1
|
Calugaru K, Yu EY, Huang S, González-Rodríguez N, Coloma J, Lue NF. The yeast CST and Polα/primase complexes act in concert to ensure proper telomere maintenance and protection. Nucleic Acids Res 2025; 53:gkaf245. [PMID: 40245101 PMCID: PMC11997776 DOI: 10.1093/nar/gkaf245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Polα/primase (PP), the polymerase that initiates DNA synthesis at replication origins, also completes the task of genome duplication by synthesizing the telomere C-strand under the control of the CTC1/CDC13-STN1-TEN1 (CST) complex. Using cryo-electron microscopy (cryo-EM) structures of the human CST-Polα/primase-DNA complex as guides in conjunction with AlphaFold modeling, we identified structural elements in yeast CST and PP that promote complex formation. Mutating these structures in Candida glabrata Stn1, Ten1, Pri1, and Pri2 abrogated the stimulatory activity of CST on PP in vitro, supporting the functional relevance of the physical contacts in cryo-EM structures as well as the conservation of mechanisms between yeast and humans. Introducing these mutations into C. glabrata yielded two distinct groups of mutants. One group exhibited progressive, telomerase-dependent telomere elongation without evidence of DNA damage. The other manifested slow growth, telomere length heterogeneity, single-stranded DNA accumulation and elevated C-circles, which are indicative of telomere deprotection. These telomere deprotection phenotypes are altered or suppressed by mutations in multiple DNA damage response (DDR) and DNA repair factors. We conclude that in yeast, the telomerase inhibition and telomere protection function previously ascribed to the CST complex are mediated jointly by both CST and Polα/primase, highlighting the critical importance of a replicative DNA polymerase in telomere regulation.
Collapse
Affiliation(s)
- Kimberly Calugaru
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Sophie Huang
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Nayim González-Rodríguez
- Structural Biology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Javier Coloma
- Structural Biology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| |
Collapse
|
2
|
Wysong BC, Schuck PL, Sridharan M, Carrison S, Murakami Y, Balakrishnan L, Stewart JA. Human CST Stimulates Base Excision Repair to Prevent the Accumulation of Oxidative DNA Damage. J Mol Biol 2024; 436:168672. [PMID: 38908783 PMCID: PMC11864811 DOI: 10.1016/j.jmb.2024.168672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity. Telomeres and other G-rich regions are strongly predisposed to oxidative DNA damage in the form of 8-oxoguanines, which are typically repaired by the base-excision repair (BER) pathway. Moreover, recent studies suggest that CST functions in the repair of oxidative DNA lesions. Therefore, we tested whether CST interacts with and regulates BER protein activity. Here, we show that CST robustly stimulates proteins involved in BER, including OGG1, Pol β, APE1, and LIGI, on both telomeric and non-telomeric DNA substrates. Biochemical reconstitution of the pathway indicates that CST stimulates BER. Finally, knockout of STN1 or CTC1 leads to increased levels of 8-oxoguanine, suggesting defective BER in the absence of CST. Combined, our results define an undiscovered function of CST in BER, where it acts as a stimulatory factor to promote efficient genome-wide oxidative repair.
Collapse
Affiliation(s)
- Brandon C Wysong
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Madhumita Sridharan
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Sophie Carrison
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Yuichihiro Murakami
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA.
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, USA; Department of Biology, Western Kentucky University, Bowling Green, KY, USA.
| |
Collapse
|
3
|
Petrík T, Brzáčová Z, Sepšiová R, Veljačiková K, Tomáška Ľ. Pros and cons of auxin-inducible degron as a tool for regulated depletion of telomeric proteins from Saccharomyces cerevisiae. Yeast 2024; 41:499-512. [PMID: 38923089 DOI: 10.1002/yea.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
To assess the immediate responses of the yeast cells to telomere defects, we employed the auxin-inducible degron (AID) enabling rapid depletion of essential (Rap1, Tbf1, Cdc13, Stn1) and non-essential (Est1, Est2, Est3) telomeric proteins. Using two variants of AID systems, we show that most of the studied proteins are depleted within 10-30 min after the addition of auxin. As expected, depletion of essential proteins yields nondividing cells, provided that the strains are cultivated in an appropriate carbon source and at temperatures lower than 28°C. Cells with depleted Cdc13 and Stn1 exhibit extension of the single-stranded overhang as early as 3 h after addition of auxin. Notably, prolonged incubation of strains carrying AID-tagged essential proteins in the presence of auxin resulted in the appearance of auxin-resistant clones, caused at least in part by mutations within the OsTIR1 gene. Upon assessing the length of telomeres in strains carrying AID-tagged non-essential telomeric proteins, we found that the depletion of Est1 and Est3 leads to auxin-dependent telomere shortening. However, the EST3-AID strain had slightly shorter telomeres even in the absence of auxin. Furthermore, a strain with the AID-tagged version of Est2 (catalytic subunit of telomerase) not only had shorter telomeres in the absence of auxin but also did not exhibit auxin-dependent telomere shortening. Our results demonstrate that while AID can be useful in assessing immediate cellular responses to telomere deprotection, each strain must be carefully evaluated for the effect of AID-tag on the properties of the protein of interest.
Collapse
Affiliation(s)
- Tomáš Petrík
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Zuzana Brzáčová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Katarína Veljačiková
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Singh P, Gazy I, Kupiec M. Control of telomere length in yeast by SUMOylated PCNA and the Elg1 PCNA unloader. eLife 2023; 12:RP86990. [PMID: 37530521 PMCID: PMC10396338 DOI: 10.7554/elife.86990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Telomeres cap and protect the linear eukaryotic chromosomes. Telomere length is determined by an equilibrium between positive and negative regulators of telomerase activity. A systematic screen for yeast mutants that affect telomere length maintenance in the yeast Saccharomyces cerevisiae revealed that mutations in any of ~500 genes affects telomere length. One of the genes that, when mutated, causes telomere elongation is ELG1, which encodes an unloader of PCNA, the processivity factor for replicative DNA polymerases. PCNA can undergo SUMOylation on two conserved residues, K164 and K127, or ubiquitination at lysine 164. These modifications have already been implicated in genome stability processes. We report that SUMOylated PCNA acts as a signal that positively regulates telomerase activity. We also uncovered physical interactions between Elg1 and the CST (Cdc13-Stn1-Ten) complex and addressed the mechanism by which Elg1 and Stn1 negatively regulates telomere elongation, coordinated by SUMO. We discuss these results with respect to how chromosomal replication and telomere elongation are coordinated.
Collapse
Affiliation(s)
- Pragyan Singh
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Gazy
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
6
|
Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint. Curr Genet 2022; 68:165-179. [PMID: 35150303 PMCID: PMC8976814 DOI: 10.1007/s00294-022-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13–Stn1–Ten1 complex, circumvents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity at replication forks advancing through challenging templates.
Collapse
|
7
|
Malyavko AN, Petrova OA, Zvereva MI, Polshakov VI, Dontsova OA. Telomere length regulation by Rif1 protein from Hansenula polymorpha. eLife 2022; 11:75010. [PMID: 35129114 PMCID: PMC8820739 DOI: 10.7554/elife.75010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Rif1 is a large multifaceted protein involved in various processes of DNA metabolism – from telomere length regulation and replication to double-strand break repair. The mechanistic details of its action, however, are often poorly understood. Here, we report functional characterization of the Rif1 homologue from methylotrophic thermotolerant budding yeast Hansenula polymorpha DL-1. We show that, similar to other yeast species, H. polymorpha Rif1 suppresses telomerase-dependent telomere elongation. We uncover two novel modes of Rif1 recruitment at H. polymorpha telomeres: via direct DNA binding and through the association with the Ku heterodimer. Both of these modes (at least partially) require the intrinsically disordered N-terminal extension – a region of the protein present exclusively in yeast species. We also demonstrate that Rif1 binds Stn1 and promotes its accumulation at telomeres in H. polymorpha.
