1
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Wang B, Dunlap JC. Domains required for the interaction of the central negative element FRQ with its transcriptional activator WCC within the core circadian clock of Neurospora. J Biol Chem 2023; 299:104850. [PMID: 37220856 PMCID: PMC10320511 DOI: 10.1016/j.jbc.2023.104850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
In the negative feedback loop composing the Neurospora circadian clock, the core element, FREQUENCY (FRQ), binds with FRQ-interacting RNA helicase (FRH) and casein kinase 1 to form the FRQ-FRH complex (FFC) which represses its own expression by interacting with and promoting phosphorylation of its transcriptional activators White Collar-1 (WC-1) and WC-2 (together forming the White Collar complex, WCC). Physical interaction between FFC and WCC is a prerequisite for the repressive phosphorylations, and although the motif on WCC needed for this interaction is known, the reciprocal recognition motif(s) on FRQ remains poorly defined. To address this, we assessed FFC-WCC in a series of frq segmental-deletion mutants, confirming that multiple dispersed regions on FRQ are necessary for its interaction with WCC. Biochemical analysis shows that interaction between FFC and WCC but not within FFC or WCC can be disrupted by high salt, suggesting that electrostatic forces drive the association of the two complexes. As a basic sequence on WC-1 was previously identified as a key motif for WCC-FFC assembly, our mutagenetic analysis targeted negatively charged residues of FRQ, leading to identification of three Asp/Glu clusters in FRQ that are indispensable for FFC-WCC formation. Surprisingly, in several frq Asp/Glu-to-Ala mutants that vastly diminish FFC-WCC interaction, the core clock still oscillates robustly with an essentially wildtype period, indicating that the interaction between the positive and negative elements in the feedback loop is required for the operation of the circadian clock but is not a determinant of the period length.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Bayram ÖS, Bayram Ö. An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms. J Fungi (Basel) 2023; 9:jof9050591. [PMID: 37233302 DOI: 10.3390/jof9050591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
4
|
Chen X, Liu X, Gan X, Li S, Ma H, Zhang L, Wang P, Li Y, Huang T, Yang X, Fang L, Liang Y, Wu J, Chen T, Zhou Z, Liu X, Guo J. Differential regulation of phosphorylation, structure and stability of circadian clock protein FRQ isoforms. J Biol Chem 2023; 299:104597. [PMID: 36898580 PMCID: PMC10140173 DOI: 10.1016/j.jbc.2023.104597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/12/2023] Open
Abstract
Neurospora crassa is an important model for circadian clock research. The Neurospora core circadian component FRQ protein has two isoforms, large FRQ (l-FRQ) and small FRQ (s-FRQ), of which l-FRQ bears an additional N-terminal 99-amino acid fragment. However, how the FRQ isoforms operate differentially in regulating the circadian clock remains elusive. Here, we show l-FRQ and s-FRQ play different roles in regulating the circadian negative feedback loop. Compared to s-FRQ, l-FRQ is less stable at three temperatures, and undergoes hypophosphorylation and faster degradation. The phosphorylation of the C-terminal l-FRQ 794-aa fragment was markedly higher than that of s-FRQ, suggesting the l-FRQ N-terminal 99-aa region may regulate phosphorylation of the entire FRQ protein. Quantitative label-free LC/MS analysis identified several peptides that were differentially phosphorylated between l-FRQ and s-FRQ, which were distributed in FRQ in an interlaced fashion. Furthermore, we identified two novel phosphorylation sites, S765 and T781; mutations S765A and T781A showed no significant effects on conidiation rhythmicity, although T781 conferred FRQ stability. These findings demonstrate that FRQ isoforms play differential roles in the circadian negative feedback loop and undergo different regulation of phosphorylation, structure, and stability. The l-FRQ N-terminal 99-aa region plays an important role in regulating the phosphorylation, stability, conformation, and function of the FRQ protein. As the FRQ circadian clock counterparts in other species also have isoforms or paralogues, these findings will also further our understanding of the underlying regulatory mechanisms of the circadian clock in other organisms based on the high conservation of circadian clocks in eukaryotes.
Collapse
Affiliation(s)
- Xianyun Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihui Gan
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Silin Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huan Ma
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiliang Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yunzhen Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyu Huang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolin Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Fang
- Sun Yat-sen University Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongyue Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zengxuan Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinhu Guo
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Cemel IA, Diernfellner ACR, Brunner M. Antisense Transcription of the Neurospora Frequency Gene Is Rhythmically Regulated by CSP-1 Repressor but Dispensable for Clock Function. J Biol Rhythms 2023:7487304231153914. [PMID: 36876962 DOI: 10.1177/07487304231153914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The circadian clock of Neurospora crassa is based on a negative transcriptional/translational feedback loops. The frequency (frq) gene controls the morning-specific rhythmic transcription of a sense RNA encoding FRQ, the negative element of the core circadian feedback loop. In addition, a long noncoding antisense RNA, qrf, is rhythmically transcribed in an evening-specific manner. It has been reported that the qrf rhythm relies on transcriptional interference with frq transcription and that complete suppression of qrf transcription impairs the circadian clock. We show here that qrf transcription is dispensable for circadian clock function. Rather, the evening-specific transcriptional rhythm of qrf is mediated by the morning-specific repressor CSP-1. Since CSP-1 expression is induced by light and glucose, this suggests a rhythmic coordination of qrf transcription with metabolism. However, a possible physiological significance for the circadian clock remains unclear, as suitable assays are not available.
Collapse
Affiliation(s)
- Ibrahim A Cemel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | - Michael Brunner
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
6
|
Wang B, Dunlap JC. Domains Required for FRQ-WCC Interaction within the Core Circadian Clock of Neurospora. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530043. [PMID: 36865291 PMCID: PMC9980274 DOI: 10.1101/2023.02.25.530043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the negative feedback loop composing the Neurospora circadian clock, the core element, FREQUENCY (FRQ) binds with FRH (FRQ-interacting RNA helicase) and Casein Kinase 1 (CK1) to form the FRQ-FRH complex (FFC) which represses its own expression by interacting with and promoting phosphorylation of its transcriptional activators White Collar-1 (WC-1) and WC-2 (together forming the White Collar Complex, WCC). Physical interaction between FFC and WCC is a prerequisite for the repressive phosphorylations, and although the motif on WCC needed for this interaction is known, the reciprocal recognition motif(s) on FRQ remains poorly defined. To address this, FFC-WCC was assessed in a series of frq segmental-deletion mutants, confirming that multiple dispersed regions on FRQ are necessary for its interaction with WCC. Biochemical analysis shows that interaction between FFC and WCC but not within FFC or WCC can be disrupted by high salt, suggesting that electrostatic forces drive the association of the two complexes. As a basic sequence on WC-1 was previously identified as a key motif for WCC-FFC assembly, our mutagenetic analysis targeted negatively charged residues of FRQ leading to identification of three Asp/Glu clusters in FRQ that are indispensable for FFC-WCC formation. Surprisingly, in several frq Asp/Glu-to-Ala mutants that vastly diminish FFC-WCC interaction, the core clock still oscillates robustly with an essentially WT period, indicating that the binding strength between the positive and negative elements in the feedback loop is required for the clock but is not a determinant of the period length.
