1
|
Hagee D, Abu Hardan A, Botero J, Arnone JT. Genomic clustering within functionally related gene families in Ascomycota fungi. Comput Struct Biotechnol J 2020; 18:3267-3277. [PMID: 33209211 PMCID: PMC7653285 DOI: 10.1016/j.csbj.2020.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple mechanisms collaborate for proper regulation of gene expression. One layer of this regulation is through the clustering of functionally related genes at discrete loci throughout the genome. This phenomenon occurs extensively throughout Ascomycota fungi and is an organizing principle for many gene families whose proteins participate in diverse molecular functions throughout the cell. Members of this phylum include organisms that serve as model systems and those of interest medically, pharmaceutically, and for industrial and biotechnological applications. In this review, we discuss the prevalence of functional clustering through a broad range of organisms within the phylum. Position effects on transcription, genomic locations of clusters, transcriptional regulation of clusters, and selective pressures contributing to the formation and maintenance of clusters are addressed, as are common methods to identify and characterize clusters.
Collapse
Affiliation(s)
- Danielle Hagee
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Ahmad Abu Hardan
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Juan Botero
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - James T. Arnone
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
2
|
Liu Q, Zhu X, Lindström M, Shi Y, Zheng J, Hao X, Gustafsson CM, Liu B. Yeast mismatch repair components are required for stable inheritance of gene silencing. PLoS Genet 2020; 16:e1008798. [PMID: 32469861 PMCID: PMC7286534 DOI: 10.1371/journal.pgen.1008798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/10/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022] Open
Abstract
Alterations in epigenetic silencing have been associated with ageing and tumour formation. Although substantial efforts have been made towards understanding the mechanisms of gene silencing, novel regulators in this process remain to be identified. To systematically search for components governing epigenetic silencing, we developed a genome-wide silencing screen for yeast (Saccharomyces cerevisiae) silent mating type locus HMR. Unexpectedly, the screen identified the mismatch repair (MMR) components Pms1, Mlh1, and Msh2 as being required for silencing at this locus. We further found that the identified genes were also required for proper silencing in telomeres. More intriguingly, the MMR mutants caused a redistribution of Sir2 deacetylase, from silent mating type loci and telomeres to rDNA regions. As a consequence, acetylation levels at histone positions H3K14, H3K56, and H4K16 were increased at silent mating type loci and telomeres but were decreased in rDNA regions. Moreover, knockdown of MMR components in human HEK293T cells increased subtelomeric DUX4 gene expression. Our work reveals that MMR components are required for stable inheritance of gene silencing patterns and establishes a link between the MMR machinery and the control of epigenetic silencing.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | - Xuefeng Zhu
- Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
- * E-mail: (XZ); (BL)
| | - Michelle Lindström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | - Yonghong Shi
- Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
| | - Ju Zheng
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
| | | | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- Center for Large-scale cell-based screening, Faculty of Science, University of Gothenburg, Medicinaregatan, Goteborg, Sweden
- * E-mail: (XZ); (BL)
| |
Collapse
|
3
|
Harvey ZH, Chakravarty AK, Futia RA, Jarosz DF. A Prion Epigenetic Switch Establishes an Active Chromatin State. Cell 2020; 180:928-940.e14. [PMID: 32109413 PMCID: PMC7195540 DOI: 10.1016/j.cell.2020.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/10/2019] [Accepted: 02/05/2020] [Indexed: 01/24/2023]
Abstract
Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.
Collapse
Affiliation(s)
- Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Raymond A Futia
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Kwapisz M, Morillon A. Subtelomeric Transcription and its Regulation. J Mol Biol 2020; 432:4199-4219. [PMID: 32035903 PMCID: PMC7374410 DOI: 10.1016/j.jmb.2020.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
The subtelomeres, highly heterogeneous repeated sequences neighboring telomeres, are transcribed into coding and noncoding RNAs in a variety of organisms. Telomereproximal subtelomeric regions produce non-coding transcripts i.e., ARRET, αARRET, subTERRA, and TERRA, which function in telomere maintenance. The role and molecular mechanisms of the majority of subtelomeric transcripts remain unknown. This review depicts the current knowledge and puts into perspective the results obtained in different models from yeasts to humans.
Collapse
Affiliation(s)
- Marta Kwapisz
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248, Paris, France.
| |
Collapse
|
5
|
Hu Y, Bennett HW, Liu N, Moravec M, Williams JF, Azzalin CM, King MC. RNA-DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast. Genetics 2019; 213:431-447. [PMID: 31405990 PMCID: PMC6781888 DOI: 10.1534/genetics.119.302606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
A subset of cancers rely on telomerase-independent mechanisms to maintain their chromosome ends. The predominant "alternative lengthening of telomeres" pathway appears dependent on homology-directed repair (HDR) to maintain telomeric DNA. However, the molecular changes needed for cells to productively engage in telomeric HDR are poorly understood. To gain new insights into this transition, we monitored the state of telomeres during serial culture of fission yeast (Schizosaccharomyces pombe) lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). In this context, degradation of TERRA associated with the telomere in the form of R-loops drives a severe growth crisis, ultimately leading to a novel type of survivor with linear chromosomes and altered cytological telomere characteristics, including the loss of the shelterin component Rap1 (but not the TRF1/TRF2 ortholog, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective in this context, preventing the growth crisis that is otherwise triggered by degradation of telomeric R-loops in survivors with linear chromosomes. These findings suggest that upregulation of telomere-engaged TERRA, or altered recruitment of shelterin components, can support telomerase-independent telomere maintenance.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Henrietta W Bennett
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), 8093, Switzerland
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, 1649-028, Portugal
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| |
Collapse
|
6
|
Nucleosome Positioning by an Evolutionarily Conserved Chromatin Remodeler Prevents Aberrant DNA Methylation in Neurospora. Genetics 2018; 211:563-578. [PMID: 30554169 DOI: 10.1534/genetics.118.301711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023] Open
Abstract
In the filamentous fungus Neurospora crassa, constitutive heterochromatin is marked by tri-methylation of histone H3 lysine 9 (H3K9me3) and DNA methylation. We identified mutations in the Neurospora defective in methylation-1 (dim-1) gene that cause defects in cytosine methylation and implicate a putative AAA-ATPase chromatin remodeler. Although it was well-established that chromatin remodelers can affect transcription by influencing DNA accessibility with nucleosomes, little was known about the role of remodelers on chromatin that is normally not transcribed, including regions of constitutive heterochromatin. We found that dim-1 mutants display both reduced DNA methylation in heterochromatic regions as well as increased DNA methylation and H3K9me3 in some intergenic regions associated with highly expressed genes. Deletion of dim-1 leads to atypically spaced nucleosomes throughout the genome and numerous changes in gene expression. DIM-1 localizes to both heterochromatin and intergenic regions that become hyper-methylated in dim-1 strains. Our findings indicate that DIM-1 normally positions nucleosomes in both heterochromatin and euchromatin and that the standard arrangement and density of nucleosomes is required for the proper function of heterochromatin machinery.