Collapse
Affiliation(s)
- Alexander N Malyavko
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Petrova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Zvereva
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
8
|
Single-Run Catalysis and Kinetic Control of Human Telomerase Holoenzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:109-129. [PMID: 34962637 DOI: 10.1007/5584_2021_676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Genome stability in eukaryotic cells relies on proper maintenance of telomeres at the termini of linear chromosomes. Human telomerase holoenzyme is required for maintaining telomere stability in a majority of proliferative human cells, making it essential for control of cell division and aging, stem cell maintenance, and development and survival of tumor or cancer. A dividing human cell usually contains a limited number of active telomerase holoenzymes. Recently, we discovered that a human telomerase catalytic site undergoes catalysis-dependent shut-off and an inactive site can be reactivated by cellular fractions containing human intracellular telomerase-activating factors (hiTAFs). Such ON-OFF control of human telomerase activity suggests a dynamic switch between inactive and active pools of the holoenzymes. In this review, we will link the ON-OFF control to the thermodynamic and kinetic properties of human telomerase holoenzymes, and discuss its potential contributions to the maintenance of telomere length equilibrium. This treatment suggests probabilistic fluctuations in the number of active telomerase holoenzymes as well as the number of telomeres that are extended in a limited number of cell cycles, and may be an important component of a fully quantitative model for the dynamic control of telomerase activities and telomere lengths in different types of eukaryotic cells.
Collapse
|
9
|
Wu ZJ, Liu JC, Man X, Gu X, Li TY, Cai C, He MH, Shao Y, Lu N, Xue X, Qin Z, Zhou JQ. Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. eLife 2020; 9:53144. [PMID: 32755541 PMCID: PMC7406354 DOI: 10.7554/elife.53144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Telomeres define the natural ends of eukaryotic chromosomes and are crucial for chromosomal stability. The budding yeast Cdc13, Stn1 and Ten1 proteins form a heterotrimeric complex, and the inactivation of any of its subunits leads to a uniformly lethal phenotype due to telomere deprotection. Although Cdc13, Stn1 and Ten1 seem to belong to an epistasis group, it remains unclear whether they function differently in telomere protection. Here, we employed the single-linear-chromosome yeast SY14, and surprisingly found that the deletion of CDC13 leads to telomere erosion and intrachromosome end-to-end fusion, which depends on Rad52 but not Yku. Interestingly, the emergence frequency of survivors in the SY14 cdc13Δ mutant was ~29 fold higher than that in either the stn1Δ or ten1Δ mutant, demonstrating a predominant role of Cdc13 in inhibiting telomere fusion. Chromosomal fusion readily occurred in the telomerase-null SY14 strain, further verifying the default role of intact telomeres in inhibiting chromosome fusion.
Collapse
Affiliation(s)
- Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Man
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Gu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ting-Yi Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Cai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Lu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Xue
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
10
|
Structural insights into telomere protection and homeostasis regulation by yeast CST complex. Nat Struct Mol Biol 2020; 27:752-762. [PMID: 32661422 DOI: 10.1038/s41594-020-0459-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/22/2020] [Indexed: 01/29/2023]
Abstract
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance. Despite extensive studies, only structural information of individual domains of CST is available; the architecture of CST still remains unclear. Here, we report crystal structures of Kluyveromyces lactis Cdc13-telomeric-DNA, Cdc13-Stn1 and Stn1-Ten1 complexes and propose an integrated model depicting how CST assembles and plays its roles at telomeres. Surprisingly, two oligonucleotide/oligosaccharide-binding (OB) folds of Cdc13 (OB2 and OB4), previously believed to mediate Cdc13 homodimerization, actually form a stable intramolecular interaction. This OB2-OB4 module of Cdc13 is required for the Cdc13-Stn1 interaction that assembles CST into an architecture with a central ring-like core and multiple peripheral modules in a 2:2:2 stoichiometry. Functional analyses indicate that this unique CST architecture is essential for both telomere capping and homeostasis regulation. Overall, our results provide fundamentally valuable structural information regarding the CST complex and its roles in telomere biology.
Collapse
|
11
|
Cacchione S, Cenci G, Raffa GD. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J Mol Biol 2020; 432:4305-4321. [PMID: 32512004 DOI: 10.1016/j.jmb.2020.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Giovanni Cenci
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy; Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy.
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
12
|
Mennie AK, Moser BA, Hoyle A, Low RS, Tanaka K, Nakamura TM. Tpz1 TPP1 prevents telomerase activation and protects telomeres by modulating the Stn1-Ten1 complex in fission yeast. Commun Biol 2019; 2:297. [PMID: 31396577 PMCID: PMC6686008 DOI: 10.1038/s42003-019-0546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/15/2019] [Indexed: 12/24/2022] Open
Abstract
In both mammalian and fission yeast cells, conserved shelterin and CST (CTC1-STN1-TEN1) complexes play critical roles in protection of telomeres and regulation of telomerase, an enzyme required to overcome the end replication problem. However, molecular details that govern proper coordination among shelterin, CST, and telomerase have not yet been fully understood. Here, we establish a conserved SWSSS motif, located adjacent to the Lys242 SUMOylation site in the fission yeast shelterin subunit Tpz1, as a new functional regulatory element for telomere protection and telomere length homeostasis. The SWSSS motif works redundantly with Lys242 SUMOylation to promote binding of Stn1-Ten1 at telomere and sub-telomere regions to protect against single-strand annealing (SSA)-dependent telomere fusions, and to prevent telomerase accumulation at telomeres. In addition, we provide evidence that the SWSSS motif defines an unanticipated role of Tpz1 in limiting telomerase activation at telomeres to prevent uncontrolled telomere elongation.
Collapse
Affiliation(s)
- Amanda K. Mennie
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Bettina A. Moser
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Alice Hoyle
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Ross S. Low
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
- Present Address: Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ United Kingdom
| | - Katsunori Tanaka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337 Japan
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
13
|
Rad6-Bre1 mediated histone H2Bub1 protects uncapped telomeres from exonuclease Exo1 in Saccharomyces cerevisiae. DNA Repair (Amst) 2018; 72:64-76. [PMID: 30254011 DOI: 10.1016/j.dnarep.2018.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/22/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Histone H2B lysine 123 mono-ubiquitination (H2Bub1), catalyzed by Rad6 and Bre1 in Saccharomyces cerevisiae, modulates chromatin structure and affects diverse cellular functions. H2Bub1 plays roles in telomeric silencing and telomere replication. Here, we have explored a novel role of H2Bub1 in telomere protection at uncapped telomeres in yku70Δ and cdc13-1 cells. Deletion of RAD6 or BRE1, or mutation of H2BK123R enhances the temperature sensitivity of both yku70Δ and cdc13-1 telomere capping mutants. Consistently, BRE1 deletion increases accumulation of telomeric single-stranded DNA (ssDNA) in yku70Δ and cdc13-1 cells, and EXO1 deletion improves the growth of yku70Δ bre1Δ and cdc13-1 bre1Δ cells and decreases ssDNA accumulation. Additionally, deletion of BRE1 exacerbates the rate of entry into senescence of yku70Δ mre11Δ cells with telomere defects, and increases the recombination of subtelomeric Y' element that is required for telomere maintenance and survivor generation. Furthermore, Exo1 contributes to the abrupt senescence of yku70Δ mre11Δ bre1Δ cells, and Rad51 is essential for Y' recombination to generate survivors. Finally, deletion of BRE1 or mutation of H2BK123R results in nucleosome instability at subtelomeric regions. Collectively, this study provides a mechanistic link between H2Bub1-mediated chromatin structure and telomere protection after telomere uncapping.
