1
|
Hwang S, Kim JH, Jo SH. Inhibitory effect of the selective serotonin reuptake inhibitor paroxetine on human Kv1.3 channels. Eur J Pharmacol 2021; 912:174567. [PMID: 34662565 DOI: 10.1016/j.ejphar.2021.174567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Paroxetine is one of the most effective selective serotonin reuptake inhibitors used to treat depressive and panic disorders that reduce the viability of human T lymphocytes, in which Kv1.3 channels are highly expressed. We examined whether paroxetine could modulate human Kv1.3 channels acutely and directly with the aim of understanding the biophysical effects and the underlying mechanisms of the drug. Kv1.3 channel proteins were expressed in Xenopus oocytes. Paroxetine rapidly inhibited the steady-state current and peak current of these channels within 6 min in a concentration-dependent manner; IC50s were 26.3 μM and 53.9 μM, respectively, and these effects were partially reversed by washout, which excluded the possibility of genomic regulation. At the same test voltage, paroxetine blockade of the steady-state currents was higher than that of the peak currents, and the inhibition of the steady-state current increased relative to the degree of depolarization. Paroxetine decreased the inactivation time constant in a concentration-dependent manner, but it did not affect the activation time constant, which resulted in the acceleration of intrinsic inactivation without changing ultrarapid activation. Blockade of Kv1.3 channels by paroxetine exhibited more rapid inhibition at higher activation frequencies showing the use-dependency of the blockade. Overall, these results show that paroxetine directly suppresses human Kv1.3 channels in an open state and accelerates the process of steady-state inactivation; thus, we have revealed a biophysical mechanism for possible acute immunosuppressive effects of paroxetine.
Collapse
Affiliation(s)
- Soobeen Hwang
- Department of Physiology, Institute of Bioscience and Biotechnology, Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jong-Hui Kim
- Department of Physiology, Institute of Bioscience and Biotechnology, Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Kiper AK, Bedoya M, Stalke S, Marzian S, Ramírez D, de la Cruz A, Peraza DA, Vera-Zambrano A, Márquez Montesinos JCE, Arévalo Ramos BA, Rinné S, Gonzalez T, Valenzuela C, Gonzalez W, Decher N. Identification of a critical binding site for local anaesthetics in the side pockets of K v 1 channels. Br J Pharmacol 2021; 178:3034-3048. [PMID: 33817777 DOI: 10.1111/bph.15480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Local anaesthetics block sodium and a variety of potassium channels. Although previous studies identified a residue in the pore signature sequence together with three residues in the S6 segment as a putative binding site, the precise molecular basis of inhibition of Kv channels by local anaesthetics remained unknown. Crystal structures of Kv channels predict that some of these residues point away from the central cavity and face into a drug binding site called side pockets. Thus, the question arises whether the binding site of local anaesthetics is exclusively located in the central cavity or also involves the side pockets. EXPERIMENTAL APPROACH A systematic functional alanine mutagenesis approach, scanning 58 mutants, together with in silico docking experiments and molecular dynamics simulations was utilized to elucidate the binding site of bupivacaine and ropivacaine. KEY RESULTS Inhibition of Kv 1.5 channels by local anaesthetics requires binding to the central cavity and the side pockets, and the latter requires interactions with residues of the S5 and the back of the S6 segments. Mutations in the side pockets remove stereoselectivity of inhibition of Kv 1.5 channels by bupivacaine. Although binding to the side pockets is conserved for different local anaesthetics, the binding mode in the central cavity and the side pockets shows considerable variations. CONCLUSION AND IMPLICATIONS Local anaesthetics bind to the central cavity and the side pockets, which provide a crucial key to the molecular understanding of their Kv channel affinity and stereoselectivity, as well as their spectrum of side effects.
Collapse
Affiliation(s)
- Aytug K Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Sarah Stalke
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Marzian
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Alicia de la Cruz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Vera-Zambrano
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Biochemistry Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Teresa Gonzalez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Biochemistry Department, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
PIP 2: A critical regulator of vascular ion channels hiding in plain sight. Proc Natl Acad Sci U S A 2020; 117:20378-20389. [PMID: 32764146 PMCID: PMC7456132 DOI: 10.1073/pnas.2006737117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), has long been established as a major contributor to intracellular signaling, primarily by virtue of its role as a substrate for phospholipase C (PLC). Signaling by Gq-protein-coupled receptors triggers PLC-mediated hydrolysis of PIP2 into inositol 1,4,5-trisphosphate and diacylglycerol, which are well known to modulate vascular ion channel activity. Often overlooked, however, is the role PIP2 itself plays in this regulation. Although numerous reports have demonstrated that PIP2 is critical for ion channel regulation, how it impacts vascular function has received scant attention. In this review, we focus on PIP2 as a regulator of ion channels in smooth muscle cells and endothelial cells-the two major classes of vascular cells. We further address the concerted effects of such regulation on vascular function and blood flow control. We close with a consideration of current knowledge regarding disruption of PIP2 regulation of vascular ion channels in disease.