Collapse
|
7
|
Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci U S A 2018; 115:10977-10982. [PMID: 30297429 DOI: 10.1073/pnas.1720476115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomes condense during mitosis in most eukaryotes. This transformation involves rearrangements at the nucleosome level and has consequences for transcription. Here, we use cryo-electron tomography (cryo-ET) to determine the 3D arrangement of nuclear macromolecular complexes, including nucleosomes, in frozen-hydrated Schizosaccharomyces pombe cells. Using 3D classification analysis, we did not find evidence that nucleosomes resembling the crystal structure are abundant. This observation and those from other groups support the notion that a subset of fission yeast nucleosomes may be partially unwrapped in vivo. In both interphase and mitotic cells, there is also no evidence of monolithic structures the size of Hi-C domains. The chromatin is mingled with two features: pockets, which are positions free of macromolecular complexes; and "megacomplexes," which are multimegadalton globular complexes like preribosomes. Mitotic chromatin is more crowded than interphase chromatin in subtle ways. Nearest-neighbor distance analyses show that mitotic chromatin is more compacted at the oligonucleosome than the dinucleosome level. Like interphase, mitotic chromosomes contain megacomplexes and pockets. This uneven chromosome condensation helps explain a longstanding enigma of mitosis: a subset of genes is up-regulated.
Collapse
|
8
|
Gomez-Escobar N, Almobadel N, Alzahrani O, Feichtinger J, Planells-Palop V, Alshehri Z, Thallinger GG, Wakeman JA, McFarlane RJ. Translin and Trax differentially regulate telomere-associated transcript homeostasis. Oncotarget 2017; 7:33809-20. [PMID: 27183912 PMCID: PMC5085120 DOI: 10.18632/oncotarget.9278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
Translin and Trax proteins are highly conserved nucleic acid binding proteins that have been implicated in RNA regulation in a range of biological processes including tRNA processing, RNA interference, microRNA degradation during oncogenesis, spermatogenesis and neuronal regulation. Here, we explore the function of this paralogue pair of proteins in the fission yeast. Using transcript analysis we demonstrate a reciprocal mechanism for control of telomere-associated transcripts. Mutation of tfx1+ (Trax) elevates transcript levels from silenced sub-telomeric regions of the genome, but not other silenced regions, such as the peri-centromeric heterochromatin. In the case of some sub-telomeric transcripts, but not all, this elevation is dependent on the Trax paralogue, Tsn1 (Translin). In a reciprocal fashion, Tsn1 (Translin) serves to repress levels of transcripts (TERRAs) from the telomeric repeats, whereas Tfx1 serves to maintain these elevated levels. This reveals a novel mechanism for the regulation of telomeric transcripts. We extend this to demonstrate that human Translin and Trax also control telomere-associated transcript levels in human cells in a telomere-specific fashion.
Collapse
Affiliation(s)
- Natalia Gomez-Escobar
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Nasser Almobadel
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Othman Alzahrani
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Julia Feichtinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Vicente Planells-Palop
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Zafer Alshehri
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Gerhard G Thallinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Jane A Wakeman
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Ramsay J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
9
|
Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa. Proc Natl Acad Sci U S A 2017; 114:E9598-E9607. [PMID: 29078403 DOI: 10.1073/pnas.1715049114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Functionally different chromatin domains display distinct chemical marks. Constitutive heterochromatin is commonly associated with trimethylation of lysine 9 on histone H3 (H3K9me3), hypoacetylated histones, and DNA methylation, but the contributions of and interplay among these features are not fully understood. To dissect the establishment of heterochromatin, we investigated the relationships among these features using an in vivo tethering system in Neurospora crassa Artificial recruitment of the H3K9 methyltransferase DIM-5 (defective in methylation-5) induced H3K9me3 and DNA methylation at a normally active, euchromatic locus but did not bypass the requirement of DIM-7, previously implicated in the localization of DIM-5, indicating additional DIM-7 functionality. Tethered heterochromatin protein 1 (HP1) induced H3K9me3, DNA methylation, and gene silencing. The induced heterochromatin required histone deacetylase 1 (HDA-1), with an intact catalytic domain, but HDA-1 was not essential for de novo heterochromatin formation at native heterochromatic regions. Silencing did not require H3K9me3 or DNA methylation. However, DNA methylation contributed to establishment of H3K9me3 induced by tethered HP1. Our analyses also revealed evidence of regulatory mechanisms, dependent on HDA-1 and DIM-5, to control the localization and catalytic activity of the DNA methyltransferase DIM-2. Our study clarifies the interrelationships among canonical aspects of heterochromatin and supports a central role of HDA-1-mediated histone deacetylation in heterochromatin spreading and gene silencing.
Collapse
|
10
|
Mulla WA, Seidel CW, Zhu J, Tsai HJ, Smith SE, Singh P, Bradford WD, McCroskey S, Nelliat AR, Conkright J, Peak A, Malanowski KE, Perera AG, Li R. Aneuploidy as a cause of impaired chromatin silencing and mating-type specification in budding yeast. eLife 2017; 6:27991. [PMID: 28841138 PMCID: PMC5779231 DOI: 10.7554/elife.27991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2017] [Indexed: 01/12/2023] Open
Abstract
Aneuploidy and epigenetic alterations have long been associated with carcinogenesis, but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed that this phenotype was significantly correlated with gains of chromosomes III and X. Chromosome X disomy alone was sufficient to disrupt chromatin silencing and yeast mating-type identity as indicated by a lack of growth response to pheromone. The silencing defect was not limited to cryptic mating type loci and was associated with broad changes in histone modifications and chromatin localization of Sir2 histone deacetylase. The chromatin-silencing defect of disome X can be partially recapitulated by an extra copy of several genes on chromosome X. These results suggest that aneuploidy can directly cause epigenetic instability and disrupt cellular differentiation.
Collapse
Affiliation(s)
- Wahid A Mulla
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Missouri, United States
| | - Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hung-Ji Tsai
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Missouri, United States
| | - Pushpendra Singh
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Scott McCroskey
- Stowers Institute for Medical Research, Missouri, United States
| | - Anjali R Nelliat
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Allison Peak
- Stowers Institute for Medical Research, Missouri, United States
| | | | - Anoja G Perera
- Stowers Institute for Medical Research, Missouri, United States
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
11
|
Freire-Benéitez V, Gourlay S, Berman J, Buscaino A. Sir2 regulates stability of repetitive domains differentially in the human fungal pathogen Candida albicans. Nucleic Acids Res 2016; 44:9166-9179. [PMID: 27369382 PMCID: PMC5100595 DOI: 10.1093/nar/gkw594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/21/2016] [Indexed: 12/29/2022] Open
Abstract
DNA repeats, found at the ribosomal DNA locus, telomeres and subtelomeric regions, are unstable sites of eukaryotic genomes. A fine balance between genetic variability and genomic stability tunes plasticity of these chromosomal regions. This tuning mechanism is particularly important for organisms such as microbial pathogens that utilise genome plasticity as a strategy for adaptation. For the first time, we analyse mechanisms promoting genome stability at the rDNA locus and subtelomeric regions in the most common human fungal pathogen: Candida albicans. In this organism, the histone deacetylase Sir2, the master regulator of heterochromatin, has acquired novel functions in regulating genome stability. Contrary to any other systems analysed, C. albicans Sir2 is largely dispensable for repressing recombination at the rDNA locus. We demonstrate that recombination at subtelomeric regions is controlled by a novel DNA element, the TLO Recombination Element, TRE, and by Sir2. While the TRE element promotes high levels of recombination, Sir2 represses this recombination rate. Finally, we demonstrate that, in C. albicans, mechanisms regulating genome stability are plastic as different environmental stress conditions lead to general genome instability and mask the Sir2-mediated recombination control at subtelomeres. Our data highlight how mechanisms regulating genome stability are rewired in C. albicans.