Collapse
|
7
|
Wang B, Stevenson EL, Dunlap JC. Functional analysis of 110 phosphorylation sites on the circadian clock protein FRQ identifies clusters determining period length and temperature compensation. G3 (BETHESDA, MD.) 2023; 13:jkac334. [PMID: 36537198 PMCID: PMC9911066 DOI: 10.1093/g3journal/jkac334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In the negative feedback loop driving the Neurospora circadian oscillator, the negative element, FREQUENCY (FRQ), inhibits its own expression by promoting phosphorylation of its heterodimeric transcriptional activators, White Collar-1 (WC-1) and WC-2. FRQ itself also undergoes extensive time-of-day-specific phosphorylation with over 100 phosphosites previously documented. Although disrupting individual or certain clusters of phosphorylation sites has been shown to alter circadian period lengths to some extent, it is still elusive how all the phosphorylations on FRQ control its activity. In this study, we systematically investigated the role in period determination of all 110 reported FRQ phosphorylation sites, using mutagenesis and luciferase reporter assays. Surprisingly, robust FRQ phosphorylation is still detected even when 84 phosphosites were eliminated altogether; further mutating another 26 phosphoresidues completely abolished FRQ phosphorylation. To identify phosphoresidue(s) on FRQ impacting circadian period length, a series of clustered frq phosphomutants covering all the 110 phosphosites were generated and examined for period changes. When phosphosites in the N-terminal and middle regions of FRQ were eliminated, longer periods were typically seen while removal of phosphorylation in the C-terminal tail resulted in extremely short periods, among the shortest reported. Interestingly, abolishing the 11 phosphosites in the C-terminal tail of FRQ not only results in an extremely short period, but also impacts temperature compensation (TC), yielding an overcompensated circadian oscillator. In addition, the few phosphosites in the middle of FRQ are also found to be crucial for TC. When different groups of FRQ phosphomutations were combined intramolecularly, expected additive effects were generally observed except for one novel case of intramolecular epistasis, where arrhythmicity resulting from one cluster of phosphorylation site mutants was restored by eliminating phosphorylation at another group of sites.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Elizabeth-Lauren Stevenson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
8
|
Szőke A, Sárkány O, Schermann G, Kapuy O, Diernfellner ACR, Brunner M, Gyöngyösi N, Káldi K. Adaptation to glucose starvation is associated with molecular reorganization of the circadian clock in Neurospora crassa. eLife 2023; 12:79765. [PMID: 36625037 PMCID: PMC9831608 DOI: 10.7554/elife.79765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The circadian clock governs rhythmic cellular functions by driving the expression of a substantial fraction of the genome and thereby significantly contributes to the adaptation to changing environmental conditions. Using the circadian model organism Neurospora crassa, we show that molecular timekeeping is robust even under severe limitation of carbon sources, however, stoichiometry, phosphorylation and subcellular distribution of the key clock components display drastic alterations. Protein kinase A, protein phosphatase 2 A and glycogen synthase kinase are involved in the molecular reorganization of the clock. RNA-seq analysis reveals that the transcriptomic response of metabolism to starvation is highly dependent on the positive clock component WC-1. Moreover, our molecular and phenotypic data indicate that a functional clock facilitates recovery from starvation. We suggest that the molecular clock is a flexible network that allows the organism to maintain rhythmic physiology and preserve fitness even under long-term nutritional stress.
Collapse
Affiliation(s)
- Anita Szőke
- Department of Physiology, Semmelweis UniversityBudapestHungary
| | - Orsolya Sárkány
- Department of Physiology, Semmelweis UniversityBudapestHungary
| | - Géza Schermann
- Department of Neurovascular Cellbiology, University Hospital BonnBonnGermany
| | - Orsolya Kapuy
- Department of Molecular Biology, Semmelweis UniversityBudapestHungary
| | | | | | - Norbert Gyöngyösi
- Department of Molecular Biology, Semmelweis UniversityBudapestHungary
| | - Krisztina Káldi
- Department of Physiology, Semmelweis UniversityBudapestHungary
| |
Collapse
|
9
|
Park J, Lee DH. Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe. BMB Rep 2021. [PMID: 32192570 PMCID: PMC7196183 DOI: 10.5483/bmbrep.2020.53.4.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.
Collapse
Affiliation(s)
- Jaehong Park
- School of Biological Sciences and Biotechnology Graduate School, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186; Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
10
|
Diernfellner AC, Brunner M. Phosphorylation Timers in the Neurospora crassa Circadian Clock. J Mol Biol 2020; 432:3449-3465. [DOI: 10.1016/j.jmb.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
|
11
|
FRQ-CK1 interaction determines the period of circadian rhythms in Neurospora. Nat Commun 2019; 10:4352. [PMID: 31554810 PMCID: PMC6761100 DOI: 10.1038/s41467-019-12239-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/28/2019] [Indexed: 01/25/2023] Open
Abstract
Circadian clock mechanisms have been extensively investigated but the main rate-limiting step that determines circadian period remains unclear. Formation of a stable complex between clock proteins and CK1 is a conserved feature in eukaryotic circadian mechanisms. Here we show that the FRQ-CK1 interaction, but not FRQ stability, correlates with circadian period in Neurospora circadian clock mutants. Mutations that specifically affect the FRQ-CK1 interaction lead to severe alterations in circadian period. The FRQ-CK1 interaction has two roles in the circadian negative feedback loop. First, it determines the FRQ phosphorylation profile, which regulates FRQ stability and also feeds back to either promote or reduce the interaction itself. Second, it determines the efficiency of circadian negative feedback process by mediating FRQ-dependent WC phosphorylation. Our conclusions are further supported by mathematical modeling and in silico experiments. Together, these results suggest that the FRQ-CK1 interaction is a major rate-limiting step in circadian period determination. Circadian clocks control daily rhythms of molecular and physiological activities. Here, the authors show that the interaction between proteins FRQ and CK1, rather than FRQ stability, is a major rate-limiting step in circadian period determination in the model fungus Neurospora.