Collapse
|
4
|
Kim JH, Hwang S, Park SI, Jo SH. Effects of 3,3’,4,4’,5-pentachlorobiphenyl on human Kv1.3 and Kv1.5 channels. ACTA ACUST UNITED AC 2019. [DOI: 10.11620/ijob.2019.44.3.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Dierich M, Leitner MG. K v12.1 channels are not sensitive to G qPCR-triggered activation of phospholipase Cβ. Channels (Austin) 2018; 12:228-239. [PMID: 30136882 PMCID: PMC6986784 DOI: 10.1080/19336950.2018.1475783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kv12.1 K+ channels are expressed in several brain areas, but no physiological function could be attributed to these subunits so far. As genetically-modified animal models are not available, identification of native Kv12.1 currents must rely on characterization of distinct channel properties. Recently, it was shown in Xenopus laevis oocytes that Kv12.1 channels were modulated by membrane PI(4,5)P2. However, it is not known whether these channels are also sensitive to physiologically-relevant PI(4,5)P2 dynamics. We thus studied whether Kv12.1 channels were modulated by activation of phospholipase C β (PLCβ) and found that they were insensitive to receptor-triggered depletion of PI(4,5)P2. Thus, Kv12.1 channels add to the growing list of K+ channels that are insensitive to PLCβ signaling, although modulated by PI(4,5)P2 in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- Marlen Dierich
- a Department of Neurophysiology , Institute of Physiology and Pathophysiology, Philipps-University Marburg , Marburg , Germany
| | - Michael G Leitner
- a Department of Neurophysiology , Institute of Physiology and Pathophysiology, Philipps-University Marburg , Marburg , Germany.,b Division of Physiology, Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
6
|
Poveda JA, Marcela Giudici A, Lourdes Renart M, Morales A, González-Ros JM. Towards understanding the molecular basis of ion channel modulation by lipids: Mechanistic models and current paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1507-1516. [PMID: 28408206 DOI: 10.1016/j.bbamem.2017.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Research on ion channel modulation has become a hot topic because of the key roles these membrane proteins play in both prokaryotic and eukaryotic organisms. In this respect, lipid modulation adds to the overall modulatory mechanisms as a potential via to find new pharmacological targets for drug design based on interfering with lipid/channel interactions. However, our knowledge in this field is scarce and often circumscribed to the sites where lipids bind and/or its final functional consequences. To fully understand this process it is necessary to improve our knowledge on its molecular basis, from the binding sites to the signalling pathways that derive in structural and functional effects on the ion channel. In this review, we have compiled information about such mechanisms and established a classification into four different modes of action. Afterwards, we have revised in more detail the lipid modulation of Cys-loop receptors and of the potassium channel KcsA, which were chosen as model channels modulated by specific lipids. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- José A Poveda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
| | - A Marcela Giudici
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - M Lourdes Renart
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| | - José M González-Ros
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
| |
Collapse
|
7
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
8
|
Human EAG channels are directly modulated by PIP2 as revealed by electrophysiological and optical interference investigations. Sci Rep 2016; 6:23417. [PMID: 27005320 PMCID: PMC4804213 DOI: 10.1038/srep23417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 11/28/2022] Open
Abstract
Voltage-gated ether à go-go (EAG) K+ channels are expressed in various types of cancer cells and also in the central nervous system. Aberrant overactivation of human EAG1 (hEAG1) channels is associated with cancer and neuronal disorders such as Zimmermann-Laband and Temple-Baraitser syndromes. Although hEAG1 channels are recognized as potential therapeutic targets, regulation of their functional properties is only poorly understood. Here, we show that the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent inhibitory gating modifier of hEAG1 channels. PIP2 inhibits the channel activity by directly binding to a short N-terminal segment of the channel important for Ca2+/calmodulin (CaM) binding as evidenced by bio-layer interferometry measurements. Conversely, depletion of endogenous PIP2 either by serotonin-induced phospholipase C (PLC) activation or by a rapamycin-induced translocation system enhances the channel activity at physiological membrane potentials, suggesting that PIP2 exerts a tonic inhibitory influence. Our study, combining electrophysiological and direct binding assays, demonstrates that hEAG1 channels are subject to potent inhibitory modulation by multiple phospholipids and suggests that manipulations of the PIP2 signaling pathway may represent a strategy to treat hEAG1 channel-associated diseases.
Collapse
|
9
|
Badheka D, Borbiro I, Rohacs T. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel. ACTA ACUST UNITED AC 2016; 146:65-77. [PMID: 26123195 PMCID: PMC4485020 DOI: 10.1085/jgp.201411336] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PI(4,5)P2 is required for TRPM3 activity, establishing its role as a crucial cofactor for the entire TRPM channel family. Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5′-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.