Collapse
|
14
|
Overlapping open reading frames strongly reduce human and yeast STN1 gene expression and affect telomere function. PLoS Genet 2018; 14:e1007523. [PMID: 30067734 PMCID: PMC6089452 DOI: 10.1371/journal.pgen.1007523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/13/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022] Open
Abstract
The levels of telomeric proteins, such as telomerase, can have profound effects on telomere function, cell division and human disease. Here we demonstrate how levels of Stn1, a component of the conserved telomere capping CST (Cdc13, Stn1, Ten1) complex, are tightly regulated by an upstream overlapping open reading frame (oORF). In budding yeast inactivation of the STN1 oORF leads to a 10-fold increase in Stn1 levels, reduced telomere length, suppression of cdc13-1 and enhancement of yku70Δ growth defects. The STN1 oORF impedes translation of the main ORF and reduces STN1 mRNA via the nonsense mediated mRNA decay (NMD) pathway. Interestingly, the homologs of the translation re-initiation factors, MCT-1Tma20/DENRTma22 also reduce Stn1 levels via the oORF. Human STN1 also contains oORFs, which reduce expression, demonstrating that oORFs are a conserved mechanism for reducing Stn1 levels. Bioinformatic analyses of the yeast and human transcriptomes show that oORFs are more underrepresented than upstream ORFs (uORFs) and associated with lower protein abundance. We propose that oORFs are an important mechanism to control expression of a subset of the proteome. Telomeres are special structures at the ends of linear chromosomes that help protect the genetic information that chromosomes carry. The levels of telomere proteins are important and can affect diseases such as cancer and ageing. The CST complex is comprised of three proteins and binds human and yeast telomeres. Levels of Stn1, a very low abundance protein, are of particular importance to telomere function in yeast cells. There are many ways to affect protein levels but little was understood about how Stn1 levels are controlled. We show that levels of Stn1 in yeast and human cells are reduced by the presence of an upstream overlapping open reading frame (oORF). Cells lacking the oORF have short telomeres and increased fitness when combined with a defect in the Stn1-partner protein, Cdc13. Interestingly, in another telomere defective context, yku70Δ cells missing the STN1-oORF are less fit. We show that the oORF reduces Stn1 levels by stimulating nonsense mediated mRNA decay and by reducing translation. More generally, genome-wide computational analysis shows that oORFs were strongly selected against during evolution and when present are associated with low protein abundance. We propose that oORFs are a powerful mechanism to regulate protein expression and function.
Collapse
|
15
|
Mersaoui SY, Wellinger RJ. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Curr Genet 2018; 65:109-118. [PMID: 30066139 DOI: 10.1007/s00294-018-0871-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Chromosome stability relies on an adequate length and complete replication of telomeres, the physical ends of chromosomes. Telomeres are composed of short direct repeat DNA and the associated nucleoprotein complex is essential for providing end-stability. In addition, the so-called end-replication problem of the conventional replication requires that telomeres be elongated by a special mechanism which, in virtually all organisms, is based by a reverse transcriptase, called telomerase. Although, at the conceptual level, telomere functions are highly similar in most organisms, the telomeric nucleoprotein composition appears to diverge significantly, in particular if it is compared between mammalian and budding yeast cells. However, over the last years, the CST complex has emerged as a central hub for telomere replication in most systems. Composed of three proteins, it is related to the highly conserved replication protein A complex, and in all systems studied, it coordinates telomerase-based telomere elongation with lagging-strand DNA synthesis. In budding yeast, the Cdc13 protein of this complex also is essential for telomerase recruitment and this specialisation is accompanied by additional regulatory adaptations. Based on recent results obtained in yeast, here, we review these issues and present an updated telomere replication hypothesis. We speculate that the similarities between systems far outweigh the differences, once we detach ourselves from the historic descriptions of the mechanisms in the various organisms.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
16
|
Vps74 Connects the Golgi Apparatus and Telomeres in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:1807-1816. [PMID: 29593073 PMCID: PMC5940170 DOI: 10.1534/g3.118.200172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In mammalian cell culture, the Golgi apparatus fragment upon DNA damage. GOLPH3, a Golgi component, is a phosphorylation target of DNA-PK after DNA damage and contributes to Golgi fragmentation. The function of the yeast (Saccharomyces cerevisiae) ortholog of GOLPH3, Vps74, in the DNA damage response has been little studied, although genome-wide screens suggested a role at telomeres. In this study we investigated the role of Vps74 at telomeres and in the DNA damage response. We show that Vps74 decreases the fitness of telomere defective cdc13-1 cells and contributes to the fitness of yku70Δ cells. Importantly, loss of Vps74 in yku70Δ cells exacerbates the temperature dependent growth defects of these cells in a Chk1 and Mec1-dependent manner. Furthermore, Exo1 reduces the fitness of vps74Δ yku70Δ cells suggesting that ssDNA contributes to the fitness defects of vps74Δ yku70Δ cells. Systematic genetic interaction analysis of vps74Δ, yku70Δ and yku70Δ vps74Δ cells suggests that vps74Δ causes a milder but similar defect to that seen in yku70Δ cells. vps74Δ cells have slightly shorter telomeres and loss of VPS74 in yku70Δ or mre11Δ cells further shortens the telomeres of these cells. Interestingly, loss of Vps74 leads to increased levels of Stn1, a partner of Cdc13 in the CST telomere capping complex. Overexpression of Stn1 was previously shown to cause telomere shortening, suppression of cdc13-1 and enhancement of yku70Δ growth defects, suggesting that increased levels of Stn1 may be the route by which Vps74 affects telomere function. These results establish Vps74 as a novel regulator of telomere biology.
Collapse
|
17
|
Ganduri S, Lue NF. STN1-POLA2 interaction provides a basis for primase-pol α stimulation by human STN1. Nucleic Acids Res 2017; 45:9455-9466. [PMID: 28934486 PMCID: PMC5766158 DOI: 10.1093/nar/gkx621] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/06/2017] [Indexed: 01/12/2023] Open
Abstract
The CST (CTC1–STN1–TEN1) complex mediates critical functions in maintaining telomere DNA and overcoming genome-wide replication stress. A conserved biochemical function of the CST complex is its primase-Pol α (PP) stimulatory activity. In this report, we demonstrate the ability of purified human STN1 alone to promote PP activity in vitro. We show that this regulation is mediated primarily by the N-terminal OB fold of STN1, but does not require the DNA-binding activity of this domain. Rather, we observed a strong correlation between the PP-stimulatory activity of STN1 variants and their abilities to bind POLA2. Remarkably, the main binding target of STN1 in POLA2 is the latter's central OB fold domain. In the substrate-free structure of PP, this domain is positioned so as to block nucleic acid entry to the Pol α active site. Thus the STN1–POLA2 interaction may promote the necessary conformational change for nucleic acid delivery to Pol α and subsequent DNA synthesis. A disease-causing mutation in human STN1 engenders a selective defect in POLA2-binding and PP stimulation, indicating that these activities are critical for the in vivo function of STN1. Our findings have implications for the molecular mechanisms of PP, STN1 and STN1-related molecular pathology.
Collapse
Affiliation(s)
- Swapna Ganduri
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medical College, New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
18
|
Gopalakrishnan V, Tan CR, Li S. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication. Cell Cycle 2017. [PMID: 28650257 DOI: 10.1080/15384101.2017.1312235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomere homeostasis is central to maintaining genomic integrity. In budding yeast, Cdk1 phosphorylates the telomere-specific binding protein, Cdc13, promoting the recruitment of telomerase to telomere and thereby telomere elongation. Cdc13 is also an integral part of the CST (Cdc13-Stn1-Ten1) complex that is essential for telomere capping and counteracting telomerase-dependent telomere elongation. Therefore, telomere length homeostasis is a balance between telomerase-extendable and CST-unextendable states. In our earlier work, we showed that Cdk1 also phosphorylates Stn1 which occurs sequentially following Cdc13 phosphorylation during cell cycle progression. This stabilizes the CST complex at the telomere and results in telomerase inhibition. Hence Cdk1-dependent phosphorylations of Stn1 acts like a molecular switch that drives Cdc13 to complex with Stn1-Ten1 rather than with telomerase. However, the underlying mechanism of how a single cyclin-dependent kinase phosphorylates Cdc13 and Stn1 in temporally distinct windows is largely unclear. Here, we show that S phase cyclins are necessary for telomere maintenance. The S phase and mitotic cyclins facilitate Cdc13 and Stn1 phosphorylation respectively, to exert opposing outcomes at the telomere. Thus, our results highlight a previously unappreciated role for cyclins in telomere replication.