Collapse
|
12
|
Modeling the crosstalk between the circadian clock and ROS in Neurospora crassa. J Theor Biol 2018; 458:125-132. [DOI: 10.1016/j.jtbi.2018.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/19/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022]
|
13
|
|
14
|
Cao X, Liu X, Li H, Fan Y, Duan J, Liu Y, He Q. Transcription factor CBF-1 is critical for circadian gene expression by modulating WHITE COLLAR complex recruitment to the frq locus. PLoS Genet 2018; 14:e1007570. [PMID: 30208021 PMCID: PMC6152987 DOI: 10.1371/journal.pgen.1007570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/24/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023] Open
Abstract
Transcription of the Neurospora crassa circadian clock gene frequency (frq) is an essential process in the negative feedback loop that controls circadian rhythms. WHITE COLLAR 1 (WC-1) and WHITE COLLAR 2 (WC-2) forms the WC complex (WCC) that is the main activator of frq transcription by binding to its promoter. Here, we show that Centromere Binding Factor 1 (CBF-1) is a critical component of the N. crassa circadian clock by regulating frq transcription. Deletion of cbf-1 resulted in long period and low amplitude rhythms, whereas overexpression of CBF-1 abolished the circadian rhythms. Loss of CBF-1 resulted in WC-independent FRQ expression and suppression of WCC activity. As WCC, CBF-1 also binds to the C-box at the frq promoter. Overexpression of CBF-1 impaired WCC binding to the C-box to suppress frq transcription. Together, our results suggest that the proper level of CBF-1 is critical for circadian clock function by suppressing WC-independent FRQ expression and by regulating WCC binding to the frq promoter. Circadian clocks, which measure time on a scale of approximately 24 hours, are generated by a cell-autonomous circadian oscillator comprised of autoregulatory feedback loops. In the Neurospora crassa circadian oscillator, WHITE COLLAR complex (WCC) actives transcription of the frequency (frq) gene. FRQ inhibits the activity of WCC to close the negative feedback loop. Here, we showed that the transcription factor CBF-1 functions as a repressor to modulate WCC recruitment to the C-box of frq promoter. Our data showed that deletion or overexpression of CBF-1 dampened circadian rhythm due to impaired WCC binding at the frq promoter. As CBF-1 is conserved in eukaryotes, our data provide novel insights into the negative feedback mechanism that controls the biological clocks in other organisms.
Collapse
Affiliation(s)
- Xuemei Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hongda Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yumeng Fan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Modeling Reveals a Key Mechanism for Light-Dependent Phase Shifts of Neurospora Circadian Rhythms. Biophys J 2018; 115:1093-1102. [PMID: 30139524 DOI: 10.1016/j.bpj.2018.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Light shifts and synchronizes the phase of the circadian clock to daily environments, which is critical for maintaining the daily activities of an organism. It has been proposed that such light-dependent phase shifts are triggered by light-induced upregulation of a negative element of the core circadian clock (i.e., frq, Per1/2) in many organisms, including fungi. However, we find, using systematic mathematical modeling of the Neurospora crassa circadian clock, that the upregulation of the frq gene expression alone is unable to reproduce the observed light-dependent phase responses. Indeed, we find that the depression of the transcriptional activator white-collar-1, previously shown to be promoted by FRQ and VVD, is a key molecular mechanism for accurately simulating light-induced phase response curves for wild-type and mutant strains of Neurospora. Our findings elucidate specific molecular pathways that can be utilized to control phase resetting of circadian rhythms.
Collapse
|
16
|
Zhou X, Wang B, Emerson JM, Ringelberg CS, Gerber SA, Loros JJ, Dunlap JC. A HAD family phosphatase CSP-6 regulates the circadian output pathway in Neurospora crassa. PLoS Genet 2018; 14:e1007192. [PMID: 29351294 PMCID: PMC5800702 DOI: 10.1371/journal.pgen.1007192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/06/2018] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Circadian clocks are ubiquitous in eukaryotic organisms where they are used to anticipate regularly occurring diurnal and seasonal environmental changes. Nevertheless, little is known regarding pathways connecting the core clock to its output pathways. Here, we report that the HAD family phosphatase CSP-6 is required for overt circadian clock output but not for the core oscillation. The loss of function Δcsp-6 deletion mutant is overtly arrhythmic on race tubes under free running conditions; however, reporter assays confirm that the FREQUENCY-WHITE COLLAR COMPLEX core circadian oscillator is functional, indicating a discrete block between oscillator and output. CSP-6 physically interacts with WHI-2, Δwhi-2 mutant phenotypes resemble Δcsp-6, and the CSP-6/WHI-2 complex physically interacts with WC-1, all suggesting that WC-1 is a direct target for CSP-6/WHI-2-mediated dephosphorylation and consistent with observed WC-1 hyperphosphorylation in Δcsp-6. To identify the source of the block to output, known clock-controlled transcription factors were screened for rhythmicity in Δcsp-6, identifying loss of circadian control of ADV-1, a direct target of WC-1, as responsible for the loss of overt rhythmicity. The CSP-6/WHI-2 complex thus participates in the clock output pathway by regulating WC-1 phosphorylation to promote proper transcriptional/translational activation of adv-1/ADV-1; these data establish an unexpected essential role for post-translational modification parallel to circadian transcriptional regulation in the early steps of circadian output. Though molecules and components in the core circadian oscillator are well studied in Neurospora, the mechanisms through which output pathways are coupled with core components are less well understood. In this study we investigated a HAD phosphatase, CSP-6; loss-of-function Δcsp-6 strains are overtly arrhythmic but have a functional core circadian oscillation. CSP-6 in association with WHI-2 dephosphorylates the core clock component WC-1 to regulate light-responses and development. To dissect the functions of CSP-6 in core clock and output, we screened known WC-1 targets and found that loss of CSP-6 causes misregulation of transcriptional/translational activation of ADV-1, a key regulator of output. Thus, loss of CSP-6-mediated dephosphorylation of WC-1 leads to loss of ADV-1 activation and is responsible for the complete loss of overt developmental rhythmicity in Δcsp-6.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jillian M. Emerson
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Carol S. Ringelberg
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
17
|
Liu X, Dang Y, Matsu-Ura T, He Y, He Q, Hong CI, Liu Y. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition. Mol Cell 2017. [PMID: 28648778 DOI: 10.1016/j.molcel.2017.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Yunkun Dang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Toru Matsu-Ura
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA; Department of Biochemistry and Cell Biology, McMurtry College, Rice University, Houston, TX 77005, USA
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
18
|
Gai K, Cao X, Dong Q, Ding Z, Wei Y, Liu Y, Liu X, He Q. Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function. PLoS Genet 2017; 13:e1006732. [PMID: 28403234 PMCID: PMC5406019 DOI: 10.1371/journal.pgen.1006732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/26/2017] [Accepted: 04/03/2017] [Indexed: 12/02/2022] Open
Abstract
Rhythmic activation and repression of the frequency (frq) gene are essential for normal function of the Neurospora circadian clock. WHITE COLLAR (WC) complex, the positive element of the Neurospora circadian system, is responsible for stimulation of frq transcription. We report that a C2H2 finger domain-containing protein IEC-1 and its associated chromatin remodeling complex INO80 play important roles in normal Neurospora circadian clock function. In iec-1KO strains, circadian rhythms are abolished, and the frq transcript levels are increased compared to that of the wild-type strain. Similar results are observed in mutant strains of the INO80 subunits. Furthermore, ChIP data show that recruitment of the INO80 complex to the frq promoter is IEC-1-dependent. WC-mediated transcription of frq contributes to the rhythmic binding of the INO80 complex at the frq promoter. As demonstrated by ChIP analysis, the INO80 complex is required for the re-establishment of the dense chromatin environment at the frq promoter. In addition, WC-independent frq transcription is present in ino80 mutants. Altogether, our data indicate that the INO80 complex suppresses frq transcription by re-assembling the suppressive mechanisms at the frq promoter after transcription of frq. Circadian clocks organize inner physiology to anticipate changes in the external environment. These clocks are controlled by the oscillation of central clock proteins which form the central oscillator. Transcriptional regulation is a critical step in the regulation of the oscillation of these core proteins. In eukaryotes, chromatin remodeling is a common mechanism to regulate gene transcription by conquering or establishing nucleosomal barriers for the transcription machinery. Here, we showed that a C2H2 finger domain-containing protein IEC-1 and its associated chromatin remodeling complex INO80 are required for transcriptional repression of the core clock gene frq in the Neurospora circadian system. Moreover, the activator WHITE COLLAR (WC) complex is responsible for the transcriptional activation of frq; thus, considering the different timing of the transcriptional activation and suppression of frq, there must be a mechanism that coordinates the two opposite processes. We also demonstrated that the WC-mediated open state of the frq promoter facilitates the binding of INO80 to this region, which prepares for subsequent transcriptional suppression. Collectively, our data provide novel insights into the regulation of the frq gene and the circadian clock.