Collapse
Affiliation(s)
| | - Sarah Gourlay
- University of Kent, School of Biosciences, Canterbury, Kent CT2 7NJ, UK
| | - Judith Berman
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Alessia Buscaino
- University of Kent, School of Biosciences, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
12
|
Freire-Benéitez V, Price RJ, Buscaino A. The Chromatin of Candida albicans Pericentromeres Bears Features of Both Euchromatin and Heterochromatin. Front Microbiol 2016; 7:759. [PMID: 27242771 PMCID: PMC4871872 DOI: 10.3389/fmicb.2016.00759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023] Open
Abstract
Centromeres, sites of kinetochore assembly, are important for chromosome stability and integrity. Most eukaryotes have regional centromeres epigenetically specified by the presence of the histone H3 variant CENP-A. CENP-A chromatin is often surrounded by pericentromeric regions packaged into transcriptionally silent heterochromatin. Candida albicans, the most common human fungal pathogen, possesses small regional centromeres assembled into CENP-A chromatin. The chromatin state of C. albicans pericentromeric regions is unknown. Here, for the first time, we address this question. We find that C. albicans pericentromeres are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Pericentromeric chromatin is associated with nucleosomes that are highly acetylated, as found in euchromatic regions of the genome; and hypomethylated on H3K4, as found in heterochromatin. This intermediate chromatin state is inhibitory to transcription and partially represses expression of proximal genes and inserted marker genes. Our analysis identifies a new chromatin state associated with pericentromeric regions.
Collapse
Affiliation(s)
| | - R Jordan Price
- School of Biosciences Canterbury Kent, University of Kent Canterbury, UK
| | - Alessia Buscaino
- School of Biosciences Canterbury Kent, University of Kent Canterbury, UK
| |
Collapse
|
13
|
Candida albicans repetitive elements display epigenetic diversity and plasticity. Sci Rep 2016; 6:22989. [PMID: 26971880 PMCID: PMC4789652 DOI: 10.1038/srep22989] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/25/2016] [Indexed: 01/08/2023] Open
Abstract
Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30 °C, while robust heterochromatin is assembled over these regions at 39 °C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation.
Collapse
|
14
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Cotobal C, Rodríguez-López M, Duncan C, Hasan A, Yamashita A, Yamamoto M, Bähler J, Mata J. Role of Ccr4-Not complex in heterochromatin formation at meiotic genes and subtelomeres in fission yeast. Epigenetics Chromatin 2015; 8:28. [PMID: 26279681 PMCID: PMC4536793 DOI: 10.1186/s13072-015-0018-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterochromatin is essential for chromosome segregation, gene silencing and genome integrity. The fission yeast Schizosaccharomyces pombe contains heterochromatin at centromeres, subtelomeres, and mating type genes, as well as at small islands of meiotic genes dispersed across the genome. This heterochromatin is generated by partially redundant mechanisms, including the production of small interfering RNAs (siRNAs) that are incorporated into the RITS protein complex (RNAi-Induced Transcriptional Silencing). The assembly of heterochromatin islands requires the function of the RNA-binding protein Mmi1, which recruits RITS to its mRNA targets and to heterochromatin islands. In addition, Mmi1 directs its targets to an exosome-dependent RNA elimination pathway. RESULTS Ccr4-Not is a conserved multiprotein complex that regulates gene expression at multiple levels, including RNA degradation and translation. We show here that Ccr4-Not is recruited by Mmi1 to its RNA targets. Surprisingly, Ccr4 and Caf1 (the mRNA deadenylase catalytic subunits of the Ccr4-Not complex) are not necessary for the degradation or translation of Mmi1 RNA targets, but are essential for heterochromatin integrity at Mmi1-dependent islands and, independently of Mmi1, at subtelomeric regions. Both roles require the deadenylase activity of Ccr4 and the Mot2/Not4 protein, a ubiquitin ligase that is also part of the complex. Genetic evidence shows that Ccr4-mediated silencing is essential for normal cell growth, indicating that this novel regulation is physiologically relevant. Moreover, Ccr4 interacts with components of the RITS complex in a Mmi1-independent manner. CONCLUSIONS Taken together, our results demonstrate that the Ccr4-Not complex is required for heterochromatin integrity in both Mmi1-dependent and Mmi1-independent pathways.
Collapse
Affiliation(s)
- Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - María Rodríguez-López
- Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, London, UK
| | - Caia Duncan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ayesha Hasan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, London, UK
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Matsuda A, Chikashige Y, Ding DQ, Ohtsuki C, Mori C, Asakawa H, Kimura H, Haraguchi T, Hiraoka Y. Highly condensed chromatins are formed adjacent to subtelomeric and decondensed silent chromatin in fission yeast. Nat Commun 2015; 6:7753. [PMID: 26205977 PMCID: PMC4525289 DOI: 10.1038/ncomms8753] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/08/2015] [Indexed: 11/09/2022] Open
Abstract
It is generally believed that silent chromatin is condensed and transcriptionally active chromatin is decondensed. However, little is known about the relationship between the condensation levels and gene expression. Here we report the condensation levels of interphase chromatin in the fission yeast Schizosaccharomyces pombe examined by super-resolution fluorescence microscopy. Unexpectedly, silent chromatin is less condensed than the euchromatin. Furthermore, the telomeric silent regions are flanked by highly condensed chromatin bodies, or 'knobs'. Knob regions span ∼50 kb of sequence devoid of methylated histones. Knob condensation is independent of HP1 homologue Swi6 and other gene silencing factors. Disruption of methylation at lysine 36 of histone H3 (H3K36) eliminates knob formation and gene repression at the subtelomeric and adjacent knob regions. Thus, epigenetic marks at H3K36 play crucial roles in the formation of a unique chromatin structure and in gene regulation at those regions in S. pombe.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2, Iwaoka, Iwaoka-cho, Kobe 651-2492, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2, Iwaoka, Iwaoka-cho, Kobe 651-2492, Japan
| | - Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2, Iwaoka, Iwaoka-cho, Kobe 651-2492, Japan
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2, Iwaoka, Iwaoka-cho, Kobe 651-2492, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B, Nagatsuda, Yokohama 226-8501, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2, Iwaoka, Iwaoka-cho, Kobe 651-2492, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2, Iwaoka, Iwaoka-cho, Kobe 651-2492, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
17
|
De Las Peñas A, Juárez-Cepeda J, López-Fuentes E, Briones-Martín-Del-Campo M, Gutiérrez-Escobedo G, Castaño I. Local and regional chromatin silencing in Candida glabrata: consequences for adhesion and the response to stress. FEMS Yeast Res 2015; 15:fov056. [PMID: 26122277 DOI: 10.1093/femsyr/fov056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 12/19/2022] Open
Abstract
Candida glabrata is a fungal pathogen frequently found as a commensal in humans. To colonize and disseminate successfully in the mammalian host, C. glabrata must detect signals within the host and reprogram gene expression to respond appropriately to hostile environmental conditions. One of the layers of regulation of expression of many virulence-related genes (adhesin-encoding genes, genes involved in response to oxidative stress and xenobiotics) is achieved through epigenetic mechanisms. Local and regional silencing is mediated by the activity of two NAD(+)-dependent histone deacetylases, Hst1 and Sir2, respectively, repressing many virulence genes. Hst1 and Sir2 interact with different repressor complexes to achieve regional or local silencing. Sir2 can associate with Sir4, which is then recruited to the telomere by Rap1 and yKu. Deacetylation of the histone tails creates high affinity binding sites for new molecules of the Sir complex, thereby spreading the silent domain over >20 kb. Many of the adhesin-encoding EPA genes are subject to this regulation. Hst1 in turn associates with the Sum1-Rfm1 complex. Sum1 is a DNA-binding protein, which recognizes specific sites at individual promoters, recruiting Hst1 to specific genes involved in the response to oxidative stress and xenobiotics, which results in their repression.