Collapse
Affiliation(s)
| | - Cherylin Ruiling Tan
- b Department of Biological Sciences , National University of Singapore , Singapore
| | - Shang Li
- a Program in Cancer and Stem Cell Biology , Duke-NUS Medical School , Singapore.,c Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
19
|
Cesena D, Cassani C, Rizzo E, Lisby M, Bonetti D, Longhese MP. Regulation of telomere metabolism by the RNA processing protein Xrn1. Nucleic Acids Res 2017; 45:3860-3874. [PMID: 28160602 PMCID: PMC5397203 DOI: 10.1093/nar/gkx072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Telomeric DNA consists of repetitive G-rich sequences that terminate with a 3΄-ended single stranded overhang (G-tail), which is important for telomere extension by telomerase. Several proteins, including the CST complex, are necessary to maintain telomere structure and length in both yeast and mammals. Emerging evidence indicates that RNA processing factors play critical, yet poorly understood, roles in telomere metabolism. Here, we show that the lack of the RNA processing proteins Xrn1 or Rrp6 partially bypasses the requirement for the CST component Cdc13 in telomere protection by attenuating the activation of the DNA damage checkpoint. Xrn1 is necessary for checkpoint activation upon telomere uncapping because it promotes the generation of single-stranded DNA. Moreover, Xrn1 maintains telomere length by promoting the association of Cdc13 to telomeres independently of ssDNA generation and exerts this function by downregulating the transcript encoding the telomerase inhibitor Rif1. These findings reveal novel roles for RNA processing proteins in the regulation of telomere metabolism with implications for genome stability in eukaryotes.
Collapse
Affiliation(s)
- Daniele Cesena
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Emanuela Rizzo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
20
|
Shyian M, Mattarocci S, Albert B, Hafner L, Lezaja A, Costanzo M, Boone C, Shore D. Budding Yeast Rif1 Controls Genome Integrity by Inhibiting rDNA Replication. PLoS Genet 2016; 12:e1006414. [PMID: 27820830 PMCID: PMC5098799 DOI: 10.1371/journal.pgen.1006414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
The Rif1 protein is a negative regulator of DNA replication initiation in eukaryotes. Here we show that budding yeast Rif1 inhibits DNA replication initiation at the rDNA locus. Absence of Rif1, or disruption of its interaction with PP1/Glc7 phosphatase, leads to more intensive rDNA replication. The effect of Rif1-Glc7 on rDNA replication is similar to that of the Sir2 deacetylase, and the two would appear to act in the same pathway, since the rif1Δ sir2Δ double mutant shows no further increase in rDNA replication. Loss of Rif1-Glc7 activity is also accompanied by an increase in rDNA repeat instability that again is not additive with the effect of sir2Δ. We find, in addition, that the viability of rif1Δ cells is severely compromised in combination with disruption of the MRX or Ctf4-Mms22 complexes, both of which are implicated in stabilization of stalled replication forks. Significantly, we show that removal of the rDNA replication fork barrier (RFB) protein Fob1, alleviation of replisome pausing by deletion of the Tof1/Csm3 complex, or a large deletion of the rDNA repeat array all rescue this synthetic growth defect of rif1Δ cells lacking in addition either MRX or Ctf4-Mms22 activity. These data suggest that the repression of origin activation by Rif1-Glc7 is important to avoid the deleterious accumulation of stalled replication forks at the rDNA RFB, which become lethal when fork stability is compromised. Finally, we show that Rif1-Glc7, unlike Sir2, has an important effect on origin firing outside of the rDNA locus that serves to prevent activation of the DNA replication checkpoint. Our results thus provide insights into a mechanism of replication control within a large repetitive chromosomal domain and its importance for the maintenance of genome stability. These findings may have important implications for metazoans, where large blocks of repetitive sequences are much more common.
Collapse
Affiliation(s)
- Maksym Shyian
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Stefano Mattarocci
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Lukas Hafner
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Michael Costanzo
- University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Charlie Boone
- University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - David Shore
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
21
|
Bhattacharjee A, Stewart J, Chaiken M, Price CM. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function. PLoS Genet 2016; 12:e1006342. [PMID: 27690379 PMCID: PMC5045167 DOI: 10.1371/journal.pgen.1006342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/06/2016] [Indexed: 12/03/2022] Open
Abstract
Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. Mammalian CST (CTC1/STN1/TEN1) is a three protein complex that aids in several steps during telomere replication and has genome-wide roles during recovery from replication fork stalling. Loss of CST leads to abnormalities in telomere structure, genomic instability and defects in chromosome segregation. Currently, we do not understand how CST acts to ensure the resolution of very diverse types of replication problem. We set out to address this question by studying a mutant form of CST that was predicted to alter DNA binding. The mutations are in the STN1 subunit. In vivo, the STN1 mutant (STN1-OBM) affects some aspects of CST function while others are normal. The effects of STN1-OBM do not align with the telomeric versus non-telomeric roles of CST but instead separate out different aspects of CST function at telomeres and genome-wide. In vitro binding studies indicate that STN1-OBM disrupts binding to only short DNA substrates. Since CST is likely to encounter DNA substrates of varied length and structure in vivo as it helps resolve different replication problems, this finding starts to explain why STN1-OBM affects only certain aspects of CST function. Our in vitro binding studies also shed light on how CST actually binds to DNA and they suggest a novel “dynamic binding model” that provides a mechanistic explanation for how CST helps resolve a diverse array of replication problems to preserve genome stability.
Collapse
Affiliation(s)
- Anukana Bhattacharjee
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jason Stewart
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail: (JS); (CMP)
| | - Mary Chaiken
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Carolyn M. Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail: (JS); (CMP)
| |
Collapse
|
22
|
Moradi-Fard S, Sarthi J, Tittel-Elmer M, Lalonde M, Cusanelli E, Chartrand P, Cobb JA. Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE. PLoS Genet 2016; 12:e1006268. [PMID: 27564449 PMCID: PMC5001636 DOI: 10.1371/journal.pgen.1006268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/28/2016] [Indexed: 11/19/2022] Open
Abstract
SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3-1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.
Collapse
Affiliation(s)
- Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Sarthi
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mireille Tittel-Elmer
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maxime Lalonde
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Emilio Cusanelli
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Rice C, Skordalakes E. Structure and function of the telomeric CST complex. Comput Struct Biotechnol J 2016; 14:161-7. [PMID: 27239262 PMCID: PMC4872678 DOI: 10.1016/j.csbj.2016.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
Telomeres comprise the ends of eukaryotic chromosomes and are essential for cell proliferation and genome maintenance. Telomeres are replicated by telomerase, a ribonucleoprotein (RNP) reverse transcriptase, and are maintained primarily by nucleoprotein complexes such as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, TPP1) and CST (Cdc13/Ctc1, Stn1, Ten1). The focus of this review is on the CST complex and its role in telomere maintenance. Although initially thought to be unique to yeast, it is now evident that the CST complex is present in a diverse range of organisms where it contributes to genome maintenance. The CST accomplishes these tasks via telomere capping and by regulating telomerase and DNA polymerase alpha-primase (polα-primase) access to telomeres, a process closely coordinated with the shelterin complex in most organisms. The goal of this review is to provide a brief but comprehensive account of the diverse, and in some cases organism-dependent, functions of the CST complex and how it contributes to telomere maintenance and cell proliferation.
Collapse
|
24
|
Wang F, Stewart J, Price CM. Human CST abundance determines recovery from diverse forms of DNA damage and replication stress. Cell Cycle 2015; 13:3488-98. [PMID: 25483097 DOI: 10.4161/15384101.2014.964100] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian CST (CTC1-STN1-TEN1) is a telomere-associated complex that functions in telomere duplex replication and fill-in synthesis of the telomeric C-strand following telomerase action. CST also facilitates genome-wide replication recovery after HU-induced fork stalling by increasing origin firing. CTC1 and STN1 were originally isolated as a DNA polymerase α stimulatory factor. Here we explore how CST abundance affects recovery from drugs that cause different types of DNA damage and replication stress. We show that recovery from HU and aphidicolin induced replication stress is increased by CST over-expression. Elevated CST increases dNTP incorporation and origin firing after HU release and decreases the incidence of anaphase bridges and micronuclei after aphidicolin removal. While the frequency of origin firing after HU release is proportional to CST abundance, the number of cells entering S-phase to initiate replication is unchanged by CST overexpression or STN1 depletion. Instead the CST-related changes in origin firing take place in cells that were already in S-phase at the time of HU addition, indicating that CST modulates firing of late or dormant origins. CST abundance also influences cell viability after treatment with HU, aphidicolin, MMS and camptothecin. Viability is increased by elevated CST and decreased by STN1 depletion, indicating that endogenous CST levels are limiting. However, CST abundance does not affect viability after MMC treatment. Thus, CST facilitates recovery from many, but not all, forms of exogenous DNA damage. Overall our results suggest that CST is needed in stoichiometric amounts to facilitate re-initiation of DNA replication at repaired forks and/or dormant origins.