Collapse
Affiliation(s)
- Doreen Badheka
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Istvan Borbiro
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Tibor Rohacs
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
10
|
Ca(2+)/calmodulin regulates Kvβ1.1-mediated inactivation of voltage-gated K(+) channels. Sci Rep 2015; 5:15509. [PMID: 26487174 PMCID: PMC4614385 DOI: 10.1038/srep15509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022] Open
Abstract
A-type K+ channels open on membrane depolarization and undergo subsequent rapid inactivation such that they are ideally suited for fine-tuning the electrical signaling in neurons and muscle cells. Channel inactivation mostly follows the so-called ball-and-chain mechanism, in which the N-terminal structures of either the K+ channel’s α or β subunits occlude the channel pore entry facing the cytosol. Inactivation of Kv1.1 and Kv1.4 channels induced by Kvβ1.1 subunits is profoundly decelerated in response to a rise in the intracellular Ca2+ concentration, thus making the affected channel complexes negative feedback regulators to limit neuronal overexcitation. With electrophysiological and biochemical experiments we show that the Ca2+ dependence is gained by binding of calmodulin to the “chain” segment of Kvβ1.1 thereby compromising the mobility of the inactivation particle. Furthermore, inactivation regulation via Ca2+/calmodulin does not interfere with the β subunit’s enzymatic activity as an NADPH-dependent oxidoreductase, thus rendering the Kvβ1.1 subunit a multifunctional receptor that integrates cytosolic signals to be transduced to altered electrical cellular activity.
Collapse
|
11
|
Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC. Phosphoinositides regulate ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:844-56. [PMID: 25241941 PMCID: PMC4364932 DOI: 10.1016/j.bbalip.2014.09.010] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
Abstract
Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Byung-Chang Suh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea.
| |
Collapse
|
12
|
Yu J, Park MH, Choi SY, Jo SH. Cortisone and hydrocortisone inhibit human Kv1.3 activity in a non-genomic manner. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:653-61. [PMID: 25743574 DOI: 10.1007/s00210-015-1109-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
Glucocorticoids are hormones released in response to stress that are involved in various physiological processes including immune functions. One immune-modulating mechanism is achieved by the Kv1.3 voltage-dependent potassium channel, which is expressed highly in lymphocytes including effector memory T lymphocytes (TEM). Although glucocorticoids are known to inhibit Kv1.3 function, the detailed inhibitory mechanism is not yet fully understood. Here we studied the rapid non-genomic effects of cortisone and hydrocortisone on the human Kv1.3 channel expressed in Xenopus oocytes. Both cortisone and hydrocortisone reduced the amplitude of the Kv1.3 channel current in a concentration-dependent manner. Both cortisone and hydrocortisone rapidly and irreversibly inhibited Kv1.3 currents, eliminating the possibility of genomic regulation. Inhibition rate was stable relative to the degree of depolarization. Kinetically, cortisone altered the activating gate of Kv1.3 and hydrocortisone interacted with this channel in an open state. These results suggest that cortisone and hydrocortisone inhibit Kv1.3 currents via a non-genomic mechanism, providing a mechanism for the immunosuppressive effects of glucocorticoids.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Hyoja-Dong, Chuncheon, 200-701, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 2014; 77:81-104. [PMID: 25293526 DOI: 10.1146/annurev-physiol-021113-170358] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551;
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yamamura H. [Direct regulation of ion channel by PIP2]. Nihon Yakurigaku Zasshi 2013; 142:320. [PMID: 24334933 DOI: 10.1254/fpj.142.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Ishii T, Warabi E, Siow RCM, Mann GE. Sequestosome1/p62: a regulator of redox-sensitive voltage-activated potassium channels, arterial remodeling, inflammation, and neurite outgrowth. Free Radic Biol Med 2013; 65:102-116. [PMID: 23792273 DOI: 10.1016/j.freeradbiomed.2013.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/14/2022]
Abstract
Sequestosome1/p62 (SQSTM1) is an oxidative stress-inducible protein regulated by the redox-sensitive transcription factor Nrf2. It is not an antioxidant but known as a multifunctional regulator of cell signaling with an ability to modulate targeted or selective degradation of proteins through autophagy. SQSTM1 implements these functions through physical interactions with different types of proteins including atypical PKCs, nonreceptor-type tyrosine kinase p56(Lck) (Lck), polyubiquitin, and autophagosomal factor LC3. One of the notable physiological functions of SQSTM1 is the regulation of redox-sensitive voltage-gated potassium (Kv) channels which are composed of α and β subunits: (Kvα)4 (Kvβ)4. Previous studies have established that SQSTM1 scaffolds PKCζ, enhancing phosphorylation of Kvβ which induces inhibition of pulmonary arterial Kv1.5 channels under acute hypoxia. Recent studies reveal that Lck indirectly interacts with Kv1.3 α subunits and plays a key role in acute hypoxia-induced Kv1.3 channel inhibition in T lymphocytes. Kv1.3 channels provide a signaling platform to modulate the migration and proliferation of arterial smooth muscle cells and activation of T lymphocytes, and hence have been recognized as a therapeutic target for treatment of restenosis and autoimmune diseases. In this review, we focus on the functional interactions of SQSTM1 with Kv channels through two key partners aPKCs and Lck. Furthermore, we provide molecular insights into the functions of SQSTM1 in suppression of proliferation of arterial smooth muscle cells and neointimal hyperplasia following carotid artery ligation, in T lymphocyte differentiation and activation, and in NGF-induced neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