Collapse
Affiliation(s)
- Alejandro De Las Peñas
- IPICYT-Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
| | - Jacqueline Juárez-Cepeda
- IPICYT-Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
| | - Eunice López-Fuentes
- IPICYT-Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
| | - Marcela Briones-Martín-Del-Campo
- IPICYT-Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT-Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
| | - Irene Castaño
- IPICYT-Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
| |
Collapse
|
18
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
19
|
Klocko AD, Rountree MR, Grisafi PL, Hays SM, Adhvaryu KK, Selker EU. Neurospora importin α is required for normal heterochromatic formation and DNA methylation. PLoS Genet 2015; 11:e1005083. [PMID: 25793375 PMCID: PMC4368784 DOI: 10.1371/journal.pgen.1005083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022] Open
Abstract
Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3) and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation. Here, we identify and characterize a gene important for DCDC function, dim-3 (defective in methylation-3), which encodes the nuclear import chaperone NUP-6 (Importin α). The critical mutation in dim-3 results in a substitution in an ARM repeat of NUP-6 and causes a substantial loss of H3K9me3 and DNA methylation. Surprisingly, nuclear transport of all known proteins involved in histone and DNA methylation, as well as a canonical transport substrate, appear normal in dim-3 strains. Interactions between DCDC members also appear normal, but the nup-6dim-3 allele causes the DCDC members DIM-5 and DIM-7 to mislocalize from heterochromatin and NUP-6dim-3 itself is mislocalized from the nuclear envelope, at least in conidia. GCN-5, a member of the SAGA histone acetyltransferase complex, also shows altered localization in dim-3, raising the possibility that NUP-6 is necessary to localize multiple chromatin complexes following nucleocytoplasmic transport. The epigenetic information contained in chromatin is essential for development of higher organisms, and if misregulated, can lead to the unregulated growth associated with human cancers. Chromatin is typically classified into two basic types: gene-rich 'euchromatin', and gene-poor heterochromatin, which is also rich in repeated DNA and 'repressive chromatin marks'. As in humans and eukaryotes generally, heterochromatin in Neurospora crassa is decorated with DNA methylation and histone H3 lysine 9 (H3K9) methylation, but unlike the case in mammals, loss of these epigenetic marks does not compromise viability. In Neurospora, the DCDC, a five-member Cul4-based protein complex, trimethylates H3K9. Little information is available on the regulation of DCDC or similar complexes in other organisms. Using forward genetics, we identified a novel role for Importin α (NUP-6) for the function of DCDC. Although NUP-6 typically functions in nucleocytoplasmic transport, the dim-3 strain, which contains an altered nup-6 gene that reduces DNA methylation and H3K9me3, shows normal nuclear transport of the heterochromatin machinery and a canonical transport substrate. Two DCDC members are mislocalized from heterochromatin in the dim-3 mutant, signifying that NUP-6 may be important for targeting key proteins to incipient heterochromatic DNA. The euchromatic complex SAGA has increased euchromatin localization in dim-3, suggesting that NUP-6 may localize multiple chromatin complexes to sub-nuclear genomic targets.
Collapse
Affiliation(s)
- Andrew D. Klocko
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Michael R. Rountree
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Paula L. Grisafi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Shan M. Hays
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Keyur K. Adhvaryu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.
Collapse
|
21
|
Ragunathan K, Jih G, Moazed D. Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 2014; 348:1258699. [PMID: 25831549 DOI: 10.1126/science.1258699] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/13/2014] [Indexed: 11/03/2022]
Abstract
Changes in histone posttranslational modifications are associated with epigenetic states that define distinct patterns of gene expression. It remains unclear whether epigenetic information can be transmitted through histone modifications independently of specific DNA sequence, DNA methylation, or RNA interference. Here we show that, in the fission yeast Schizosaccharomyces pombe, ectopically induced domains of histone H3 lysine 9 methylation (H3K9me), a conserved marker of heterochromatin, are inherited through several mitotic and meiotic cell divisions after removal of the sequence-specific initiator. The putative JmjC domain H3K9 demethylase, Epe1, and the chromodomain of the H3K9 methyltransferase, Clr4/Suv39h, play opposing roles in maintaining silent H3K9me domains. These results demonstrate how a direct "read-write" mechanism involving Clr4 propagates histone modifications and allows histones to act as carriers of epigenetic information.
Collapse
Affiliation(s)
- Kaushik Ragunathan
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Gloria Jih
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Castel SE, Ren J, Bhattacharjee S, Chang AY, Sánchez M, Valbuena A, Antequera F, Martienssen RA. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 2014; 159:572-83. [PMID: 25417108 DOI: 10.1016/j.cell.2014.09.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/29/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
Abstract
Nuclear RNAi is an important regulator of transcription and epigenetic modification, but the underlying mechanisms remain elusive. Using a genome-wide approach in the fission yeast S. pombe, we have found that Dcr1, but not other components of the canonical RNAi pathway, promotes the release of Pol II from the 3? end of highly transcribed genes, and, surprisingly, from antisense transcription of rRNA and tRNA genes, which are normally transcribed by Pol I and Pol III. These Dcr1-terminated loci correspond to sites of replication stress and DNA damage, likely resulting from transcription-replication collisions. At the rDNA loci, release of Pol II facilitates DNA replication and prevents homologous recombination, which would otherwise lead to loss of rDNA repeats especially during meiosis. Our results reveal a novel role for Dcr1-mediated transcription termination in genome maintenance and may account for widespread regulation of genome stability by nuclear RNAi in higher eukaryotes.
Collapse
Affiliation(s)
- Stephane E Castel
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jie Ren
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - An-Yun Chang
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Alberto Valbuena
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Robert A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
23
|
Zhu D, Rosa S, Dean C. Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J Mol Biol 2014; 427:659-69. [PMID: 25180639 DOI: 10.1016/j.jmb.2014.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Changes in nuclear organization are considered an important complement to trans-acting factors, histone modifications and non-coding RNAs in robust and stable epigenetic silencing. However, how these multiple layers interconnect mechanistically to reinforce each other's activity is still unclear. A system providing long timescales facilitating analysis of these interconnections is vernalization. This involves the Polycomb-mediated epigenetic silencing of flowering locus C (FLC) that occurs as Arabidopsis plants are exposed to prolonged cold. Analysis of changes in nuclear organization during vernalization has revealed that disruption of a gene loop and physical clustering of FLC loci are part of the vernalization mechanism. These events occur at different times and thus contribute to distinct aspects of the silencing mechanism. The physical clustering of FLC loci is tightly correlated with the accumulation of specific Polycomb complexes/H3K27me3 at a localized intragenic site during the cold. Since the quantitative nature of vernalization is a reflection of a bistable cell autonomous switch in an increasing number of cells, this correlation suggests a tight connection between the switching mechanism and changes in nuclear organization. This integrated picture is likely to be informative for many epigenetic mechanisms.