Collapse
Affiliation(s)
- Feng Wang
- a Department of Cancer Biology ; University of Cincinnati ; Cincinnati , OH USA
| | | | | |
Collapse
|
25
|
Ikeda A, Muneoka T, Murakami S, Hirota A, Yabuki Y, Karashima T, Nakazono K, Tsuruno M, Pichler H, Shirahige K, Kodama Y, Shimamoto T, Mizuta K, Funato K. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis. J Cell Sci 2015; 128:2454-67. [PMID: 26045446 DOI: 10.1242/jcs.164160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.
Collapse
Affiliation(s)
- Atsuko Ikeda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Tetsuya Muneoka
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Suguru Murakami
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Ayaka Hirota
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Takefumi Karashima
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kota Nakazono
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Masahiro Tsuruno
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/2, Graz 8010, Austria
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo 113-0032, Japan
| | | | - Toshi Shimamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
26
|
Hu Z, Cools T, Kalhorzadeh P, Heyman J, De Veylder L. Deficiency of the Arabidopsis helicase RTEL1 triggers a SOG1-dependent replication checkpoint in response to DNA cross-links. THE PLANT CELL 2015; 27:149-61. [PMID: 25595823 PMCID: PMC4330584 DOI: 10.1105/tpc.114.134312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint.
Collapse
Affiliation(s)
- Zhubing Hu
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Pooneh Kalhorzadeh
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Jefri Heyman
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
27
|
The CDC13-STN1-TEN1 complex stimulates Pol α activity by promoting RNA priming and primase-to-polymerase switch. Nat Commun 2014; 5:5762. [PMID: 25503194 PMCID: PMC4269169 DOI: 10.1038/ncomms6762] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that Cdc13-Stn1-Ten1 (CST), an RPA-like ssDNA-binding complex, may regulate primase-Pol α (PP) activity at telomeres constitutively, and at other genomic locations under conditions of replication stress. Here we examine the mechanisms of PP stimulation by CST using purified complexes derived from Candida glabrata. While CST does not enhance isolated DNA polymerase activity, it substantially augments both primase activity and primase-to-polymerase switching. CST also simultaneously shortens the RNA and lengthens the DNA in the chimeric products. Stn1, the most conserved subunit of CST, is alone capable of PP stimulation. Both the N-terminal OB fold and the C-terminal winged-helix domains of Stn1 can bind to the Pol12 subunit of the PP complex, and stimulate PP activity. Our findings provide mechanistic insights on a well-conserved pathway of PP regulation that is critical for genome stability.
Collapse
|
28
|
Garg M, Gurung RL, Mansoubi S, Ahmed JO, Davé A, Watts FZ, Bianchi A. Tpz1TPP1 SUMOylation reveals evolutionary conservation of SUMO-dependent Stn1 telomere association. EMBO Rep 2014; 15:871-7. [PMID: 24925530 PMCID: PMC4197044 DOI: 10.15252/embr.201438919] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Elongation of the telomeric overhang by telomerase is counteracted by synthesis of the complementary strand by the CST complex, CTC1(Cdc13)/Stn1/Ten1. Interaction of budding yeast Stn1 with overhang-binding Cdc13 is increased by Cdc13 SUMOylation. Human and fission yeast CST instead interact with overhang-binding TPP1/POT1. We show that the fission yeast TPP1 ortholog, Tpz1, is SUMOylated. Tpz1 SUMOylation restricts telomere elongation and promotes Stn1/Ten1 telomere association, and a SUMO-Tpz1 fusion protein has increased affinity for Stn1. Our data suggest that SUMO inhibits telomerase through stimulation of Stn1/Ten1 action by Tpz1, highlighting the evolutionary conservation of the regulation of CST function by SUMOylation.
Collapse
Affiliation(s)
- Mansi Garg
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Resham L Gurung
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Sahar Mansoubi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jubed O Ahmed
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Anoushka Davé
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Alessandro Bianchi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
29
|
Holstein EM, Clark KRM, Lydall D. Interplay between nonsense-mediated mRNA decay and DNA damage response pathways reveals that Stn1 and Ten1 are the key CST telomere-cap components. Cell Rep 2014; 7:1259-69. [PMID: 24835988 PMCID: PMC4518466 DOI: 10.1016/j.celrep.2014.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/20/2014] [Accepted: 04/10/2014] [Indexed: 11/30/2022] Open
Abstract
A large and diverse set of proteins, including CST complex, nonsense mediated decay (NMD), and DNA damage response (DDR) proteins, play important roles at the telomere in mammals and yeast. Here, we report that NMD, like the DDR, affects single-stranded DNA (ssDNA) production at uncapped telomeres. Remarkably, we find that the requirement for Cdc13, one of the components of CST, can be efficiently bypassed when aspects of DDR and NMD pathways are inactivated. However, identical genetic interventions do not bypass the need for Stn1 and Ten1, the partners of Cdc13. We show that disabling NMD alters the stoichiometry of CST components at telomeres and permits Stn1 to bind telomeres in the absence of Cdc13. Our data support a model that Stn1 and Ten1 can function in a Cdc13-independent manner and have implications for the function of CST components across eukaryotes.
Collapse
Affiliation(s)
- Eva-Maria Holstein
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Kate R M Clark
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
30
|
SUMOylation regulates telomere length by targeting the shelterin subunit Tpz1(Tpp1) to modulate shelterin-Stn1 interaction in fission yeast. Proc Natl Acad Sci U S A 2014; 111:5950-5. [PMID: 24711392 DOI: 10.1073/pnas.1401359111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomeres protect DNA ends of linear eukaryotic chromosomes from degradation and fusion, and ensure complete replication of the terminal DNA through recruitment of telomerase. The regulation of telomerase is a critical area of telomere research and includes cis regulation by the shelterin complex in mammals and fission yeast. We have identified a key component of this regulatory pathway as the SUMOylation [the covalent attachment of a small ubiquitin-like modifier (SUMO) to target proteins] of a shelterin subunit in fission yeast. SUMOylation is known to be involved in the negative regulation of telomere extension by telomerase; however, how SUMOylation limits the action of telomerase was unknown until now. We show that SUMOylation of the shelterin subunit TPP1 homolog in Schizosaccharomyces pombe (Tpz1) on lysine 242 is important for telomere length homeostasis. Furthermore, we establish that Tpz1 SUMOylation prevents telomerase accumulation at telomeres by promoting recruitment of Stn1-Ten1 to telomeres. Our findings provide major mechanistic insights into how the SUMOylation pathway collaborates with shelterin and Stn1-Ten1 complexes to regulate telomere length.
Collapse
|
31
|
The 3' overhangs at Tetrahymena thermophila telomeres are packaged by four proteins, Pot1a, Tpt1, Pat1, and Pat2. EUKARYOTIC CELL 2013; 13:240-5. [PMID: 24297442 DOI: 10.1128/ec.00275-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although studies with the ciliate Tetrahymena thermophila have played a central role in advancing our understanding of telomere biology and telomerase mechanisms and composition, the full complement of Tetrahymena telomere proteins has not yet been identified. Previously, we demonstrated that in Tetrahymena, the telomeric 3' overhang is protected by a three-protein complex composed of Pot1a, Tpt1, and Pat1. Here we show that Tpt1 and Pat1 associate with a fourth protein, Pat2 (Pot1 associated Tetrahymena 2). Mass spectrometry of proteins copurifying with Pat1 or Tpt1 identified peptides from Pat2, Pot1a, Tpt1, and Pat1. The lack of other proteins copurifying with Pat1 or Tpt1 implies that the overhang is protected by a four-protein Pot1a-Tpt1-Pat1-Pat2 complex. We verified that Pat2 localizes to telomeres, but we were unable to detect direct binding to telomeric DNA. Cells depleted of Pat2 continue to divide, but the telomeres exhibit gradual shortening. The lack of growth arrest indicates that, in contrast to Pot1a and Tpt1, Pat2 is not required for the sequestration of the telomere from the DNA repair machinery. Instead, Pat2 is needed to regulate telomere length, most likely by acting in conjunction with Pat1 to allow telomerase access to the telomere.