Collapse
Affiliation(s)
- Kexin Gai
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuemei Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaolan Ding
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yashang Wei
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingchun Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
Dovzhenok AA, Baek M, Lim S, Hong CI. Mathematical modeling and validation of glucose compensation of the neurospora circadian clock. Biophys J 2016; 108:1830-1839. [PMID: 25863073 DOI: 10.1016/j.bpj.2015.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/05/2014] [Accepted: 01/09/2015] [Indexed: 11/26/2022] Open
Abstract
Autonomous circadian oscillations arise from transcriptional-translational feedback loops of core clock components. The period of a circadian oscillator is relatively insensitive to changes in nutrients (e.g., glucose), which is referred to as "nutrient compensation". Recently, a transcription repressor, CSP-1, was identified as a component of the circadian system in Neurospora crassa. The transcription of csp-1 is under the circadian regulation. Intriguingly, CSP-1 represses the circadian transcription factor, WC-1, forming a negative feedback loop that can influence the core oscillator. This feedback mechanism is suggested to maintain the circadian period in a wide range of glucose concentrations. In this report, we constructed a mathematical model of the Neurospora circadian clock incorporating the above WC-1/CSP-1 feedback loop, and investigated molecular mechanisms of glucose compensation. Our model shows that glucose compensation exists within a narrow range of parameter space where the activation rates of csp-1 and wc-1 are balanced with each other, and simulates loss of glucose compensation in csp-1 mutants. More importantly, we experimentally validated rhythmic oscillations of the wc-1 gene expression and loss of glucose compensation in the wc-1(ov) mutant as predicted in the model. Furthermore, our stochastic simulations demonstrate that the CSP-1-dependent negative feedback loop functions in glucose compensation, but does not enhance the overall robustness of oscillations against molecular noise. Our work highlights predictive modeling of circadian clock machinery and experimental validations employing Neurospora and brings a deeper understanding of molecular mechanisms of glucose compensation.
Collapse
Affiliation(s)
- Andrey A Dovzhenok
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Mokryun Baek
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
20
|
Dasgupta A, Fuller KK, Dunlap JC, Loros JJ. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 2015; 18:5-20. [PMID: 26373782 DOI: 10.1111/1462-2920.13055] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.
Collapse
Affiliation(s)
- Arko Dasgupta
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
21
|
Han S, Park J, Lee DH. Protein DHX38 is a novel inhibitor of protein phosphatase 4. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1074106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Proietto M, Bianchi MM, Ballario P, Brenna A. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa. Int J Mol Sci 2015; 16:15347-83. [PMID: 26198228 PMCID: PMC4519903 DOI: 10.3390/ijms160715347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC), a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ), the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM). The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock.
Collapse
Affiliation(s)
- Marco Proietto
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza-University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | - Michele Maria Bianchi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza-University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | - Paola Ballario
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza-University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
- Pasteur Institute, Cenci Bolognetti Foundation and Department of Biology and Biotechnology "Charles Darwin", Sapienza-University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | - Andrea Brenna
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza-University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
- Pasteur Institute, Cenci Bolognetti Foundation and Department of Biology and Biotechnology "Charles Darwin", Sapienza-University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
- Department of Biology, Division of Biochemistry, University of Fribourg, Chemin du Musée 5, Fribourg 1700, Switzerland.
| |
Collapse
|
23
|
Role for Protein Kinase A in the Neurospora Circadian Clock by Regulating White Collar-Independent frequency Transcription through Phosphorylation of RCM-1. Mol Cell Biol 2015; 35:2088-102. [PMID: 25848091 DOI: 10.1128/mcb.00709-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 03/30/2015] [Indexed: 01/24/2023] Open
Abstract
Rhythmic activation and repression of clock gene expression is essential for the eukaryotic circadian clock functions. In the Neurospora circadian oscillator, the transcription of the frequency (frq) gene is periodically activated by the White Collar (WC) complex and suppressed by the FRQ-FRH complex. We previously showed that there is WC-independent frq transcription and its repression is required for circadian gene expression. How WC-independent frq transcription is regulated is not known. We show here that elevated protein kinase A (PKA) activity results in WC-independent frq transcription and the loss of clock function. We identified RCM-1 as the protein partner of RCO-1 and an essential component of the clock through its role in suppressing WC-independent frq transcription. RCM-1 is a phosphoprotein and is a substrate of PKA in vivo and in vitro. Mutation of the PKA-dependent phosphorylation sites on RCM-1 results in WC-independent transcription of frq and impaired clock function. Furthermore, we showed that RCM-1 is associated with the chromatin at the frq locus, a process that is inhibited by PKA. Together, our results demonstrate that PKA regulates frq transcription by inhibiting RCM-1 activity through RCM-1 phosphorylation.
Collapse
|
24
|
Abstract
![]()
Circadian clocks are self-sustaining
timekeepers found in almost
all organisms on earth. The filamentous fungus Neurospora
crassa is a preeminent model for eukaryotic circadian clocks.
Investigations of the Neurospora circadian clock
system have led to elucidation of circadian clock regulatory mechanisms
that are common to all eukaryotes. In this work, we will focus on
the Neurospora circadian oscillator mechanism with
an emphasis on the regulation of the core clock component FREQUENCY.