Collapse
Affiliation(s)
- Danling Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
24
|
Steglich B, Sazer S, Ekwall K. Transcriptional regulation at the yeast nuclear envelope. Nucleus 2013; 4:379-89. [PMID: 24021962 DOI: 10.4161/nucl.26394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spatial organization of the genome inside the nucleus affects many nuclear processes, such as DNA replication, DNA repair, and gene transcription. In metazoans, the nuclear periphery harbors mainly repressed genes that associate with the nuclear lamina. This review discusses how peripheral positioning is connected to transcriptional regulation in yeasts. Tethering of reporter genes to the nuclear envelope was found to result in transcriptional silencing. Similarly, repression of the silent mating type loci and subtelomeric genes is influenced by their position close to the nuclear envelope. In contrast, active genes are bound by nucleoporins and inducible genes associate with the nuclear pore complex upon activation. Taken together, these results portray the nuclear envelope as a platform for transcriptional regulation, both through activation at nuclear pores and silencing at the nuclear envelope.
Collapse
Affiliation(s)
- Babett Steglich
- Department of Biosciences and Nutrition; Center for Biosciences; Karolinska Institutet; Huddinge, Sweden; Verna and Marrs McLean Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA; Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston, TX USA
| | | | | |
Collapse
|
25
|
The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle. Nat Struct Mol Biol 2013; 20:1119-21. [PMID: 23934150 PMCID: PMC3818696 DOI: 10.1038/nsmb.2641] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/25/2013] [Indexed: 01/23/2023]
Abstract
The N-terminal acetylation of Sir3 is essential for heterochromatin establishment and maintenance in yeast, but its mechanism of action is unknown. The crystal structure of the N-terminal acetylated BAH domain of S.cerevisiae Sir3 bound to the nucleosome core particle revealed that the N-terminal acetylation stabilizes the interaction of Sir3 with the nucleosome. Additionally, we present a new method for the production of protein-nucleosome complexes for structural analysis.
Collapse
|
26
|
Zhang L, Chen H, Bi X, Gong F. Detection of an altered heterochromatin structure in the absence of the nucleotide excision repair protein Rad4 in Saccharomyces cerevisiae. Cell Cycle 2013; 12:2435-42. [PMID: 23839037 DOI: 10.4161/cc.25457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rad4p is a DNA damage recognition protein essential for global genomic nucleotide excision repair in Saccharomyces cerevisiae. Here, we show that Rad4p binds to the heterochromatic HML locus. In a yeast mutant lacking Rad4p, an increased level of SIR complex binding at the HML locus is accompanied by an altered, more compact heterochromatin structure, as revealed by a topological analysis of chromatin circles released from the locus. In addition, gene silencing at the HML locus is enhanced in the rad4Δ mutant. Importantly, re-expression of Rad4p in the rad4Δ mutant restores the altered heterochromatin structure to a conformation similar to that detected in wild-type cells. These findings reveal a novel role of Rad4p in the regulation of heterochromatin structure and gene silencing.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology; University of Miami Miller School of Medicine; Miami, FL USA
| | | | | | | |
Collapse
|
27
|
Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 2013; 14:523-34. [PMID: 23797853 DOI: 10.1038/nrg3495] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-RNA-guided gene regulation is a recurring theme in biology. Animal germ cells are characterized by an intriguing small-RNA-mediated gene-silencing mechanism known as the PIWI pathway. For a long time, both the biogenesis of PIWI-interacting RNAs (piRNAs) as well as their mode of gene silencing has remained elusive. A recent body of work is shedding more light on both aspects and implicates PIWI in the establishment of transgenerational epigenetic states. In fact, the epigenetic states imposed by PIWI on targets may actually drive piRNA production itself. These findings start to couple small RNA biogenesis with small-RNA-mediated epigenetics.
Collapse
Affiliation(s)
- Maartje J Luteijn
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
28
|
Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J Genet Genomics 2013; 40:413-20. [PMID: 23969250 DOI: 10.1016/j.jgg.2013.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/28/2013] [Accepted: 05/03/2013] [Indexed: 11/21/2022]
Abstract
Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives.
Collapse
|
29
|
Abstract
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.
Collapse
|
30
|
Milliman EJ, Yadav N, Chen YC, Muddukrishna B, Karunanithi S, Yu MC. Recruitment of Rpd3 to the telomere depends on the protein arginine methyltransferase Hmt1. PLoS One 2012; 7:e44656. [PMID: 22953000 PMCID: PMC3432115 DOI: 10.1371/journal.pone.0044656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 08/10/2012] [Indexed: 11/19/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the establishment and maintenance of silent chromatin at the telomere requires a delicate balance between opposing activities of histone modifying enzymes. Previously, we demonstrated that the protein arginine methyltransferase Hmt1 plays a role in the formation of yeast silent chromatin. To better understand the nature of the Hmt1 interactions that contribute to this phenomenon, we carried out a systematic reverse genetic screen using a null allele of HMT1 and the synthetic genetic array (SGA) methodology. This screen revealed interactions between HMT1 and genes encoding components of the histone deacetylase complex Rpd3L (large). A double mutant carrying both RPD3 and HMT1 deletions display increased telomeric silencing and Sir2 occupancy at the telomeric boundary regions, when comparing to a single mutant carrying Hmt1-deletion only. However, the dual rpd3/hmt1-null mutant behaves like the rpd3-null single mutant with respect to silencing behavior, indicating that RPD3 is epistatic to HMT1. Mutants lacking either Hmt1 or its catalytic activity display an increase in the recruitment of histone deacetylase Rpd3 to the telomeric boundary regions. Moreover, in such loss-of-function mutants the levels of acetylated H4K5, which is a substrate of Rpd3, are altered at the telomeric boundary regions. In contrast, the level of acetylated H4K16, a target of the histone deacetylase Sir2, was increased in these regions. Interestingly, mutants lacking either Rpd3 or Sir2 display various levels of reduction in dimethylated H4R3 at these telomeric boundary regions. Together, these data provide insight into the mechanism whereby Hmt1 promotes the proper establishment and maintenance of silent chromatin at the telomeres.
Collapse
Affiliation(s)
- Eric J. Milliman
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Neelu Yadav
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yin-Chu Chen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Bhavana Muddukrishna
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sheelarani Karunanithi
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Michael C. Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kueng S, Tsai-Pflugfelder M, Oppikofer M, Ferreira HC, Roberts E, Tsai C, Roloff TC, Sack R, Gasser SM. Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization of epigenetic states. PLoS Genet 2012; 8:e1002727. [PMID: 22654676 PMCID: PMC3359979 DOI: 10.1371/journal.pgen.1002727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 04/11/2012] [Indexed: 01/19/2023] Open
Abstract
Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM) loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR–mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747–1,358) must be complemented with an N-terminal domain (Sir4N; residues 1–270), expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84) derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A), which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR–mediated silencing: it contributes to epigenetic repression by stabilizing the SIR–mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner. Three Silent Information Regulator (SIR) proteins Sir2, Sir3, and Sir4 are involved in the epigenetic gene silencing of the homothallic mating (HM) loci and of telomere-proximal genes in budding yeast. They bind as a heterotrimeric complex to chromatin, repressing the underlying genes. Sir2 has an essential histone deacetylase activity, and Sir3 binds nucleosomes, with a high specificity for unmodified histones. We explored Sir4, whose role had largely remained a mystery. We report here that Sir4 N- and C-terminal domains have distinct functions: The Sir4 C-terminus binds all proteins essential for SIR–mediated silencing and is sufficient to repress HM loci, but surprisingly it is not sufficient to efficiently repress at telomeres. The Sir4 N-terminus binds DNA, which strengthens the SIR–chromatin interaction and helps target Sir4 to telomeric loci. In addition the Sir4 N-terminus binds sequence-specific factors that recruit Sir4 to sites of repression. We find that the Sir4 N-terminus is a target of mitotic phosphorylation. Mutation of the phosphoacceptor sites indicates that they help fine-tune subtelomeric repression. We propose therefore that phosphorylation of the Sir4 N-terminal domain modulates epigenetic repression at telomeres in response to cell cycle and/or stress situations.