Collapse
|
32
|
Fadri-Moskwik M, Zhou Q, Chai W. Beyond Telomerase: Telomere Instability as a Novel Target for Cancer Therapy. J Mol Genet Med 2013; 7. [PMID: 27123041 PMCID: PMC4844356 DOI: 10.4172/1747-0862.1000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Telomeres are areas of heterochromatin composed of TTAGGG repeats located at the ends of linear chromosomes. They play a critical role in keeping genome stable and preventing premature aging diseases and the development of cancer. Characterizing mechanisms of telomere maintenance and understanding how their deregulation contributes to human diseases are therefore important for developing novel therapies. A key mechanism driving telomere maintenance and replicative immortality in cancer cells is telomere elongation by telomerase, and many emerging potential telomere-based therapies have focused on targeting telomerase components. By contrast, recent studies on telomere maintenance mechanism suggest that disrupting telomere stability by interfering with alternative mechanisms of telomere synthesis or protection may also yield new strategies for the treatment of cancer. This review will focus on emerging regulators of telomere synthesis or maintenance, such as G4 telomeric DNA, the CST complex, the t-loop, and shelterins, and discuss their potential as targets for anti-cancer chemotherapeutic intervention in the future.
Collapse
Affiliation(s)
- Maria Fadri-Moskwik
- Section of Medical Sciences and School of Molecular Biosciences, Washington State University, USA
| | - Qing Zhou
- Section of Medical Sciences and School of Molecular Biosciences, Washington State University, USA
| | - Weihang Chai
- Section of Medical Sciences and School of Molecular Biosciences, Washington State University, USA
| |
Collapse
|
33
|
Chang YT, Moser BA, Nakamura TM. Fission yeast shelterin regulates DNA polymerases and Rad3(ATR) kinase to limit telomere extension. PLoS Genet 2013; 9:e1003936. [PMID: 24244195 PMCID: PMC3820796 DOI: 10.1371/journal.pgen.1003936] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3ATR/Tel1ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1TERT), DNA polymerases, Replication Protein A (RPA) complex, Rad3ATR-Rad26ATRIP checkpoint kinase complex, Tel1ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment. Stable maintenance of telomeres is critical to maintain a stable genome and to prevent accumulation of undesired mutations that may lead to formation of tumors. Telomere dysfunction can also lead to premature aging due to depletion of the stem cell population, highlighting the importance of understanding the regulatory mechanisms that ensure stable telomere maintenance. Based on careful analysis of cell cycle-regulated changes in telomere association of telomerase, DNA polymerases, Replication Protein A, checkpoint kinases, telomere protection complex shelterin, and Stn1-Ten1 complex, we will provide here a new and dynamic model of telomere length regulation in fission yeast, which suggests that shelterin-dependent regulation of differential arrival of leading and lagging strand DNA polymerase at telomeres is responsible for modulating Rad3ATR checkpoint kinase accumulation and Rad3ATR-dependent phosphorylation of shelterin subunit Ccq1 to control telomerase recruitment to telomeres.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Bettina A. Moser
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
34
|
Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication. Mol Cell Biol 2013; 34:57-70. [PMID: 24164896 DOI: 10.1128/mcb.01235-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the cellular signaling that regulates the timing of the telomerase-extendable and telomerase-unextendable states is largely unknown. Phosphorylation of Cdc13 by Cdk1 promotes the interaction between Cdc13 and Est1 and hence telomere elongation. Here, we show that Cdk1 also phosphorylates Stn1 at threonine 223 and serine 250 both in vitro and in vivo, and these phosphorylation events are essential for the stability of the CST complexes at the telomeres. By controlling the timing of Cdc13 and Stn1 phosphorylations during cell cycle progression, Cdk1 regulates the temporal recruitment of telomerase complexes and CST complexes to the telomeres to facilitate telomere maintenance.
Collapse
|
35
|
Bonetti D, Martina M, Falcettoni M, Longhese MP. Telomere-end processing: mechanisms and regulation. Chromosoma 2013; 123:57-66. [PMID: 24122006 DOI: 10.1007/s00412-013-0440-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Telomeres are specialized nucleoprotein complexes that provide protection to the ends of eukaryotic chromosomes. Telomeric DNA consists of tandemly repeated G-rich sequences that terminate with a 3' single-stranded overhang, which is important for telomere extension by the telomerase enzyme. This structure, as well as most of the proteins that specifically bind double and single-stranded telomeric DNA, are conserved from yeast to humans, suggesting that the mechanisms underlying telomere identity are based on common principles. The telomeric 3' overhang is generated by different events depending on whether the newly synthesized strand is the product of leading- or lagging-strand synthesis. Here, we review the mechanisms that regulate these processes at Saccharomyces cerevisiae and mammalian telomeres.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | | | |
Collapse
|
36
|
Kasbek C, Wang F, Price CM. Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J Biol Chem 2013; 288:30139-30150. [PMID: 24025336 DOI: 10.1074/jbc.m113.493478] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TEN1 is a component of the mammalian CTC1-STN1-TEN1 complex. CTC1 and/or STN1 functions in telomere duplex replication, C-strand fill-in, and genome-wide restart of replication following fork stalling. Here we examine the role of human TEN1 and ask whether it also functions as a specialized replication factor. TEN1 depletion causes an increase in multitelomere fluorescent in situ hybridization (FISH) signals similar to that observed after CTC1 or STN1 depletion. However, TEN1 depletion also results in increased telomere loss. This loss is not accompanied by increased telomere deprotection, recombination, or T-circle release. Thus, it appears that both the multiple telomere signals and telomere loss stem from problems in telomere duplex replication. TEN1 depletion can also affect telomere length, but whether telomeres lengthen or shorten is cell line-dependent. Like CTC1 and STN1, TEN1 is needed for G-overhang processing. Depletion of TEN1 does not effect overhang elongation in mid-S phase, but it delays overhang shortening in late S/G2. These results indicate a role for TEN1 in C-strand fill-in but do not support a direct role in telomerase regulation. Finally, TEN1 depletion causes a decrease in genome-wide replication restart following fork stalling similar to that observed after STN1 depletion. However, anaphase bridge formation is more severe than with CTC1 or STN1 depletion. Our findings indicate that TEN1 likely functions in conjunction with CTC1 and STN1 at the telomere and elsewhere in the genome. They also raise the possibility that TEN1 has additional roles and indicate that TEN1/CTC1-STN1-TEN1 helps solve a wide range of challenges to the replication machinery.
Collapse
Affiliation(s)
- Christopher Kasbek
- From the Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Feng Wang
- From the Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Carolyn M Price
- From the Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45267.
| |
Collapse
|
37
|
Lue NF, Chan J. Duplication and functional specialization of the telomere-capping protein Cdc13 in Candida species. J Biol Chem 2013; 288:29115-23. [PMID: 23965999 DOI: 10.1074/jbc.m113.506519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The budding yeast G-tail binding complex CST (Cdc13-Stn1-Ten1) is crucial for both telomere protection and replication. Previous studies revealed a family of Cdc13 orthologues (Cdc13A) in Candida species that are unusually small but are nevertheless responsible for G-tail binding and the regulation of telomere lengths and structures. Here we report the identification and characterization of a second family of Cdc13-like proteins in the Candida clade, named Cdc13B. Phylogenetic analysis and sequence alignment indicate that Cdc13B probably arose through gene duplication prior to Candida speciation. Like Cdc13A, Cdc13B appears to be essential. Deleting one copy each of the CDC13A and CDC13B genes caused a synergistic effect on aberrant telomere elongation and t-circle accumulation, suggesting that the two paralogues mediate overlapping and nonredundant functions in telomere regulation. Interestingly, Cdc13B utilizes its C-terminal OB-fold domain (OB4) to mediate self-association and binding to Cdc13A. Moreover, the stability of the heterodimer is evidently greater than that of either homodimer. Both the Cdc13 A/A homodimer and A/B heterodimer, but not the B/B homodimer, recognized the telomere G-tail repeat with high affinity and sequence specificity. Our results reveal novel evolutionary elaborations of the G-tail-binding protein in Saccharomycotina yeast, suggesting a drastic remodeling of CDC13 that entails gene duplication, fusion, and functional specialization. The repeated and independent duplication of G-tail-binding proteins such as Cdc13 and Pot1 hints at the evolutionary advantage of having multiple G-tail-binding proteins.