16
|
Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating. Proc Natl Acad Sci U S A 2013; 110:20093-8. [PMID: 24277843 DOI: 10.1073/pnas.1312483110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The S4 segment and the S4-S5 linker of voltage-gated potassium (Kv) channels are crucial for voltage sensing. Previous studies on the Shaker and Kv1.2 channels have shown that phosphatidylinositol-4,5-bisphosphate (PIP2) exerts opposing effects on Kv channels, up-regulating the current amplitude, while decreasing the voltage sensitivity. Interactions between PIP2 and the S4 segment or the S4-S5 linker in the closed state have been highlighted to explain the effects of PIP2 on voltage sensitivity. Here, we show that PIP2 preferentially interacts with the S4-S5 linker in the open-state KCNQ2 (Kv7.2) channel, whereas it contacts the S2-S3 loop in the closed state. These interactions are different from the PIP2-Shaker and PIP2-Kv1.2 interactions. Consistently, PIP2 exerts different effects on KCNQ2 relative to the Shaker and Kv1.2 channels; PIP2 up-regulates both the current amplitude and voltage sensitivity of the KCNQ2 channel. Disruption of the interaction of PIP2 with the S4-S5 linker by a single mutation decreases the voltage sensitivity and current amplitude, whereas disruption of the interaction with the S2-S3 loop does not alter voltage sensitivity. These results provide insight into the mechanism of PIP2 action on KCNQ channels. In the closed state, PIP2 is anchored at the S2-S3 loop; upon channel activation, PIP2 interacts with the S4-S5 linker and is involved in channel gating.
Collapse
|
17
|
Marzian S, Stansfeld PJ, Rapedius M, Rinné S, Nematian-Ardestani E, Abbruzzese JL, Steinmeyer K, Sansom MSP, Sanguinetti MC, Baukrowitz T, Decher N. Side pockets provide the basis for a new mechanism of Kv channel-specific inhibition. Nat Chem Biol 2013; 9:507-13. [PMID: 23728494 PMCID: PMC4539245 DOI: 10.1038/nchembio.1271] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/29/2013] [Indexed: 01/09/2023]
Abstract
Most known small-molecule inhibitors of voltage-gated ion channels have poor subtype specificity because they interact with a highly conserved binding site in the central cavity. Using alanine-scanning mutagenesis, electrophysiological recordings and molecular modeling, we have identified a new drug-binding site in Kv1.x channels. We report that Psora-4 can discriminate between related Kv channel subtypes because, in addition to binding the central pore cavity, it binds a second, less conserved site located in side pockets formed by the backsides of S5 and S6, the S4-S5 linker, part of the voltage sensor and the pore helix. Simultaneous drug occupation of both binding sites results in an extremely stable nonconducting state that confers high affinity, cooperativity, use-dependence and selectivity to Psora-4 inhibition of Kv1.x channels. This new mechanism of inhibition represents a molecular basis for the development of a new class of allosteric and selective voltage-gated channel inhibitors.
Collapse
Affiliation(s)
- Stefanie Marzian
- Institute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | - Phillip J Stansfeld
- Structural Bioinformatics and Computational Biochemistry Unit, University of Oxford, Oxford, UK
| | | | - Susanne Rinné
- Institute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | | | - Jennifer L Abbruzzese
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Klaus Steinmeyer
- Sanofi-Aventis, Therapeutic Strategic Unit–Aging, Frankfurt, Germany
| | - Mark S P Sansom
- Structural Bioinformatics and Computational Biochemistry Unit, University of Oxford, Oxford, UK
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Niels Decher
- Institute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| |
Collapse
|
18
|
Prince A, Pfaffinger PJ. Conserved N-terminal negative charges support optimally efficient N-type inactivation of Kv1 channels. PLoS One 2013; 8:e62695. [PMID: 23638135 PMCID: PMC3634772 DOI: 10.1371/journal.pone.0062695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/25/2013] [Indexed: 12/02/2022] Open
Abstract
N-type inactivation is produced by the binding of a potassium channel's N-terminus within the open pore, blocking conductance. Previous studies have found that introduction of negative charges into N-terminal inactivation domains disrupts inactivation; however, the Aplysia AKv1 N-type inactivation domain contains two negatively charged residues, E2 and E9. Rather than being unusual, sequence analysis shows that this N-terminal motif is highly conserved among Kv1 sequences across many phyla. Conservation analysis shows some tolerance at position 9 for other charged residues, like D9 and K9, whereas position 2 is highly conserved as E2. To examine the functional importance of these residues, site directed mutagenesis was performed and effects on inactivation were recorded by two electrode voltage clamp in Xenopus oocytes. We find that inclusion of charged residues at positions 2 and 9 prevents interactions with non-polar sites along the inactivation pathway increasing the efficiency of pore block. In addition, E2 appears to have additional specific electrostatic interactions that stabilize the inactivated state likely explaining its high level of conservation. One possible explanation for E2's unique importance, consistent with our data, is that E2 interacts electrostatically with a positive charge on the N-terminal amino group to stabilize the inactivation domain at the block site deep within the pore. Simple electrostatic modeling suggests that due to the non-polar environment in the pore in the blocked state, even a 1 Å larger separation between these charges, produced by the E2D substitution, would be sufficient to explain the 65× reduced affinity of the E2D N-terminus for the pore. Finally, our studies support a multi-step, multi-site N-type inactivation model where the N-terminus interacts deep within the pore in an extended like structure placing the most N-terminal residues 35% of the way across the electric field in the pore blocked state.