Collapse
Affiliation(s)
- Stephanie Kueng
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Mariano Oppikofer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Helder C. Ferreira
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Emma Roberts
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chinyen Tsai
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Abstract
DNA DSBs (double-strand breaks) represent a critical lesion for a cell, with misrepair being potentially as harmful as lack of repair. In mammalian cells, DSBs are predominantly repaired by non-homologous end-joining or homologous recombination. The kinetics of repair of DSBs can differ widely, and recent studies have shown that the higher-order chromatin structure can dramatically affect the pathway utilized, the rate of repair and the genetic factors required for repair. Studies of the repair of DSBs arising within heterochromatic DNA regions have provided insight into the constraints that higher-order chromatin structure poses on repair and the processing that is uniquely required for the repair of such DSBs. In the present paper, we provide an overview of our current understanding of the process of heterochromatic DSB repair in mammalian cells and consider the evolutionary conservation of the processes.
Collapse
|
33
|
Characterization of chromatin domains by 3D fluorescence microscopy: An automated methodology for quantitative analysis and nuclei screening. Bioessays 2012; 34:509-17. [DOI: 10.1002/bies.201100188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
The SUMO E3 ligase Siz2 exerts a locus-dependent effect on gene silencing in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:452-62. [PMID: 22345352 DOI: 10.1128/ec.05243-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the two silent mating-type loci and subtelomeric regions are subjected to a well-characterized form of gene silencing. Establishment of silencing involves the formation of a distinct chromatin state that is refractory to transcription. This structure is established by the action of silent information regulator proteins (Sir2, Sir3, and Sir4) that bind to nucleosomes and initiate the deacetylation of multiple lysine residues in histones H3 and H4. Sir2 protein is a conserved histone deacetylase that is critical for mating-type and telomeric silencing, as well as a Sir3/4-independent form of silencing observed within the ribosomal DNA (rDNA) repeat locus. We report here that sumoylation plays an important role in regulating gene silencing. We show that increased dosage of SIZ2, a SUMO (small ubiquitin-related modifier) ligase, is antagonistic to gene silencing and that this effect is enhanced by mutation of ESC1, whose product is involved in tethering telomeres to the nuclear periphery. We present evidence indicating that an elevated SIZ2 dosage causes reduced binding of Sir2 protein to telomeres. These data support the idea that sumoylation of specific substrates at the nuclear periphery regulates the availability of Sir2 protein at telomeres.
Collapse
|
35
|
Sathyan KM, Shen Z, Tripathi V, Prasanth KV, Prasanth SG. A BEN-domain-containing protein associates with heterochromatin and represses transcription. J Cell Sci 2012; 124:3149-63. [PMID: 21914818 DOI: 10.1242/jcs.086603] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression.
Collapse
Affiliation(s)
- Kizhakke M Sathyan
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
36
|
Lesne A, Bécavin C, Victor JM. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing. Phys Biol 2012; 9:013001. [PMID: 22314931 DOI: 10.1088/1478-3975/9/1/013001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.
Collapse
Affiliation(s)
- Annick Lesne
- CNRS UMR 7600, Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France.
| | | | | |
Collapse
|
37
|
Uncoupling of genomic and epigenetic signals in the maintenance and inheritance of heterochromatin domains in fission yeast. Genetics 2011; 190:549-57. [PMID: 22143918 PMCID: PMC3276613 DOI: 10.1534/genetics.111.137083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many essential aspects of genome function, including gene expression and chromosome segregation, are mediated throughout development and differentiation by changes in the chromatin state. Along with genomic signals encoded in the DNA, epigenetic processes regulate heritable gene expression patterns. Genomic signals such as enhancers, silencers, and repetitive DNA, while required for the establishment of alternative chromatin states, have an unclear role in epigenetic processes that underlie the persistence of chromatin states throughout development. Here, we demonstrate in fission yeast that the maintenance and inheritance of ectopic heterochromatin domains are independent of the genomic sequences necessary for their de novo establishment. We find that both structural heterochromatin and gene silencing can be stably maintained over an ∼10-kb domain for up to hundreds of cell divisions in the absence of genomic sequences required for heterochromatin establishment, demonstrating the long-term persistence and stability of this chromatin state. The de novo heterochromatin, despite the absence of nucleation sequences, is also stably inherited through meiosis. Together, these studies provide evidence for chromatin-dependent, epigenetic control of gene silencing that is heritable, stable, and self-sustaining, even in the absence of the originating genomic signals.
Collapse
|
38
|
Edwards CR, Dang W, Berger SL. Histone H4 lysine 20 of Saccharomyces cerevisiae is monomethylated and functions in subtelomeric silencing. Biochemistry 2011; 50:10473-83. [PMID: 21985125 DOI: 10.1021/bi201120q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Histones undergo post-translational modifications that are linked to important biological processes. Previous studies have indicated that lysine methylation correlating with closed or repressive chromatin is absent in the budding yeast Saccharomyces cerevisiae, including at H4 lysine 20 (K20). Here we provide functional evidence for H4 K20 monomethylation (K20me1) in budding yeast. H4 K20me1 is detectable on endogenous H4 by western analysis using methyl-specific antibodies, and the signal is abrogated by H4 K20 substitutions and by competition with H4 K20me1 peptides. Using chromatin immunoprecipitation, we show that H4 K20me1 levels are highest at heterochromatic locations, including subtelomeres, the silent mating type locus, and rDNA repeats, and lowest at centromeres within euchromatin. Further, an H4 K20A substitution strongly reduced heterochromatic reporter silencing at telomeres and the silent mating type locus and led to an increase in subtelomeric endogenous gene expression. The correlation between the location of H4 K20me1 and the effect of the H4 K20A substitution suggests that this modification plays a repressive function. Our findings reveal the first negative regulatory histone methylation in budding yeast and indicate that H4 K20me1 is evolutionarily conserved from simple to complex eukaryotes.
Collapse
Affiliation(s)
- Christopher R Edwards
- Department of Cellular and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
39
|
A protosilencer of subtelomeric gene expression in Candida glabrata with unique properties. Genetics 2011; 190:101-11. [PMID: 22048024 DOI: 10.1534/genetics.111.135251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adherence to host cells is an important step in the pathogenicity of the opportunistic fungal pathogen Candida glabrata. This adherence is mediated by some members of the large family of cell wall proteins encoded by the EPA (Epithelial Adhesin) genes present in the C. glabrata genome. The majority of the EPA genes are localized close to different telomeres in C. glabrata, resulting in a negative regulation of transcription of these genes through chromatin-based subtelomeric silencing. In vitro, adherence to epithelial cells is mainly mediated by Epa1, the only member of the EPA family that is expressed in vitro. EPA1 forms a cluster with EPA2 and EPA3 at the subtelomeric region of telomere E(-R). EPA2 and EPA3 are subject to silencing that propagates from this telomere in a process that depends on the Sir2, -3, -4, and Rif1 proteins, but surprisingly not on the yKu70 and yKu80 proteins. Here we describe that the yKu70/yKu80-independent silencing of telomere E(-R) is due to the presence of a cis-acting protosilencer (Sil2126) located between EPA3 and the telomere. This element can silence a reporter gene when placed 31.9 kb away from this telomere, but not when it is removed from the telomere context, or when it is placed near other telomeres, or inverted with respect to the reporter. Importantly, we show that the cis-acting Sil2126 element is required for the yKu70/80-independent silencing of this telomere, underscoring the importance of cis-elements for repressive chromatin formation and spreading on some telomeres in C. glabrata.