Collapse
Affiliation(s)
- Joonseok Cha
- Department of Physiology, University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, United States
| | | | | |
Collapse
|
25
|
Abstract
Eukaryotic circadian clocks are comprised of interlocked autoregulatory feedback loops that control gene expression at the levels of transcription and translation. The filamentous fungus Neurospora crassa is an excellent model for the complex molecular network of regulatory mechanisms that are common to all eukaryotes. At the heart of the network, posttranslational regulation and functions of the core clock elements are of major interest. This chapter discusses the methods used currently to study the regulation of clock molecules in Neurospora. The methods range from assays of gene expression to phosphorylation, nuclear localization, and DNA binding of clock proteins.
Collapse
|
26
|
Neurospora crassa as a model organism to explore the interconnected network of the cell cycle and the circadian clock. Fungal Genet Biol 2014; 71:52-7. [PMID: 25239547 DOI: 10.1016/j.fgb.2014.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
Budding and fission yeast pioneered uncovering molecular mechanisms of eukaryotic cell division cycles. However, they do not possess canonical circadian clock machinery that regulates physiological processes with a period of about 24h. On the other hand, Neurospora crassa played a critical role in elucidating molecular mechanisms of circadian rhythms, but have not been utilized frequently for cell cycle studies. Recent findings demonstrate that there exists a conserved coupling between the cell cycle and the circadian clock from N.crassa to Mus musculus, which poses Neurospora as an ideal model organism to investigate molecular mechanisms and emerging behavior of the coupled network of the cell cycle and circadian rhythms. In this review, we briefly describe generic eukaryotic cell cycle regulation focusing on G1/S and G2/M transitions, and highlight that these transitions may be targeted for the circadian clock to influence timing of cell division cycles.
Collapse
|
27
|
Gyöngyösi N, Káldi K. Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. Antioxid Redox Signal 2014; 20:3007-23. [PMID: 23964982 DOI: 10.1089/ars.2013.5558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SIGNIFICANCE Both circadian rhythm and the production of reactive oxygen species (ROS) are fundamental features of aerobic eukaryotic cells. The circadian clock enhances the fitness of organisms by enabling them to anticipate cycling changes in the surroundings. ROS generation in the cell is often altered in response to environmental changes, but oscillations in ROS levels may also reflect endogenous metabolic fluctuations governed by the circadian clock. On the other hand, an effective regulation and timing of antioxidant mechanisms may be crucial in the defense of cellular integrity. Thus, an interaction between the circadian timekeeping machinery and ROS homeostasis or signaling in both directions may be of advantage at all phylogenetic levels. RECENT ADVANCES The Frequency-White Collar-1 and White Collar-2 oscillator (FWO) of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Several members of the ROS homeostasis were found to be controlled by the circadian clock, and ROS levels display circadian rhythm in Neurospora. On the other hand, multiple data indicate that ROS affect the molecular oscillator. CRITICAL ISSUES Increasing evidence suggests the interplay between ROS homeostasis and oscillators that may be partially or fully independent of the FWO. In addition, ROS may be part of a complex cellular network synchronizing non-transcriptional oscillators with timekeeping machineries based on the classical transcription-translation feedback mechanism. FUTURE DIRECTIONS Further investigations are needed to clarify how the different layers of the bidirectional interactions between ROS homeostasis and circadian regulation are interconnected.
Collapse
|
28
|
Abstract
Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the metabolism of nutrient sources relevant for biofuel production, as well as colony morphology and starvation resistance. Our strategy is straightforward, inexpensive, and applicable for predicting gene function in many fungal species.
Collapse
|
29
|
Abstract
The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.
Collapse
|
30
|
Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock. Proc Natl Acad Sci U S A 2013; 110:E4867-74. [PMID: 24277852 DOI: 10.1073/pnas.1315133110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhythmic activation and repression of clock gene transcription is essential for the functions of eukaryotic circadian clocks. In the Neurospora circadian oscillator, frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Here, we show that the transcriptional corepressor regulation of conidiation-1 (RCO-1) is essential for clock function by regulating frq transcription. In rco-1 mutants, both overt and molecular rhythms are abolished, frq mRNA levels are constantly high, and WC binding to the frq promoter is dramatically reduced. Surprisingly, frq mRNA levels were constantly high in the rco-1 wc double mutants, indicating that RCO-1 suppresses WC-independent transcription and promotes WC complex binding to the frq promoter. Furthermore, RCO-1 is required for maintaining normal chromatin structure at the frq locus. Deletion of H3K36 methyltransferase su(var)3-9-enhancer-of-zeste-trithorax-2 (SET-2) or the chromatin remodeling factor CHD-1 leads to WC-independent frq transcription and loss of overt rhythms. Together, our results uncover a previously unexpected regulatory mechanism for clock gene transcription.
Collapse
|
31
|
Szabó Á, Papin C, Zorn D, Ponien P, Weber F, Raabe T, Rouyer F. The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator. PLoS Biol 2013; 11:e1001645. [PMID: 24013921 PMCID: PMC3754892 DOI: 10.1371/journal.pbio.1001645] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation is a pivotal regulatory mechanism for protein stability and activity in circadian clocks regardless of their evolutionary origin. It determines the speed and strength of molecular oscillations by acting on transcriptional activators and their repressors, which form negative feedback loops. In Drosophila, the CK2 kinase phosphorylates and destabilizes the PERIOD (PER) and TIMELESS (TIM) proteins, which inhibit CLOCK (CLK) transcriptional activity. Here we show that CK2 also targets the CLK activator directly. Downregulating the activity of the catalytic α subunit of CK2 induces CLK degradation, even in the absence of PER and TIM. Unexpectedly, the regulatory β subunit of the CK2 holoenzyme is not required for the regulation of CLK stability. In addition, downregulation of CK2α activity decreases CLK phosphorylation and increases per and tim transcription. These results indicate that CK2 inhibits CLK degradation while reducing its activity. Since the CK1 kinase promotes CLK degradation, we suggest that CLK stability and transcriptional activity result from counteracting effects of CK1 and CK2.
Collapse
Affiliation(s)
- Áron Szabó
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
| | - Christian Papin
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
| | - Daniela Zorn
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif-sur-Yvette, France
- IMAGIF, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - Frank Weber
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Thomas Raabe
- University of Wuerzburg, Institute of Medical Radiation and Cell Research, Wuerzburg, Germany
| | - François Rouyer
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique Unité Propre de Recherche 3294, Gif-sur-Yvette, France
- Département de Biologie, Université Paris Sud, Orsay, France
- * E-mail:
| |
Collapse
|
32
|
Cha J, Zhou M, Liu Y. CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep 2013; 14:923-30. [PMID: 23958634 DOI: 10.1038/embor.2013.131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/24/2013] [Accepted: 07/31/2013] [Indexed: 12/30/2022] Open
Abstract
Rhythmic frq transcription is essential for the function of the Neurospora circadian clock. Here we show that there is a circadian histone occupancy rhythm at the frq promoter that is regulated by FREQUENCY (FRQ). Using a combination of forward genetics and genome sequencing, we identify Clock ATPase (CATP) as an essential clock component. Our results demonstrate that CATP associates with the frq locus and other WCC target genes and promotes histone removal at these loci to allow circadian gene transcription. These results indicate that the rhythmic control of histone occupancy at clock genes is critical for circadian clock function.