Collapse
Affiliation(s)
- Alison Prince
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul J. Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Influence of lipids on protein-mediated transmembrane transport. Chem Phys Lipids 2013; 169:57-71. [PMID: 23473882 DOI: 10.1016/j.chemphyslip.2013.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins are responsible for transporting ions and small molecules across the hydrophobic region of the cell membrane. We are reviewing the evidence for regulation of these transport processes by interactions with the lipids of the membrane. We focus on ion channels, including potassium channels, mechanosensitive and pentameric ligand gated ion channels, and active transporters, including pumps, sodium or proton driven secondary transporters and ABC transporters. For ion channels it has been convincingly shown that specific lipid-protein interactions can directly affect their function. In some cases, a combined approach of molecular and structural biology together with computer simulations has revealed the molecular mechanisms. There are also many transporters whose activity depends on lipids but understanding of the molecular mechanisms is only beginning.
Collapse
|
20
|
Kruse M, Hammond GRV, Hille B. Regulation of voltage-gated potassium channels by PI(4,5)P2. ACTA ACUST UNITED AC 2012; 140:189-205. [PMID: 22851677 PMCID: PMC3409096 DOI: 10.1085/jgp.201210806] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) regulates activities of numerous ion channels including inwardly rectifying potassium (Kir) channels, KCNQ, TRP, and voltage-gated calcium channels. Several studies suggest that voltage-gated potassium (KV) channels might be regulated by PI(4,5)P2. Wide expression of KV channels in different cells suggests that such regulation could have broad physiological consequences. To study regulation of KV channels by PI(4,5)P2, we have coexpressed several of them in tsA-201 cells with a G protein–coupled receptor (M1R), a voltage-sensitive lipid 5-phosphatase (Dr-VSP), or an engineered fusion protein carrying both lipid 4-phosphatase and 5-phosphatase activity (pseudojanin). These tools deplete PI(4,5)P2 with application of muscarinic agonists, depolarization, or rapamycin, respectively. PI(4,5)P2 at the plasma membrane was monitored by Förster resonance energy transfer (FRET) from PH probes of PLCδ1 simultaneously with whole-cell recordings. Activation of Dr-VSP or recruitment of pseudojanin inhibited KV7.1, KV7.2/7.3, and Kir2.1 channel current by 90–95%. Activation of M1R inhibited KV7.2/7.3 current similarly. With these tools, we tested for potential PI(4,5)P2 regulation of activity of KV1.1/KVβ1.1, KV1.3, KV1.4, and KV1.5/KVβ1.3, KV2.1, KV3.4, KV4.2, KV4.3 (with different KChIPs and DPP6-s), and hERG/KCNE2. Interestingly, we found a substantial removal of inactivation for KV1.1/KVβ1.1 and KV3.4, resulting in up-regulation of current density upon activation of M1R but no changes in activity upon activating only VSP or pseudojanin. The other channels tested except possibly hERG showed no alteration in activity in any of the assays we used. In conclusion, a depletion of PI(4,5)P2 at the plasma membrane by enzymes does not seem to influence activity of most tested KV channels, whereas it does strongly inhibit members of the KV7 and Kir families.
Collapse
Affiliation(s)
- Martin Kruse
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
21
|
Rodríguez-Menchaca AA, Adney SK, Zhou L, Logothetis DE. Dual Regulation of Voltage-Sensitive Ion Channels by PIP(2). Front Pharmacol 2012; 3:170. [PMID: 23055973 PMCID: PMC3456799 DOI: 10.3389/fphar.2012.00170] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 09/04/2012] [Indexed: 11/13/2022] Open
Abstract
Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidylinositol 4,5-bisphosphate (PIP(2)). Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav) channels were shown to be regulated bidirectionally by PIP(2). On one hand, PIP(2) stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv) channels PIP(2) was first shown to prevent N-type inactivation regardless of whether the fast inactivation gate was part of the pore-forming α subunit or of an accessory β subunit. Careful examination of the effects of PIP(2) on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP(2) and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP(2) is the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel. PIP(2) has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP(2)-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP(2) dual effects on SpIH, with the proximal C-terminus implicated in the inhibitory effect. The dual regulation of these very different ion channels, all of which are voltage-dependent, points to conserved mechanisms of regulation of these channels by PIP(2).