Collapse
|
40
|
Finding a balance: how diverse dosage compensation strategies modify histone h4 to regulate transcription. GENETICS RESEARCH INTERNATIONAL 2011; 2012:795069. [PMID: 22567401 PMCID: PMC3335593 DOI: 10.1155/2012/795069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023]
Abstract
Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate gene expression levels twofold or to completely inhibit transcription.
Collapse
|
41
|
Berkovits BD, Wolgemuth DJ. The first bromodomain of the testis-specific double bromodomain protein Brdt is required for chromocenter organization that is modulated by genetic background. Dev Biol 2011; 360:358-68. [PMID: 22020252 DOI: 10.1016/j.ydbio.2011.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 12/27/2022]
Abstract
Mice homozygous for a mutation (Brdt(∆BD1/∆BD1)) lacking the first bromodomain of Brdt, a testis-specific member of the BET family of double-bromodomain containing proteins, are sterile and exhibit profound defects in chromatin remodeling during spermiogenesis. We have now observed that a prominent feature of the aberrant spermatid nuclei is a fragmented chromocenter, a structure comprised of peri-centromeric heterochromatin. There was a concomitant increase in the levels of heterochromatin protein 1 alpha (Hp1α), suggesting that the presence of multiple chromocenters was correlated with a spread of heterochromatin beyond the normal centromeric region. Brdt protein was normally present throughout the nucleus but was excluded from the chromocenter. A more densely staining region of Brdt protein appeared to separate sirtuin 1 (Sirt1) protein from contact with the chromocenter. Although still nuclear, this unique localization of Brdt protein was lost in Brdt(∆BD1/∆BD1) mutant spermatids and Brdt and Sirt1 overlapped around the chromocenters. There was also ectopic localization of the H1 histone family, member N, testis-specific (H1fnt) protein in Brdt(∆BD1/∆BD1) round spermatids, which may be linked to the previously reported loss of polarized localization of peri-nuclear heterochromatin foci. The extent of chromocenter fragmentation was more severe and penetrant in mutant testes on a pure 129Sv/Ev as compared to a pure C57Bl/6 background. Indeed, all aspects of the mutant phenotype were more severe on the 129Sv/Ev background. Contrary to previous studies in genetic models where fragmented chromocenters were observed in spermatids, the Brdt(∆BD1/∆BD1) mutant spermatids do not undergo apoptosis (on either background). These observations suggest that the first bromodomain of Brdt is critical in the formation and/or maintenance of an intact chromocenter and implicate this structure in proper remodeling of the chromatin architecture of the sperm head.
Collapse
Affiliation(s)
- Binyamin D Berkovits
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
42
|
Poon BP, Mekhail K. Cohesin and related coiled-coil domain-containing complexes physically and functionally connect the dots across the genome. Cell Cycle 2011; 10:2669-82. [PMID: 21822055 PMCID: PMC3219537 DOI: 10.4161/cc.10.16.17113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022] Open
Abstract
Interactions between genetic regions located across the genome maintain its three-dimensional organization and function. Recent studies point to key roles for a set of coiled-coil domain-containing complexes (cohibin, cohesin, condensin and monopolin) and related factors in the regulation of DNA-DNA connections across the genome. These connections are critical to replication, recombination, gene expression as well as chromosome segregation.
Collapse
Affiliation(s)
- Betty P.K Poon
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine; University of Toronto; Toronto, ON Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine; University of Toronto; Toronto, ON Canada
- Canada Research Chairs Program; Faculty of Medicine; University of Toronto; Toronto, ON Canada
| |
Collapse
|
43
|
The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123. PLoS One 2011; 6:e22209. [PMID: 21829450 PMCID: PMC3146481 DOI: 10.1371/journal.pone.0022209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/17/2011] [Indexed: 12/11/2022] Open
Abstract
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.
Collapse
|
44
|
Van de Vosse DW, Wan Y, Wozniak RW, Aitchison JD. Role of the nuclear envelope in genome organization and gene expression. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:147-66. [PMID: 21305702 DOI: 10.1002/wsbm.101] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although often depicted as a static structure upon which proteinaceous factors bind to control gene expression, the genome is actually highly mobile and capable of exploring the complex domain architecture of the nucleus, which in turn controls genome maintenance and gene expression. Numerous genes relocate from the nuclear periphery to the nuclear interior upon activation and are hypothesized to interact with pre-assembled sites of transcription. In contrast to the nuclear interior, the nuclear periphery is widely regarded as transcriptionally silent. This is reflected by the preferential association of heterochromatin with the nuclear envelope (NE). However, some activated genes are recruited to the nuclear periphery through interactions with nuclear pore complexes (NPCs), and NPC components are capable of preventing the spread of silent chromatin into adjacent regions of active chromatin, leading to the speculation that NPCs may facilitate the transition of chromatin between transcriptional states. Thus, the NE might better be considered as a discontinuous platform that promotes both gene activation and repression. As such, it is perhaps not surprising that many disease states are frequently associated with alterations in the NE. Here, we review the effects of the NE and its constituents on chromatin organization and gene expression.
Collapse
|
45
|
Environment-responsive transcription factors bind subtelomeric elements and regulate gene silencing. Mol Syst Biol 2011; 7:455. [PMID: 21206489 PMCID: PMC3049408 DOI: 10.1038/msb.2010.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/24/2010] [Indexed: 01/11/2023] Open
Abstract
Chromosome position analysis of ChIP-chip data revealed that several carbon source and stress-responsive yeast transcription factors conditionally bind subtelomeric X elements. Integration of several microarray gene expression data sets showed that, in this context, the factors conditionally control the boundaries and strength of subtelomeric silencing. Regulation of silencing by a fatty acid-responsive factor was found to be dependent on Sir2p and independent of Hda1p. These findings provide a critical link for establishing the mechanisms by which telomere biology is coordinated with other cellular processes including responses to environmental stimuli, aging and adaptation.