Collapse
Affiliation(s)
- Joonseok Cha
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
33
|
Gin E, Diernfellner ACR, Brunner M, Höfer T. The Neurospora photoreceptor VIVID exerts negative and positive control on light sensing to achieve adaptation. Mol Syst Biol 2013; 9:667. [PMID: 23712010 PMCID: PMC4039372 DOI: 10.1038/msb.2013.24] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/18/2013] [Indexed: 11/18/2022] Open
Abstract
Light adaptation in Neurospora is mediated by the photoreceptor VIVID, which exerts both a negative and positive effect on light sensing. These apparently paradoxical roles of VIVID are explained by the dynamics of a network motif that utilizes futile cycling. ![]()
The fungus Neurospora detects relative changes in light intensity by adapting to the ambient light level and remaining responsive to increases in light intensity. Both the downregulation of the acute light response and maintained responsiveness are mediated by the photoreceptor VIVID (VVD). Data-based mathematical modeling shows that this paradoxical function of VVD can be realized by a futile-cycle network motif that turns feedback inhibition into sensory adaptation.
The light response in Neurospora is mediated by the photoreceptor and circadian transcription factor White Collar Complex (WCC). The expression rate of the WCC target genes adapts in daylight and remains refractory to moonlight, despite the extraordinary light sensitivity of the WCC. To explain this photoadaptation, feedback inhibition by the WCC interaction partner VIVID (VVD) has been invoked. Here we show through data-driven mathematical modeling that VVD allows Neurospora to detect relative changes in light intensity. To achieve this behavior, VVD acts as an inhibitor of WCC-driven gene expression and, at the same time, as a positive regulator that maintains the responsiveness of the photosystem. Our data indicate that this paradoxical function is realized by a futile cycle that involves the light-induced sequestration of active WCC by VVD and the replenishment of the activatable WCC pool through the decay of the photoactivated state. Our quantitative study uncovers a novel network motif for achieving sensory adaptation and defines a core input module of the circadian clock in Neurospora.
Collapse
Affiliation(s)
- Elan Gin
- Division of Theoretical Systems Biology, German Cancer Research Center-DKFZ, Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Regulation of transcription by light in Neurospora crassa: A model for fungal photobiology? FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Gyöngyösi N, Nagy D, Makara K, Ella K, Káldi K. Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. Free Radic Biol Med 2013; 58:134-43. [PMID: 23277144 DOI: 10.1016/j.freeradbiomed.2012.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/14/2012] [Accepted: 12/17/2012] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) may serve as signals coupling metabolism to other cell functions. In addition to being by-products of normal metabolism, they are generated at elevated levels under environmental stress situations. We analyzed how reactive oxygen species affect the circadian clock in the model organism Neurospora crassa. In light/dark cycles, an increase in the levels of reactive oxygen species advanced the phase of both the conidiation rhythm and the expression of the clock gene frequency. Our results indicate a dominant role of the superoxide anion in the control of the phase. Elevation of superoxide production resulted in the activation of protein phosphatase 2A, a regulator of the positive element of the circadian clock. Our data indicate that even under nonstress conditions, reactive oxygen species affect circadian timekeeping. Reduction of their basal levels results in a delay of the phase in light/dark cycles and a longer period under constant conditions. We show that under entrained conditions the phase depends on the temperature and reactive oxygen species contribute to this effect. Our results suggest that the superoxide anion is an important factor controlling the circadian oscillator and is able to reset the clock most probably by activating protein phosphatase 2A, thereby modulating the activity of the White Collar complex.
Collapse
Affiliation(s)
- Norbert Gyöngyösi
- Department of Physiology, Semmelweis University, H-1092 Budapest, Hungary
| | | | | | | | | |
Collapse
|
36
|
Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J 2012; 31:2403-15. [PMID: 22491012 DOI: 10.1038/emboj.2012.86] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/15/2012] [Indexed: 02/08/2023] Open
Abstract
Protein phosphatase PP4C has been implicated in the DNA damage response (DDR), but its substrates in DDR remain largely unknown. We devised a novel proteomic strategy for systematic identification of proteins dephosphorylated by PP4C and identified KRAB-domain-associated protein 1 (KAP-1) as a substrate. Ionizing radiation leads to phosphorylation of KAP-1 at S824 (via ATM) and at S473 (via CHK2). A PP4C/R3β complex interacts with KAP-1 and silencing this complex leads to persistence of phospho-S824 and phospho-S473. We identify a new role for KAP-1 in DDR by showing that phosphorylation of S473 impacts the G2/M checkpoint. Depletion of PP4R3β or expression of the phosphomimetic KAP-1 S473 mutant (S473D) leads to a prolonged G2/M checkpoint. Phosphorylation of S824 is necessary for repair of heterochromatic DNA lesions and similar to cells expressing phosphomimetic KAP-1 S824 mutant (S824D), or PP4R3β-silenced cells, display prolonged relaxation of chromatin with release of chromatin remodelling protein CHD3. Our results define a new role for PP4-mediated dephosphorylation in the DDR, including the regulation of a previously undescribed function of KAP-1 in checkpoint response.
Collapse
|
37
|
Abstract
Circadian clocks organize our inner physiology with respect to the external world, providing life with the ability to anticipate and thereby better prepare for major fluctuations in its environment. Circadian systems are widely represented in nearly all major branches of life, except archaebacteria, and within the eukaryotes, the filamentous fungus Neurospora crassa has served for nearly half a century as a durable model organism for uncovering the basic circadian physiology and molecular biology. Studies using Neurospora have clarified our fundamental understanding of the clock as nested positive and negative feedback loops regulated through transcriptional and post-transcriptional processes. These feedback loops are centered on a limited number of proteins that form molecular complexes, and their regulation provides a physical explanation for nearly all clock properties. This review will introduce the basics of circadian rhythms, the model filamentous fungus N. crassa, and provide an overview of the molecular components and regulation of the circadian clock.
Collapse
Affiliation(s)
| | - Jennifer J. Loros
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
38
|
Querfurth C, Diernfellner ACR, Gin E, Malzahn E, Höfer T, Brunner M. Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol Cell 2011; 43:713-22. [PMID: 21884974 DOI: 10.1016/j.molcel.2011.06.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/31/2011] [Accepted: 06/26/2011] [Indexed: 10/17/2022]
Abstract
In the course of a day, the Neurospora clock protein FREQUENCY (FRQ) is progressively phosphorylated at up to 113 sites and eventually degraded. Phosphorylation and degradation are crucial for circadian time keeping, but it is not known how phosphorylation of a large number of sites correlates with circadian degradation of FRQ. We show that two amphipathic motifs in FRQ interact over a long distance, bringing the positively charged N-terminal portion in spatial proximity to the negatively charged middle and C-terminal portion of FRQ. The interaction is essential for the recruitment of casein kinase 1a (CK1a) into a stable complex with FRQ. FRQ-bound CK1a progressively phosphorylates the positively charged N-terminal domain of FRQ at up to 46 nonconsensus sites, triggering a conformational change, presumably by electrostatic repulsion, that commits the protein for degradation via the PEST1 signal in the negatively charged central portion of FRQ.