Collapse
Affiliation(s)
- Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University Richmond, VA, USA
| | | | | | | |
Collapse
|
22
|
Moreno C, Macias A, Prieto A, De La Cruz A, Valenzuela C. Polyunsaturated Fatty acids modify the gating of kv channels. Front Pharmacol 2012; 3:163. [PMID: 22973228 PMCID: PMC3437463 DOI: 10.3389/fphar.2012.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 11/13/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, which are attributed to their capability to modulate ion channels. This PUFAs ability has been reported to be due to their effects on the gating properties of ion channels. In the present review, we will focus on the role of PUFAs on the gating of two Kv channels, Kv1.5 and Kv11.1. Kv1.5 channels are blocked by n-3 PUFAs of marine [docosahexaenoic acid (DHA) and eicosapentaenoic acid] and plant origin (alpha-linolenic acid, ALA) at physiological concentrations. The blockade of Kv1.5 channels by PUFAs steeply increased in the range of membrane potentials coinciding with those of Kv1.5 channel activation, suggesting that PUFAs-channel binding may derive a significant fraction of its voltage sensitivity through the coupling to channel gating. A similar shift in the activation voltage was noted for the effects of n-6 arachidonic acid (AA) and DHA on Kv1.1, Kv1.2, and Kv11.1 channels. PUFAs-Kv1.5 channel interaction is time-dependent, producing a fast decay of the current upon depolarization. Thus, Kv1.5 channel opening is a prerequisite for the PUFA-channel interaction. Similar to the Kv1.5 channels, the blockade of Kv11.1 channels by AA and DHA steeply increased in the range of membrane potentials that coincided with the range of Kv11.1 channel activation, suggesting that the PUFAs-Kv channel interactions are also coupled to channel gating. Furthermore, AA regulates the inactivation process in other Kv channels, introducing a fast voltage-dependent inactivation in non-inactivating Kv channels. These results have been explained within the framework that AA closes voltage-dependent potassium channels by inducing conformational changes in the selectivity filter, suggesting that Kv channel gating is lipid dependent.
Collapse
Affiliation(s)
- Cristina Moreno
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
David M, Macías Á, Moreno C, Prieto Á, Martínez-Mármol R, Vicente R, González T, Felipe A, Tamkun MM, Valenzuela C. Protein kinase C (PKC) activity regulates functional effects of Kvβ1.3 subunit on KV1.5 channels: identification of a cardiac Kv1.5 channelosome. J Biol Chem 2012; 287:21416-28. [PMID: 22547057 DOI: 10.1074/jbc.m111.328278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
K(v)1.5 channels are the primary channels contributing to the ultrarapid outward potassium current (I(Kur)). The regulatory K(v)β1.3 subunit converts K(v)1.5 channels from delayed rectifiers with a modest degree of slow inactivation to channels with both fast and slow inactivation components. Previous studies have shown that inhibition of PKC with calphostin C abolishes the fast inactivation induced by K(v)β1.3. In this study, we investigated the mechanisms underlying this phenomenon using electrophysiological, biochemical, and confocal microscopy approaches. To achieve this, we used HEK293 cells (which lack K(v)β subunits) transiently cotransfected with K(v)1.5+K(v)β1.3 and also rat ventricular and atrial tissue to study native α-β subunit interactions. Immunocytochemistry assays demonstrated that these channel subunits colocalize in control conditions and after calphostin C treatment. Moreover, coimmunoprecipitation studies showed that K(v)1.5 and K(v)β1.3 remain associated after PKC inhibition. After knocking down all PKC isoforms by siRNA or inhibiting PKC with calphostin C, K(v)β1.3-induced fast inactivation at +60 mV was abolished. However, depolarization to +100 mV revealed K(v)β1.3-induced inactivation, indicating that PKC inhibition causes a dramatic positive shift of the inactivation curve. Our results demonstrate that calphostin C-mediated abolishment of fast inactivation is not due to the dissociation of K(v)1.5 and K(v)β1.3. Finally, immunoprecipitation and immunocytochemistry experiments revealed an association between K(v)1.5, K(v)β1.3, the receptor for activated C kinase (RACK1), PKCβI, PKCβII, and PKCθ in HEK293 cells. A very similar K(v)1.5 channelosome was found in rat ventricular tissue but not in atrial tissue.
