (HOPS) complex. Two HOPS subunits bind vacuolar Rabs for tethering, another binds the Qc SNARE, and a fourth HOPS subunit, an SM protein, has conserved grooves that bind R- and Qa-SNARE domains. Spontaneous quaternary SNARE complex assembly is very slow. We report an assay of SNARE complex assembly that does not rely on fusion and for which tethering does not coenrich the four SNAREs. HOPS is required in this assay for rapid SNARE complex assembly. Optimal assembly needs HOPS, lipid membranes to which the R- or Qa-SNARE and Ypt7:GTP are integrally bound, and each of the other three SNAREs. Each SNARE assembles into this complex relying on the others, suggesting four-SNARE complex assembly rather than direct binding of each to HOPS. SNAREs can be disassociated by Sec 17/Sec 18/ATP, completing a catalyzed cycle of SNARE assembly and disassembly.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Scott F Rusin
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Arminja N Kettenbach
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755.,Norris Cotton Cancer Center, Lebanon, NH 03766
| | - William Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
45
|
Bernardino de la Serna J, Schütz GJ, Eggeling C, Cebecauer M. There Is No Simple Model of the Plasma Membrane Organization. Front Cell Dev Biol 2016; 4:106. [PMID: 27747212 PMCID: PMC5040727 DOI: 10.3389/fcell.2016.00106] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022] Open
Abstract
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.
Collapse
Affiliation(s)
- Jorge Bernardino de la Serna
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell Harwell, UK
| | - Gerhard J Schütz
- Institute of Applied Physics, Technische Universität Wien Wien, Austria
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Headley Way, UK
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J.Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences Prague, Czech Republic
| |
Collapse
|
46
|
D'Agostino M, Risselada HJ, Mayer A. Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. EMBO Rep 2016; 17:1590-1608. [PMID: 27644261 DOI: 10.15252/embr.201642209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/12/2016] [Indexed: 11/09/2022] Open
Abstract
SNAREs fuse membranes in several steps. Trans-SNARE complexes juxtapose membranes, induce hemifused stalk structures, and open the fusion pore. A recent penetration model of fusion proposed that SNAREs force the hydrophilic C-termini of their transmembrane domains through the hydrophobic core of the membrane(s). In contrast, the indentation model suggests that the C-termini open the pore by locally compressing and deforming the stalk. Here we test these models in the context of yeast vacuole fusion. Addition of small hydrophilic tags renders bilayer penetration by the C-termini energetically unlikely. It preserves fusion activity, however, arguing against the penetration model. Addition of large protein tags to the C-termini permits SNARE activation, trans-SNARE pairing, and hemifusion but abolishes pore opening. Fusion proceeds if the tags are detached from the membrane by a hydrophilic spacer or if only one side of the trans-SNARE complex carries a protein tag. Thus, both sides of a trans-SNARE complex can drive pore opening. Our results are consistent with an indentation model in which multiple SNARE C-termini cooperate in opening the fusion pore by locally deforming the inner leaflets.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Herre Jelger Risselada
- Department of Theoretical Physics, Georg-August University, Goettingen, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| |
Collapse
|
47
|
Wu Y, Takar M, Cuentas-Condori AA, Graham TR. Neo1 and phosphatidylethanolamine contribute to vacuole membrane fusion in Saccharomyces cerevisiae. CELLULAR LOGISTICS 2016; 6:e1228791. [PMID: 27738552 PMCID: PMC5058351 DOI: 10.1080/21592799.2016.1228791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/05/2016] [Accepted: 08/19/2016] [Indexed: 02/04/2023]
Abstract
NEO1 is an essential gene in budding yeast and belongs to a highly conserved subfamily of P-type ATPase genes that encode phospholipid flippases. Inactivation of temperature sensitive neo1ts alleles produces pleiomorphic defects in the secretory and endocytic pathways, including fragmented vacuoles. A screen for multicopy suppressors of neo1-2ts growth defects yielded YPT7, which encodes a Rab7 homolog involved in SNARE-dependent vacuolar fusion. YPT7 suppressed the vacuole fragmentation phenotype of neo1-2, but did not suppress Golgi-associated protein trafficking defects. Neo1 localizes to Golgi and endosomal membranes and was only observed in the vacuole membrane, where Ypt7 localizes, in retromer mutants or when highly overexpressed in wild-type cells. Phosphatidylethanolamine (PE) has been implicated in Ypt7-dependent vacuolar membrane fusion in vitro and is a potential transport substrate of Neo1. Strains deficient in PE synthesis (psd1Δ psd2Δ) displayed fragmented vacuoles and the neo1-2 fragmented vacuole phenotype was also suppressed by overexpression of PSD2, encoding a phosphatidylserine decarboxylase that produces PE at endosomes. In contrast, neo1-2 was not suppressed by overexpression of VPS39, an effector of Ypt7 that forms a membrane contact site potentially involved in PE transfer between vacuoles and mitochondria. These results support the crucial role of PE in vacuole membrane fusion and implicate Neo1 in concentrating PE in the cytosolic leaflet of Golgi and endosomes, and ultimately the vacuole membrane.