Collapse
Affiliation(s)
- Neal F Lue
- From the Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, New York 10065
| | | |
Collapse
|
38
|
Shi T, Bunker RD, Mattarocci S, Ribeyre C, Faty M, Gut H, Scrima A, Rass U, Rubin SM, Shore D, Thomä NH. Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell 2013; 153:1340-53. [PMID: 23746845 DOI: 10.1016/j.cell.2013.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 02/26/2013] [Accepted: 05/03/2013] [Indexed: 11/27/2022]
Abstract
Yeast telomeres comprise irregular TG₁₋₃ DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.
Collapse
Affiliation(s)
- Tianlai Shi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bryan C, Rice C, Harkisheimer M, Schultz DC, Skordalakes E. Structure of the human telomeric Stn1-Ten1 capping complex. PLoS One 2013; 8:e66756. [PMID: 23826127 PMCID: PMC3691326 DOI: 10.1371/journal.pone.0066756] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/10/2013] [Indexed: 12/03/2022] Open
Abstract
The identification of the human homologue of the yeast CST in 2009 posed a new challenge in our understanding of the mechanism of telomere capping in higher eukaryotes. The high-resolution structure of the human Stn1-Ten1 (hStn1-Ten1) complex presented here reveals that hStn1 consists of an OB domain and tandem C-terminal wHTH motifs, while hTen1 consists of a single OB fold. Contacts between the OB domains facilitate formation of a complex that is strikingly similar to the replication protein A (RPA) and yeast Stn1-Ten1 (Ten1) complexes. The hStn1-Ten1 complex exhibits non-specific single-stranded DNA activity that is primarily dependent on hStn1. Cells expressing hStn1 mutants defective for dimerization with hTen1 display elongated telomeres and telomere defects associated with telomere uncapping, suggesting that the telomeric function of hCST is hTen1 dependent. Taken together the data presented here show that the structure of the hStn1-Ten1 subcomplex is conserved across species. Cell based assays indicate that hTen1 is critical for the telomeric function of hCST, both in telomere protection and downregulation of telomerase function.
Collapse
Affiliation(s)
- Christopher Bryan
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cory Rice
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Harkisheimer
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David C. Schultz
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Emmanuel Skordalakes
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Churikov D, Corda Y, Luciano P, Géli V. Cdc13 at a crossroads of telomerase action. Front Oncol 2013; 3:39. [PMID: 23450759 PMCID: PMC3584321 DOI: 10.3389/fonc.2013.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/11/2013] [Indexed: 01/21/2023] Open
Abstract
Telomere elongation by telomerase involves sequential steps that must be highly coordinated to ensure the maintenance of telomeres at a proper length. Telomerase is delivered to telomere ends, where it engages single-strand DNA end as a primer, elongates it, and dissociates from the telomeres via mechanism that is likely coupled to the synthesis of the complementary C-strand. In Saccharomyces cerevisiae, the telomeric G-overhang bound Cdc13 acts as a platform for the recruitment of several factors that orchestrate timely transitions between these steps. In this review, we focus on some unresolved aspects of telomerase recruitment and on the mechanisms that regulate telomere elongation by telomerase after its recruitment to chromosome ends. We also highlight the key regulatory modifications of Cdc13 that promote transitions between the steps of telomere elongation.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Center, U1068 INSERM, UMR7258 CNRS, Aix-Marseille University Institut Paoli-Calmettes, Marseille, France
| | | | | | | |
Collapse
|
41
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
42
|
Wu Y, DiMaggio PA, Perlman DH, Zakian VA, Garcia BA. Novel phosphorylation sites in the S. cerevisiae Cdc13 protein reveal new targets for telomere length regulation. J Proteome Res 2012. [PMID: 23181431 DOI: 10.1021/pr300408v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. Multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics.
Collapse
Affiliation(s)
- Yun Wu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | | | | | | | | |
Collapse
|
43
|
Mason M, Wanat JJ, Harper S, Schultz DC, Speicher DW, Johnson FB, Skordalakes E. Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance. Structure 2012. [PMID: 23177925 DOI: 10.1016/j.str.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cdc13 is an essential yeast protein required for telomere length regulation and genome stability. It does so via its telomere-capping properties and by regulating telomerase access to the telomeres. The crystal structure of the Saccharomyces cerevisiae Cdc13 domain located between the recruitment and DNA binding domains reveals an oligonucleotide-oligosaccharide binding fold (OB2) with unusually long loops extending from the core of the protein. These loops are involved in extensive interactions between two Cdc13 OB2 folds leading to stable homodimerization. Interestingly, the functionally impaired cdc13-1 mutation inhibits OB2 dimerization. Biochemical assays indicate OB2 is not involved in telomeric DNA or Stn1 binding. However, disruption of the OB2 dimer in full-length Cdc13 affects Cdc13-Stn1 association, leading to telomere length deregulation, increased temperature sensitivity, and Stn1 binding defects. We therefore propose that dimerization of the OB2 domain of Cdc13 is required for proper Cdc13, Stn1, Ten1 (CST) assembly and productive telomere capping.
Collapse
Affiliation(s)
- Mark Mason
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer J Wanat
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Stellar-Chance 405A, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sandy Harper
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David C Schultz
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David W Speicher
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Stellar-Chance 405A, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Emmanuel Skordalakes
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Xu J, McEachern MJ. Long telomeres produced by telomerase-resistant recombination are established from a single source and are subject to extreme sequence scrambling. PLoS Genet 2012; 8:e1003017. [PMID: 23133400 PMCID: PMC3486848 DOI: 10.1371/journal.pgen.1003017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Considerable evidence now supports the idea that the moderate telomere lengthening produced by recombinational telomere elongation (RTE) in a Kluyveromyces lactis telomerase deletion mutant occurs through a roll-and-spread mechanism. However, it is unclear whether this mechanism can account for other forms of RTE that produce much longer telomeres such as are seen in human alternative lengthening of telomere (ALT) cells or in the telomerase-resistant type IIR “runaway” RTE such as occurs in the K. lactis stn1-M1 mutant. In this study we have used mutationally tagged telomeres to examine the mechanism of RTE in an stn1-M1 mutant both with and without telomerase. Our results suggest that the establishment stage of the mutant state in newly generated stn1-M1 ter1-Δ mutants surprisingly involves a first stage of sudden telomere shortening. Our data also show that, as predicted by the roll-and-spread mechanism, all lengthened telomeres in a newly established mutant cell commonly emerge from a single telomere source. However, in sharp contrast to the RTE of telomerase deletion survivors, we show that the RTE of stn1-M1 ter1-Δ cells produces telomeres whose sequences undergo continuous intense scrambling via recombination. While telomerase was not necessary for the long telomeres in stn1-M1 cells, its presence during their establishment was seen to interfere with the amplification of repeats via recombination, a result consistent with telomerase retaining its ability to add repeats during active RTE. Finally, we observed that the presence of active mismatch repair or telomerase had important influences on telomeric amplification and/or instability. Indefinite growth of tumor cells requires a mechanism to maintain telomeres. While most cancers use telomerase for this, some maintain long and heterogeneous telomeres using a recombination-dependent mechanism termed alternative lengthening of telomeres (ALT). What causes ALT and how their long and heterogeneous telomeres form and are maintained are not well understood. In this study, we use mutationally tagged telomeric repeats to probe the mechanisms by which highly elongated telomeres are generated by recombination in an ALT–like yeast mutant. Our data show that most or all lengthened telomeres in a newly established mutant cell are commonly generated by amplifying sequence from a single telomere source. This is consistent with the roll-and-spread model, which proposes that a single circle of telomeric DNA can be the ultimate source of all newly amplified telomeres. Other evidence showed that the telomeres of the mutant are exceptionally dynamic. Rapid terminal deletions preceded telomere elongation at the establishment of the mutant state. Also, patterns of telomeric repeats present in long telomeres became rapidly scrambled. These findings may have implications for the establishment and maintenance of long telomeres in human ALT cells.