Collapse
Affiliation(s)
- Miren David
- Instituto de Investigaciones Biomédicas, Madrid Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Wu HJ, Wu W, Sun HY, Qin GW, Wang HB, Wang P, Yalamanchili HK, Wang J, Tse HF, Lau CP, Vanhoutte PM, Li GR. Acacetin causes a frequency- and use-dependent blockade of hKv1.5 channels by binding to the S6 domain. J Mol Cell Cardiol 2011; 51:966-73. [PMID: 21906601 DOI: 10.1016/j.yjmcc.2011.08.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/01/2011] [Accepted: 08/21/2011] [Indexed: 11/18/2022]
Abstract
We have demonstrated that the natural flavone acacetin selectively inhibits ultra-rapid delayed rectifier potassium current (I(Kur)) in human atria. However, molecular determinants of this ion channel blocker are unknown. The present study was designed to investigate the molecular determinants underlying the ability of acacetin to block hKv1.5 channels (coding I(Kur)) in human atrial myocytes using the whole-cell patch voltage-clamp technique to record membrane current in HEK 293 cells stably expressing the hKv1.5 gene or transiently expressing mutant hKv1.5 genes generated by site-directed mutagenesis. It was found that acacetin blocked hKv1.5 channels by binding to both closed and open channels. The blockade of hKv1.5 channels by acacetin was use- and frequency-dependent, and the IC(50) of acacetin for inhibiting hKv1.5 was 3.5, 3.1, 2.9, 2.1, and 1.7μM, respectively, at 0.2, 0.5, 1, 3, and 4Hz. The mutagenesis study showed that the hKv1.5 mutants V505A, I508A, and V512A in the S6-segment remarkably reduced the channel blocking properties by acacetin (IC(50), 29.5μM for V505A, 19.1μM for I508A, and 6.9μM for V512A). These results demonstrate the novel information that acacetin mainly blocks open hKv1.5 channels by binding to their S6 domain. The use- and rate-dependent blocking of hKv1.5 by acacetin is beneficial for anti-atrial fibrillation.
Collapse
Affiliation(s)
- Hui-Jun Wu
- Department and Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hertel F, Switalski A, Mintert-Jancke E, Karavassilidou K, Bender K, Pott L, Kienitz MC. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells. PLoS One 2011; 6:e20855. [PMID: 21695261 PMCID: PMC3111442 DOI: 10.1371/journal.pone.0020855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
Background Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5)P2 in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET), to monitor changes in plasma membrane. For controlled and reversible depletion of PtdIns(4,5)P2, voltage-sensing phosphoinositide phosphatases (VSD) have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1) fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP), from a single open reading frame (ORF) in adult rat cardiac myocytes. Methods and Results Expression and correct targeting of ECFP-PH-PLCδ1, EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5)P2 in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K+ (GIRK) current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5)P2 was identified. Conclusions Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection-resistant postmitotic cells. Generally, adenoviral constructs containing self-cleaving 2A-peptide sequences are highly suited for simultaneous transfer of multiple genes in adult cardiac myocytes.
Collapse
Affiliation(s)
- Fabian Hertel
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Agathe Switalski
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Kirsten Bender
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | | |
Collapse
|
27
|
Oxidation of NADPH on Kvbeta1 inhibits ball-and-chain type inactivation by restraining the chain. Proc Natl Acad Sci U S A 2011; 108:5885-90. [PMID: 21436029 DOI: 10.1073/pnas.1100316108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Kv1 family voltage-dependent K(+) channels assemble with cytosolic β subunits (Kvβ), which are composed of a flexible N terminus followed by a structured core domain. The N terminus of certain Kvβs inactivates the channel by blocking the ion conduction pore, and the core domain is a functional enzyme that uses NADPH as a cofactor. Oxidation of the Kvβ-bound NADPH inhibits inactivation and potentiates channel current, but the mechanism behind this effect is unknown. Here we show that after oxidation, the core domain binds to part of the N terminus, thus restraining it from blocking the channel. The interaction is partially mediated by two negatively charged residues on the core domain and three positively charged ones on the N terminus. These results provide a molecular basis for the coupling between the cellular redox state and channel activity, and establish Kvβ as a target for pharmacological control of Kv1 channels.
Collapse
|
28
|
Ravens U, Wettwer E. Ultra-rapid delayed rectifier channels: molecular basis and therapeutic implications. Cardiovasc Res 2010; 89:776-85. [DOI: 10.1093/cvr/cvq398] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
29
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
30
|
Molecular determinants of Kv1.5 channel block by diphenyl phosphine oxide-1. J Mol Cell Cardiol 2010; 48:1111-20. [DOI: 10.1016/j.yjmcc.2010.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 11/18/2022]
|
31
|
RNA editing modulates the binding of drugs and highly unsaturated fatty acids to the open pore of Kv potassium channels. EMBO J 2010; 29:2101-13. [PMID: 20461057 DOI: 10.1038/emboj.2010.88] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/14/2010] [Indexed: 12/23/2022] Open
Abstract
The time course of inactivation of voltage-activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvbeta subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce 'open-channel block'. Open-channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid-induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.
Collapse
|
32
|
Abstract
Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.