Collapse
Affiliation(s)
- Yuantai Wu
- Department of Biological Sciences, Vanderbilt University , Nashville, TN, USA
| | - Mehmet Takar
- Department of Biological Sciences, Vanderbilt University , Nashville, TN, USA
| | | | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University , Nashville, TN, USA
| |
Collapse
|
48
|
Zick M, Wickner W. Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement. Mol Biol Cell 2016; 27:2590-7. [PMID: 27385334 PMCID: PMC4985260 DOI: 10.1091/mbc.e16-04-0230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 11/11/2022] Open
Abstract
In vitro reconstitution is a powerful approach to deciphering membrane fusion. However, current reconstitutions do not adequately mimic the physiological process. This study takes a big step toward overcoming those shortcomings, achieving fusion with SNARE densities comparable to the native membrane. In vitro reconstitution of homotypic yeast vacuole fusion from purified components enables detailed study of membrane fusion mechanisms. Current reconstitutions have yet to faithfully replicate the fusion process in at least three respects: 1) The density of SNARE proteins required for fusion in vitro is substantially higher than on the organelle. 2) Substantial lysis accompanies reconstituted fusion. 3) The Rab GTPase Ypt7 is essential in vivo but often dispensable in vitro. Here we report that changes in fatty acyl chain composition dramatically lower the density of SNAREs that are required for fusion. By providing more physiological lipids with a lower phase transition temperature, we achieved efficient fusion with SNARE concentrations as low as on the native organelle. Although fused proteoliposomes became unstable at elevated SNARE concentrations, releasing their content after fusion had occurred, reconstituted proteoliposomes with substantially reduced SNARE concentrations fused without concomitant lysis. The Rab GTPase Ypt7 is essential on both membranes for proteoliposome fusion to occur at these SNARE concentrations. Strikingly, it was only critical for Ypt7 to be GTP loaded on membranes bearing the R-SNARE Nyv1, whereas the bound nucleotide of Ypt7 was irrelevant on membranes bearing the Q-SNAREs Vam3 and Vti1.
Collapse
Affiliation(s)
- Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
49
|
Organelle acidification negatively regulates vacuole membrane fusion in vivo. Sci Rep 2016; 6:29045. [PMID: 27363625 PMCID: PMC4929563 DOI: 10.1038/srep29045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector.
Collapse
|
50
|
Abstract
Intracellular membrane fusion is mediated in most cases by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). However, the assembly of such complexes in vitro is inefficient, and their uncatalysed disassembly is undetectably slow. Here, we focus on the cellular machinery that orchestrates assembly and disassembly of SNARE complexes, thereby regulating processes ranging from vesicle trafficking to organelle fusion to neurotransmitter release. Rapid progress is being made on many fronts, including the development of more realistic cell-free reconstitutions, the application of single-molecule biophysics, and the elucidation of X-ray and high-resolution electron microscopy structures of the SNARE assembly and disassembly machineries 'in action'.
Collapse
Affiliation(s)
- Richard W Baker
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Present address: Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|