Collapse
Affiliation(s)
| | - Michael J. McEachern
- Department of Genetics, Fred Davision Life Science Complex, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
45
|
Wang F, Stewart JA, Kasbek C, Zhao Y, Wright WE, Price CM. Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep 2012; 2:1096-103. [PMID: 23142664 DOI: 10.1016/j.celrep.2012.10.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/13/2012] [Accepted: 10/08/2012] [Indexed: 11/16/2022] Open
Abstract
Human CST (CTC1-STN1-TEN1) is an RPA-like complex that is needed for efficient replication through the telomere duplex and genome-wide replication restart after fork stalling. Here, we show that STN1/CST has a second function in telomere replication during G-overhang maturation. Analysis of overhang structure after STN1 depletion revealed normal kinetics for telomerase-mediated extension in S phase but a delay in subsequent overhang shortening. This delay resulted from a defect in C-strand fill-in. Short telomeres exhibited the fill-in defect but normal telomere duplex replication, indicating that STN1/CST functions independently in these processes. Our work also indicates that the requirement for STN1/CST in telomere duplex replication correlates with increasing telomere length and replication stress. Our results provide direct evidence that STN1/CST participates in C-strand fill-in. They also demonstrate that STN1/CST participates in two mechanistically separate steps during telomere replication and identify CST as a replication factor that solves diverse replication-associated problems.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | |
Collapse
|
46
|
Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13. PLoS Genet 2012; 8:e1003033. [PMID: 23133402 PMCID: PMC3486850 DOI: 10.1371/journal.pgen.1003033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Genomes contain tandem repeats that are at risk of internal rearrangements and a threat to genome integrity. Here, we investigated the behavior of the human subtelomeric minisatellites HRAS1, CEB1, and CEB25 in Saccharomyces cerevisiae. In mitotically growing wild-type cells, these GC-rich tandem arrays stimulate the rate of gross chromosomal rearrangements (GCR) by 20, 1,620, and 276,000-fold, respectively. In the absence of the Pif1 helicase, known to inhibit GCR by telomere addition and to unwind G-quadruplexes, the GCR rate is further increased in the presence of CEB1, by 385-fold compared to the pif1Δ control strain. The behavior of CEB1 is strongly dependent on its capacity to form G-quadruplexes, since the treatment of WT cells with the Phen-DC(3) G-quadruplex ligand has a 52-fold stimulating effect while the mutation of the G-quadruplex-forming motif reduced the GCR rate 30-fold in WT and 100-fold in pif1Δ cells. The GCR events are telomere additions within CEB1. Differently, the extreme stimulation of CEB25 GCR depends on its affinity for Cdc13, which binds the TG-rich ssDNA telomere overhang. This property confers a biased orientation-dependent behavior to CEB25, while CEB1 and HRAS1 increase GCR similarly in either orientation. Furthermore, we analyzed the minisatellites' distribution in the human genome and discuss their potential role to trigger subtelomeric rearrangements.
Collapse
|
47
|
Huang C, Dai X, Chai W. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res 2012; 22:1681-95. [PMID: 22964711 DOI: 10.1038/cr.2012.132] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomere maintenance is critical for genome stability. The newly-identified Ctc1/Stn1/Ten1 complex is important for telomere maintenance, though its precise role is unclear. We report here that depletion of hStn1 induces catastrophic telomere shortening, DNA damage response, and early senescence in human somatic cells. These phenotypes are likely due to the essential role of hStn1 in promoting efficient replication of lagging-strand telomeric DNA. Downregulation of hStn1 accumulates single-stranded G-rich DNA specifically at lagging-strand telomeres, increases telomere fragility, hinders telomere DNA synthesis, as well as delays and compromises telomeric C-strand synthesis. We further show that hStn1 deficiency leads to persistent and elevated association of DNA polymerase α (polα) to telomeres, suggesting that hStn1 may modulate the DNA synthesis activity of polα rather than controlling the loading of polα to telomeres. Additionally, our data suggest that hStn1 is unlikely to be part of the telomere capping complex. We propose that the hStn1 assists DNA polymerases to efficiently duplicate lagging-strand telomeres in order to achieve complete synthesis of telomeric DNA, therefore preventing rapid telomere loss.
Collapse
Affiliation(s)
- Chenhui Huang
- School of Molecular Biosciences, WWAMI Medical Education Program, Washington State University, PO Box 1495, Spokane, WA 99210, USA
| | | | | |
Collapse
|
48
|
Dai X, Huang C, Chai W. CDK1 differentially regulates G-overhang generation at leading- and lagging-strand telomeres in telomerase-negative cells in G2 phase. Cell Cycle 2012; 11:3079-86. [PMID: 22871736 DOI: 10.4161/cc.21472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human telomeres contain single-stranded 3' G-overhangs that function in telomere end protection and telomerase action. Previously we have demonstrated that multiple steps involving C-strand end resection, telomerase elongation and C-strand fill-in contribute to G-overhang generation in telomerase-positive cancer cells. However, how G-overhangs are generated in telomerase-negative human somatic cells is unknown. Here, we report that C-strand fill-in is present at lagging-strand telomeres in telomerase-negative human cells but not at leading-strand telomeres, suggesting that C-strand fill-in is independent of telomerase extension of G-strand. We further show that while cyclin-dependent kinase 1 (CDK1) positively regulates C-strand fill-in, CDK1 unlikely regulates G-overhang generation at leading-strand telomeres. In addition, DNA polymerase α (Polα) association with telomeres is not altered upon CDK1 inhibition, suggesting that CDK1 does not control the loading of Polα to telomeres during fill-in. In summary, our results reveal that G-overhang generation at leading- and lagging-strand telomeres are regulated by distinct mechanisms in human cells.
Collapse
Affiliation(s)
- Xueyu Dai
- School of Molecular Biosciences, Washington State University, Spokane, WA, USA
| | | | | |
Collapse
|
49
|
Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD, Wright WE, Price CM. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J 2012; 31:3537-49. [PMID: 22863775 DOI: 10.1038/emboj.2012.215] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/11/2012] [Indexed: 01/13/2023] Open
Abstract
Mammalian CST (CTC1-STN1-TEN1) associates with telomeres and depletion of CTC1 or STN1 causes telomere defects. However, the function of mammalian CST remains poorly understood. We show here that depletion of CST subunits leads to both telomeric and non-telomeric phenotypes associated with DNA replication defects. Stable knockdown of CTC1 or STN1 increases the incidence of anaphase bridges and multi-telomeric signals, indicating genomic and telomeric instability. STN1 knockdown also delays replication through the telomere indicating a role in replication fork passage through this natural barrier. Furthermore, we find that STN1 plays a novel role in genome-wide replication restart after hydroxyurea (HU)-induced replication fork stalling. STN1 depletion leads to reduced EdU incorporation after HU release. However, most forks rapidly resume replication, indicating replisome integrity is largely intact and STN1 depletion has little effect on fork restart. Instead, STN1 depletion leads to a decrease in new origin firing. Our findings suggest that CST rescues stalled replication forks during conditions of replication stress, such as those found at natural replication barriers, likely by facilitating dormant origin firing.
Collapse
Affiliation(s)
- Jason A Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Xu J, McEachern MJ. Maintenance of very long telomeres by recombination in the Kluyveromyces lactis stn1-M1 mutant involves extreme telomeric turnover, telomeric circles, and concerted telomeric amplification. Mol Cell Biol 2012; 32:2992-3008. [PMID: 22645309 PMCID: PMC3434524 DOI: 10.1128/mcb.00430-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/09/2012] [Indexed: 01/26/2023] Open
Abstract
Some cancers utilize the recombination-dependent process of alternative lengthening of telomeres (ALT) to maintain long heterogeneous telomeres. Here, we studied the recombinational telomere elongation (RTE) of the Kluyveromyces lactis stn1-M1 mutant. We found that the total amount of the abundant telomeric DNA in stn1-M1 cells is subject to rapid variation and that it is likely to be primarily extrachromosomal. Rad50 and Rad51, known to be required for different RTE pathways in Saccharomyces cerevisiae, were not essential for the production of either long telomeres or telomeric circles in stn1-M1 cells. Circles of DNA containing telomeric repeats (t-circles) either present at the point of establishment of long telomeres or introduced later into stn1-M1 cells each led to the formation of long tandem arrays of the t-circle's sequence, which were incorporated at multiple telomeres. These tandem arrays were extraordinarily unstable and showed evidence of repeated rounds of concerted amplification. Our results suggest that the maintenance of telomeres in the stn1-M1 mutant involves extreme turnover of telomeric sequences from processes including both large deletions and the copying of t-circles.
Collapse
Affiliation(s)
- Jianing Xu
- Department of Genetics, Fred Davison Life Science Complex, University of Georgia, Athens, Georgia
| | | |
Collapse
|