Collapse
Affiliation(s)
- Christina Querfurth
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Phosphorylations: making the Neurospora
crassa
circadian clock tick. FEBS Lett 2011; 585:1461-6. [DOI: 10.1016/j.febslet.2011.03.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/09/2011] [Accepted: 03/23/2011] [Indexed: 11/19/2022]
|
40
|
Kinases and phosphatases in the mammalian circadian clock. FEBS Lett 2011; 585:1393-9. [DOI: 10.1016/j.febslet.2011.02.038] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 12/28/2022]
|
41
|
Cha J, Yuan H, Liu Y. Regulation of the activity and cellular localization of the circadian clock protein FRQ. J Biol Chem 2011; 286:11469-78. [PMID: 21300798 DOI: 10.1074/jbc.m111.219782] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic circadian clocks employ autoregulatory negative feedback loops to control daily rhythms. In the filamentous fungus Neurospora, FRQ, FRH, WC-1, and WC-2 are the core components of the circadian negative feedback loop. To close the transcription-based negative feedback loop, the FRQ-FRH complex inhibits the activity of the WC complex in the nucleus by promoting the casein kinases-mediated WC phosphorylation. Despite its essential role in the nucleus, most FRQ is found in the cytoplasm. In this study, we mapped the FRQ regions that are important for its cellular localization. We show that the C-terminal part of FRQ, particularly the FRQ-FRH interaction domain, plays a major role in controlling FRQ localization. Both the mutation of the FRQ-FRH interaction domain and the down-regulation of FRH result in the nuclear enrichment of FRQ, suggesting that FRH regulates FRQ localization via a physical interaction. To study the role of FRQ phosphorylation, we examined the FRQ localization in wild-type as well as an array of FRQ kinase, FRQ phosphatase, and FRQ phosphorylation site mutants. Collectively, our results suggest that FRQ phosphorylation does not play a significant role in regulating its cellular localization. Instead, we find that phosphorylation of FRQ inhibits its transcriptional repressor activity in the circadian negative feedback loop. Such an effect is achieved by inhibiting the ability of FRQ to interact with WCC and casein kinase 1a. Our results indicate that the rhythmic FRQ phosphorylation profile observed is an important part of the negative feedback mechanism that drives robust circadian gene expression.
Collapse
Affiliation(s)
- Joonseok Cha
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9040, USA
| | | | | |
Collapse
|
42
|
Lakin-Thomas PL, Bell-Pedersen D, Brody S. The genetics of circadian rhythms in Neurospora. ADVANCES IN GENETICS 2011; 74:55-103. [PMID: 21924975 DOI: 10.1016/b978-0-12-387690-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes our current understanding of the genetics of the Neurospora clock and summarizes the important findings in this area in the past decade. Neurospora is the most intensively studied clock system, and the reasons for this are listed. A discussion of the genetic interactions between clock mutants is included, highlighting the utility of dissecting complex mechanisms by genetic means. The molecular details of the Neurospora circadian clock mechanism are described, as well as the mutations that affect the key clock proteins, FRQ, WC-1, and WC-2, with an emphasis on the roles of protein phosphorylation. Studies on additional genes affecting clock properties are described and place these genes into two categories: those that affect the FRQ/WCC oscillator and those that do not. A discussion of temperature compensation and the mutants affecting this property is included. A section is devoted to the observations pertinent to the existence of other oscillators in this organism with respect to their properties, their effects, and their preliminary characterization. The output of the clock and the control of clock-controlled genes are discussed, emphasizing the phasing of these genes and the layers of control. In conclusion, the authors provide an outlook summarizing their suggestions for areas that would be fruitful for further exploration.
Collapse
|
43
|
Of switches and hourglasses: regulation of subcellular traffic in circadian clocks by phosphorylation. EMBO Rep 2010; 11:927-35. [PMID: 21052092 DOI: 10.1038/embor.2010.174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/21/2010] [Indexed: 01/26/2023] Open
Abstract
Investigation of the phosphorylation of circadian clock proteins has shown that this modification contributes to circadian timing in all model organisms. Phosphorylation alters the stability, transcriptional activity and subcellular localization of clock proteins during the course of a day, such that time-of-day-specific phosphorylation encodes information for measuring time and is crucial for the establishment of an approximately 24-h period. One main feature of molecular timekeeping is the daytime-specific nuclear accumulation of clock proteins, which can be regulated by phosphorylation. Here, we discuss increasing knowledge of how subcellular shuttling is regulated in circadian clocks, on the basis of recent observations in Neurospora crassa showing that clock proteins undergo maturation through sequential phosphorylation. In this model organism, clock proteins are regulated by the phosphorylation-dependent modulation of rapid shuttling cycles that alter their subcellular localization in a time-of-day-specific manner.
Collapse
|
44
|
Chen CH, Loros JJ. Neurospora sees the light: light signaling components in a model system. Commun Integr Biol 2010; 2:448-51. [PMID: 19907715 DOI: 10.4161/cib.2.5.8835] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 12/29/2022] Open
Abstract
Light is a key environmental signal for most life on earth. Over 5% of Neurospora crassa genes are expressed in response to light stimulation in a temporally regulated cascade that includes several transcription factors. Fungal genomes, including Neurospora's, may encode several different proteins capable of binding chromophores with the ability to harvest light energy as well as proteins that can interact with primary photoreceptors or further propogate the light signal. The best understood photo- receptors are the evolutionarily conserved White Collar proteins, and the related Vivid protein, but fungi may also encode phytochromes, cryptochromes and opsins.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
45
|
Guo J, Liu Y. Molecular mechanism of the Neurospora circadian oscillator. Protein Cell 2010; 1:331-341. [PMID: 21203945 DOI: 10.1007/s13238-010-0053-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/31/2010] [Indexed: 11/24/2022] Open
Abstract
Circadian clocks are the internal time-keeping mechanisms for organisms to synchronize their cellular and physiological processes to the daily light/dark cycles. The molecular mechanisms underlying circadian clocks are remarkably similar in eukaryotes. Neurospora crassa, a filamentous fungus, is one of the best understood model organisms for circadian research. In recent years, accumulating data have revealed complex regulation in the Neurospora circadian clock at transcriptional, posttranscriptional, post-translational and epigenetic levels. Here we review the recent progress towards our understanding of the molecular mechanism of the Neurospora circadian oscillator. These advances have provided novel insights and furthered our understanding of the mechanism of eukaryotic circadian clocks.