Collapse
Affiliation(s)
- Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
33
|
Moreno-Galindo EG, Barrio-Echavarría GF, Vásquez JC, Decher N, Sachse FB, Tristani-Firouzi M, Sánchez-Chapula JA, Navarro-Polanco RA. Molecular basis for a high-potency open-channel block of Kv1.5 channel by the endocannabinoid anandamide. Mol Pharmacol 2010; 77:751-8. [PMID: 20133392 DOI: 10.1124/mol.109.063008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endocannabinoid, N-arachidonoylethanolamine (anandamide; AEA) is known to interact with voltage-gated K(+) (Kv) channels in a cannabinoid receptor-independent manner. AEA modulates the functional properties of Kv channels, converting channels with slowly inactivating current into apparent fast inactivation. In this study, we characterize the mechanism of action and binding site for AEA on Kv1.5 channels expressed on HEK-293 cells using the patch-clamp techniques. AEA exhibited high-potency block (IC(50) approximately 200 nM) from the cytoplasmic membrane surface, consistent with open-channel block. Alanine-scanning mutagenesis revealed that AEA interacts with two crucial beta-branching amino acids, Val505 and Ile508 within the S6 domain. Both residues face toward the central cavity and constitute a motif that forms a hydrophobic ring around the ion conduction pathway. This hydrophobic ring motif may be a critical determinant of cannabinoid receptor-independent AEA modulation in other K(+) channel families.
Collapse
Affiliation(s)
- Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li GR, Dong MQ. Pharmacology of Cardiac Potassium Channels. CARDIOVASCULAR PHARMACOLOGY - HEART AND CIRCULATION 2010; 59:93-134. [DOI: 10.1016/s1054-3589(10)59004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Prince-Carter A, Pfaffinger PJ. Multiple intermediate states precede pore block during N-type inactivation of a voltage-gated potassium channel. ACTA ACUST UNITED AC 2009; 134:15-34. [PMID: 19528261 PMCID: PMC2712980 DOI: 10.1085/jgp.200910219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-type inactivation of voltage-gated potassium channels is an autoinhibitory process that occurs when the N terminus binds within the channel pore and blocks conduction. N-type inactivation and recovery occur with single-exponential kinetics, consistent with a single-step reaction where binding and block occur simultaneously. However, recent structure-function studies have suggested the presence of a preinactivated state whose formation and loss regulate inactivation and recovery kinetics. Our studies on N-type inactivation of the Shaker-type AKv1 channel support a multiple-step inactivation process involving a series of conformational changes in distinct regions of the N terminus that we have named the polar, flex, and latch regions. The highly charged polar region forms interactions with the surface of the channel leading up to the side window openings between the T1 domain and the channel transmembrane domains, before the rate-limiting step occurs. This binding culminates with a specific electrostatic interaction between R18 and EDE161-163 located at the entrance to the side windows. The latch region appears to work together with the flex region to block the pore after polar region binding occurs. Analysis of tail currents for a latch region mutant shows that both blocked and unblocked states exist after the rate-limiting transition is passed. Our results suggest that at least two intermediate states exist for N-type inactivation: a polar region-bound state that is formed before the rate-limiting step, and a pre-block state that is formed by the flex and latch regions during the rate-limiting step.
Collapse
|
36
|
Matsushita Y, Ohya S, Suzuki Y, Itoda H, Kimura T, Yamamura H, Imaizumi Y. Inhibition of Kv1.3 potassium current by phosphoinositides and stromal-derived factor-1α in Jurkat T cells. Am J Physiol Cell Physiol 2009; 296:C1079-85. [DOI: 10.1152/ajpcell.00668.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activation of Kv1.3 potassium channel has obligatory roles in immune responses of T lymphocytes. Stromal cell-derived factor-1α (SDF-1α) binds to C-X-C chemokine receptor type 4, activates phosphoinositide 3-kinase, and plays essential roles in cell migration of T lymphocytes. In this study, the effects of phosphoinositides and SDF-1α on Kv1.3 current activity were examined in the Jurkat T cell line using whole cell patch-clamp techniques. The internal application of 10 μM phosphatidylinositol 4,5-bisphosphate (PIP2) or 10 μM phosphatidylinositol-3,4,5-trisphosphate (PIP3) significantly reduced Kv1.3 current, but that of 10 μM phosphatidylinositol-4-monophosphate (PIP) did not. The coapplication of 10 μg/ml anti-PIP3 antibody with PIP2 from the pipette did not change the reduction of Kv1.3 current by PIP2, but the coapplication of the antibody with PIP3 eliminated the reduction. The heat-inactivated anti-PIP3 antibody had no effect on PIP3-induced inhibition. These results suggest that PIP2 per se can reduce Kv1.3 current as well as PIP3. External application of 1 μM Akt-kinase inhibitor VIII did not reverse the effect of intracellular PIP3. External application of 10 and 30 ng/ml SDF-1α significantly reduced Kv1.3 current. Internal application of anti-PIP3 antibody reversed the SDF-1α-induced reduction. These results suggest that, in Jurkat T cells, PIP2, PIP3, and SDF-1α reduce Kv1.3 channel activity and that the reduction by SDF-1α may be mediated by the enhancement of PIP3 production. These novel inhibitory effects of phosphoinositides and SDF-1α on Kv1.3 current may have a significant function as a downregulation mechanism of Kv1.3 activity for the maintenance of T lymphocyte activation in immune responses.
Collapse
|