It is well established that environmental conditions modulate gene expression through local binding of a variety of conditionally active transcription factors, each responsive to specific environmental cues. However, another prevalent mechanism of gene regulation in eukaryotic cells is the long-range control of groups of genes by chromatin modifications or other position-dependent mechanisms. One such phenomenon, gene silencing, is an important and evolutionarily conserved mode of regulation that controls expression of subtelomeric genes. These genes are enriched for stress response and metabolic genes and their regulation is controlled by the spreading of silencing molecules from chromosome ends (telomeres) into subtelomeric regions. Levels of subtelomeric silencing have been linked to cellular lifespan, and study of the regulation of silencing is fundamental to our understanding of human aging. The spread of silencing in subtelomeric regions is discontinuous, and is controlled by various genomic elements that can either relay and enhance silencing from telomeres (proto-silencing) or create boundaries that protect some genomic regions from silencing. In yeast, every subtelomeric region contains an X element that proto-silences centromere-proximal genes, and also insulates telomere-proximal genes from silencing. In this paper, we identify a regulatory mechanism to control X element-mediated proto-silencing and insulating activities in response to environmental cues. The mechanism was identified using chromosome position analysis of microarray-based chromatin immunoprecipitation (ChIP-chip) data for environment-responsive TFs and genome-wide gene expression data under the same conditions. The mechanism involves the conditional association of environment-responsive transcription factors to X elements. The binding at X elements results in regulation of proto-silencing of centromere-proximal genes, or insulation of telomere-proximal genes (depending on the factor) in response to environmental stimuli related to stress response and metabolism. One example is shown below (Figure 4B). Transcription factor, Oaf1p, conditionally binds X elements in the presence of fatty acids and enhances proto-silencing specifically under this condition. Oaf1p and several other factors implicated here are known to control adjacent genes at intrachromosomal positions, suggesting their dual functionality in both gene-specific transcriptional regulation, and long-range position-dependent mechanism. Investigation of this mechanism during the response to fatty acid exposure showed that conditional proto-silencing activity is dependent on Sir2p, a molecule known to be involved in subtelomeric silencing related to aging. This study reveals a path cells can use to coordinate subtelomeric silencing related to aging with cellular environment, and with the activities of other cellular processes. Subtelomeric chromatin is subject to evolutionarily conserved complex epigenetic regulation and is implicated in numerous aspects of cellular function including formation of heterochromatin, regulation of stress response pathways and control of lifespan. Subtelomeric DNA is characterized by the presence of specific repeated segments that serve to propagate silencing or to protect chromosomal regions from spreading epigenetic control. In this study, analysis of genome-wide chromatin immunoprecipitation and expression data, suggests that several yeast transcription factors regulate subtelomeric silencing in response to various environmental stimuli through conditional association with proto-silencing regions called X elements. In this context, Oaf1p, Rox1p, Gzf1p and Phd1p control the propagation of silencing toward centromeres in response to stimuli affecting stress responses and metabolism, whereas others, including Adr1p, Yap5p and Msn4p, appear to influence boundaries of silencing, regulating telomere-proximal genes in Y′ elements. The factors implicated here are known to control adjacent genes at intrachromosomal positions, suggesting their dual functionality. This study reveals a path for the coordination of subtelomeric silencing with cellular environment, and with activities of other cellular processes.
Collapse
|
46
|
Abstract
Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks. Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of histone-modification readers and how the modification language is interpreted.
Collapse
Affiliation(s)
- Miyong Yun
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | |
Collapse
|
47
|
Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. ACTA ACUST UNITED AC 2011; 191:1299-313. [PMID: 21187328 PMCID: PMC3010065 DOI: 10.1083/jcb.201005160] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
SIRT1 is a positive regulator of telomere length and attenuates age-associated telomere shortening. Yeast Sir2 deacetylase is a component of the silent information regulator (SIR) complex encompassing Sir2/Sir3/Sir4. Sir2 is recruited to telomeres through Rap1, and this complex spreads into subtelomeric DNA via histone deacetylation. However, potential functions at telomeres for SIRT1, the mammalian orthologue of yeast Sir2, are less clear. We studied both loss of function (SIRT1 deficient) and gain of function (SIRT1super) mouse models. Our results indicate that SIRT1 is a positive regulator of telomere length in vivo and attenuates telomere shortening associated with aging, an effect dependent on telomerase activity. Using chromatin immunoprecipitation assays, we find that SIRT1 interacts with telomeric repeats in vivo. In addition, SIRT1 overexpression increases homologous recombination throughout the entire genome, including telomeres, centromeres, and chromosome arms. These findings link SIRT1 to telomere biology and global DNA repair and provide new mechanistic explanations for the known functions of SIRT1 in protection from DNA damage and some age-associated pathologies.
Collapse
Affiliation(s)
- Jose A Palacios
- Telomeres and Telomerase Group, Spanish National Cancer Centre, Madrid E-28029, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Beisel C, Paro R. Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 2011; 12:123-35. [PMID: 21221116 DOI: 10.1038/nrg2932] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent transcriptome analyses show that substantial proportions of eukaryotic genomes can be copied into RNAs, many of which do not encode protein sequences. However, cells have developed mechanisms to control and counteract the high transcriptional activity of RNA polymerases in order to achieve cell-specific gene activity or to prevent the expression of deleterious sequences. Here we compare how two silencing modes - the Polycomb system and heterochromatin - are targeted, established and maintained at different chromosomal locations and how DNA-binding proteins and non-coding RNAs connect these epigenetically stable and heritable structures to the sequence information of the DNA.
Collapse
Affiliation(s)
- Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland
| | | |
Collapse
|
49
|
Chang JS, Winston F. Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae. EUKARYOTIC CELL 2011; 10:118-29. [PMID: 21057056 PMCID: PMC3019801 DOI: 10.1128/ec.00246-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 10/26/2010] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, transcriptional silencing occurs at three classes of genomic regions: near the telomeres, at the silent mating type loci, and within the ribosomal DNA (rDNA) repeats. In all three cases, silencing depends upon several factors, including specific types of histone modifications. In this work we have investigated the roles in silencing for Spt10 and Spt21, two proteins previously shown to control transcription of particular histone genes. Building on a recent study showing that Spt10 is required for telomeric silencing, our results show that in both spt10 and spt21 mutants, silencing is reduced near telomeres and at HMLα, while it is increased at the rDNA. Both spt10 and spt21 mutations cause modest effects on Sir protein recruitment and histone modifications at telomeric regions, and they cause significant changes in chromatin structure, as judged by its accessibility to dam methylase. These silencing and chromatin changes are not seen upon deletion of HTA2-HTB2, the primary histone locus regulated by Spt10 and Spt21. These results suggest that Spt10 and Spt21 control silencing in S. cerevisiae by altering chromatin structure through roles beyond the control of histone gene expression.
Collapse
Affiliation(s)
- Jennifer S. Chang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| | - Fred Winston
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| |
Collapse
|
50
|
Woolcock KJ, Gaidatzis D, Punga T, Bühler M. Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nat Struct Mol Biol 2010; 18:94-9. [PMID: 21151114 DOI: 10.1038/nsmb.1935] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/20/2010] [Indexed: 01/06/2023]
Abstract
In the fission yeast S. pombe, the RNA interference (RNAi) pathway is required to generate small interfering RNAs (siRNAs) that mediate heterochromatic silencing of centromeric repeats. Here, we demonstrate that RNAi also functions to repress genomic elements other than constitutive heterochromatin. Using DNA adenine methyltransferase identification (DamID), we show that the RNAi proteins Dcr1 and Rdp1 physically associate with some euchromatic genes, noncoding RNA genes and retrotransposon long terminal repeats, and that this association is independent of the Clr4 histone methyltransferase. Physical association of RNAi with chromatin is sufficient to trigger a silencing response but not to assemble heterochromatin. The mode of silencing at the newly identified RNAi targets is consistent with a co-transcriptional gene silencing model, as proposed earlier, and functions with trace amounts of siRNAs. We anticipate that similar mechanisms could also be operational in other eukaryotes.
Collapse
Affiliation(s)
- Katrina J Woolcock
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | |
Collapse
|