Collapse
Affiliation(s)
- Jinhu Guo
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9040, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9040, USA.
| |
Collapse
|
46
|
Salichos L, Rokas A. The diversity and evolution of circadian clock proteins in fungi. Mycologia 2010; 102:269-78. [PMID: 20361495 DOI: 10.3852/09-073] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Circadian rhythms are endogenous cellular patterns that associate multiple physiological and molecular functions with time. The Neurospora circadian system contains at least three oscillators: the FRQ/WC-dependent circadian oscillator (FWO), whose core components are the FRQ, WC-1, WC-2, FRH, and FWD-1 proteins; the WC-dependent circadian oscillator (WC-FLO); and one or more FRQ/ WC-independent oscillators (FLO). Little is known about the distribution of homologs of the Neurospora clock proteins or about the molecular foundations of circadian rhythms across fungi. Here, we examined 64 diverse fungal proteomes for homologs of all five Neurospora clock proteins and retraced their evolutionary history. The FRH and FWD-1 proteins were likely present in the fungal ancestor. WC-1 and WC-2 homologs are absent from the early diverging chytrids and Microsporidia but are present in all other major clades. In contrast to the deep origins of these four clock proteins FRQ homologs are taxonomically restricted within Sordariomycetes, Leotiomycetes and Dothideomycetes. The large number of FRH and FWD-1 homologs identified and their lack of concordance with the fungal species phylogeny indicate that they likely underwent multiple rounds of duplications and losses. In contrast, the FRQ, WC-1 and WC-2 proteins exhibit relatively few duplications and losses. A notable exception is the 10 FRQ-like proteins in Fusarium oxysporum, which resulted from nine duplication events. Our results suggest that the machinery required for FWO oscillator function is taxonomically restricted within Ascomycetes. Although the WC proteins are widely distributed, the functional diversity of the few non-Neurospora circadian oscillators suggests that a WC-FLO oscillator is unlikely to fully explain the observed rhythms. The contrast between the diversity of circadian oscillators and the conservation of most of their machinery is likely best explained by considering the centrality of noncircadian functions in which RNA helicase (FRH), F-box (FWD-1), WC-1 and WC-2 (light-sensing) proteins participate in fungi and eukaryotes.
Collapse
Affiliation(s)
- Leonidas Salichos
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
47
|
PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 2010; 29:1903-15. [PMID: 20407420 DOI: 10.1038/emboj.2010.76] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/30/2010] [Indexed: 12/15/2022] Open
Abstract
Many core oscillator components of the circadian clock are nuclear localized but how the phase and rate of their entry contribute to clock function is unknown. TOC1/PRR1, a pseudoresponse regulator (PRR) protein, is a central element in one of the feedback loops of the Arabidopsis clock, but how it functions is unknown. Both TOC1 and a closely related protein, PRR5, are nuclear localized, expressed in the same phase, and shorten period when deficient, but their molecular relationship is unclear. Here, we find that both proteins interact in vitro and in vivo through their conserved N-termini. TOC1-PRR5 oligomerization enhances TOC1 nuclear accumulation two-fold, most likely through enhanced nuclear import. In addition, PRR5 recruits TOC1 to large subnuclear foci and promotes phosphorylation of the TOC1 N-terminus. Our results show that nuclear TOC1 is essential for normal clock function and reveal a mechanism to enhance phase-specific TOC1 nuclear accumulation. Interestingly, this process of regulated nuclear import is reminiscent of similar oligomeric pairings in animal clock systems (e.g. timeless/period and clock/cycle), suggesting evolutionary convergence of a conserved mechanism across kingdoms.
Collapse
|
48
|
Diernfellner ACR, Querfurth C, Salazar C, Höfer T, Brunner M. Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale. Genes Dev 2009; 23:2192-200. [PMID: 19759264 DOI: 10.1101/gad.538209] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Neurospora clock protein FREQUENCY (FRQ) is an essential regulator of the circadian transcription factor WHITE COLLAR COMPLEX (WCC). In the course of a circadian period, the subcellular distribution of FRQ shifts from mainly nuclear to mainly cytosolic. This shift is crucial for coordinating the negative and positive limbs of the clock. We show that the subcellular redistribution of FRQ on a circadian time scale is governed by rapid, noncircadian cycles of nuclear import and export. The rate of nuclear import of newly synthesized FRQ is progressively reduced in a phosphorylation-dependent manner, leading to an increase in the steady-state level of cytoplasmic FRQ. The long-period frq(7) mutant displays reduced kinetics of FRQ(7) protein phosphorylation and a prolonged accumulation in the nucleus. We present a mathematical model that describes the cytoplasmic accumulation of wild-type and mutant FRQ on a circadian time scale on the basis of frequency-modulated rapid nucleocytoplasmic shuttling cycles.
Collapse
|
49
|
Guo J, Cheng P, Yuan H, Liu Y. The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cell 2009; 138:1236-46. [PMID: 19747717 DOI: 10.1016/j.cell.2009.06.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 04/20/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
The eukaryotic circadian oscillators consist of autoregulatory negative feedback loops. However, little is known about the role of posttranscriptional regulation of RNA in circadian oscillators. In the Neurospora circadian negative feedback loop, FRQ and FRH form the FFC complex that represses frq transcription. Here, we show that FFC also binds frq RNA and interacts with the exosome to regulate frq RNA decay. Consequently, frq RNA is robustly rhythmic as it is more stable when FRQ levels are low. Silencing of RRP44, the catalytic subunit of the exosome, elevates frq RNA levels and impairs clock function. In addition, rrp44 is a clock-controlled gene and a direct target of the WHITE COLLAR complex, and RRP44 controls the circadian expression of some ccgs. Taken together, these results suggest that FFC and the exosome are part of a posttranscriptional negative feedback loop that regulates frq transcript levels and the circadian output pathway.
Collapse
Affiliation(s)
- Jinhu Guo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
50
|
Mehra A, Baker CL, Loros JJ, Dunlap JC. Post-translational modifications in circadian rhythms. Trends Biochem Sci 2009; 34:483-90. [PMID: 19740663 DOI: 10.1016/j.tibs.2009.06.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022]
Abstract
The pace has quickened in circadian biology research. In particular, an abundance of results focused on post-translational modifications (PTMs) is sharpening our view of circadian molecular clockworks. PTMs affect nearly all aspects of clock biology; in some cases they are essential for clock function and in others, they provide layers of regulatory fine-tuning. Our goal is to review recent advances in clock PTMs, help make sense of emerging themes, and spotlight intriguing (and perhaps controversial) new findings. We focus on PTMs affecting the core functions of eukaryotic clocks, in particular the functionally related oscillators in Neurospora crassa, Drosophila melanogaster, and mammalian cells.
Collapse
Affiliation(s)
- Arun Mehra
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|