1
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
2
|
Botto MM, Borsellini A, Lamers MH. A four-point molecular handover during Okazaki maturation. Nat Struct Mol Biol 2023; 30:1505-1515. [PMID: 37620586 DOI: 10.1038/s41594-023-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Abstract
DNA replication introduces thousands of RNA primers into the lagging strand that need to be removed for replication to be completed. In Escherichia coli when the replicative DNA polymerase Pol IIIα terminates at a previously synthesized RNA primer, DNA Pol I takes over and continues DNA synthesis while displacing the downstream RNA primer. The displaced primer is subsequently excised by an endonuclease, followed by the sealing of the nick by a DNA ligase. Yet how the sequential actions of Pol IIIα, Pol I polymerase, Pol I endonuclease and DNA ligase are coordinated is poorly defined. Here we show that each enzymatic activity prepares the DNA substrate for the next activity, creating an efficient four-point molecular handover. The cryogenic-electron microscopy structure of Pol I bound to a DNA substrate with both an upstream and downstream primer reveals how it displaces the primer in a manner analogous to the monomeric helicases. Moreover, we find that in addition to its flap-directed nuclease activity, the endonuclease domain of Pol I also specifically cuts at the RNA-DNA junction, thus marking the end of the RNA primer and creating a 5' end that is a suitable substrate for the ligase activity of LigA once all RNA has been removed.
Collapse
Affiliation(s)
- Margherita M Botto
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Molecular and Cellular Biology, Geneva University, Geneva, Switzerland
| | - Alessandro Borsellini
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Structural Biology, Human Technopole, Milan, Italy
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
3
|
Fagan SP, Mukherjee P, Jaremko WJ, Nelson-Rigg R, Wilson RC, Dangerfield TL, Johnson KA, Lahiri I, Pata JD. Pyrophosphate release acts as a kinetic checkpoint during high-fidelity DNA replication by the Staphylococcus aureus replicative polymerase PolC. Nucleic Acids Res 2021; 49:8324-8338. [PMID: 34302475 PMCID: PMC8373059 DOI: 10.1093/nar/gkab613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial replication is a fast and accurate process, with the bulk of genome duplication being catalyzed by the α subunit of DNA polymerase III within the bacterial replisome. Structural and biochemical studies have elucidated the overall properties of these polymerases, including how they interact with other components of the replisome, but have only begun to define the enzymatic mechanism of nucleotide incorporation. Using transient-state methods, we have determined the kinetic mechanism of accurate replication by PolC, the replicative polymerase from the Gram-positive pathogen Staphylococcus aureus. Remarkably, PolC can recognize the presence of the next correct nucleotide prior to completing the addition of the current nucleotide. By modulating the rate of pyrophosphate byproduct release, PolC can tune the speed of DNA synthesis in response to the concentration of the next incoming nucleotide. The kinetic mechanism described here would allow PolC to perform high fidelity replication in response to diverse cellular environments.
Collapse
Affiliation(s)
- Sean P Fagan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Purba Mukherjee
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - William J Jaremko
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Rachel Nelson-Rigg
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tyler L Dangerfield
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kenneth A Johnson
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Indrajit Lahiri
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
4
|
In vivo demonstration of enhanced binding between β-clamp and DnaE of pol III bearing consensus i-CBM. Genes Genomics 2019; 41:613-619. [PMID: 30929144 DOI: 10.1007/s13258-019-00796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Among several key protein-protein and protein-DNA interactions within the replisome, the interaction between β-clamp and the DNA polymerase (Pol) III is of crucial importance. This interaction is mediated by a five or six-residue conserved sequence of the DnaE subunit of Pol III, referred to as the Clamp Binding Motif (CBM). In E. coli, DnaE contains two CBMs designated as e-CBM and i-CBM. A consensus sequence (QL[S/D]LF) for the CBMs has previously been proposed and studies involving mutagenesis of both the CBMs have evaluated their protein-binding properties. Surface Plasmon Resonance has been used to show that replacing i-CBM in DnaE with the consensus sequence enhances its binding to β-clamp 120-fold. OBJECTIVE The current study was aimed to evaluate in vivo interaction between DnaE bearing the consensus i-CBM and β-clamp. METHOD The C-terminal 405 residues of DnaE, bearing either the consensus i-CBM or the WT i-CBM, with β-clamp were co-expressed in E. coli followed by co-purification of the protein complexes. The interaction was assessed by the ability of the co-expressed proteins to form stable complexes during both affinity and gel filtration chromatography. RESULT The interaction of β-clamp with DnaEΔ755M containing the consensus i-CBM was found to be more stable than with WT DnaEΔ755, consistent with the in vitro data previously reported. CONCLUSION The presence of the pieces of sheared DNA generated during sonication promote the interaction of DnaEΔ755M with β-clamp by binding the OB-fold of DnaEΔ755M and β-clamp and serves as a bridge between them.
Collapse
|
5
|
Patoli AA, Patoli BB. The N-Terminal 6×His Tag on β-Clamp Processivity Factor Occludes Gly66 and Affects the Growth of Escherichia coli B834 (DE3) Cells. Mol Biol 2019. [DOI: 10.1134/s0026893319010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Xu ZQ, Dixon NE. Bacterial replisomes. Curr Opin Struct Biol 2018; 53:159-168. [PMID: 30292863 DOI: 10.1016/j.sbi.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 01/18/2023]
Abstract
Bacterial replisomes are dynamic multiprotein DNA replication machines that are inherently difficult for structural studies. However, breakthroughs continue to come. The structures of Escherichia coli DNA polymerase III (core)-clamp-DNA subcomplexes solved by single-particle cryo-electron microscopy in both polymerization and proofreading modes and the discovery of the stochastic nature of the bacterial replisomes represent notable progress. The structures reveal an intricate interaction network in the polymerase-clamp subassembly, providing insights on how replisomes may work. Meantime, ensemble and single-molecule functional assays and fluorescence microscopy show that the bacterial replisomes can work in a decoupled and uncoordinated way, with polymerases quickly exchanging and both leading-strand and lagging-strand polymerases and the helicase working independently, contradictory to the elegant textbook view of a highly coordinated machine.
Collapse
Affiliation(s)
- Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
7
|
Garbacz MA, Lujan SA, Burkholder AB, Cox PB, Wu Q, Zhou ZX, Haber JE, Kunkel TA. Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat Commun 2018; 9:858. [PMID: 29487291 PMCID: PMC5829166 DOI: 10.1038/s41467-018-03270-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
To investigate nuclear DNA replication enzymology in vivo, we have studied Saccharomyces cerevisiae strains containing a pol2-16 mutation that inactivates the catalytic activities of DNA polymerase ε (Pol ε). Although pol2-16 mutants survive, they present very tiny spore colonies, increased doubling time, larger than normal cells, aberrant nuclei, and rapid acquisition of suppressor mutations. These phenotypes reveal a severe growth defect that is distinct from that of strains that lack only Pol ε proofreading (pol2-4), consistent with the idea that Pol ε is the major leading-strand polymerase used for unstressed DNA replication. Ribonucleotides are incorporated into the pol2-16 genome in patterns consistent with leading-strand replication by Pol δ when Pol ε is absent. More importantly, ribonucleotide distributions at replication origins suggest that in strains encoding all three replicases, Pol δ contributes to initiation of leading-strand replication. We describe two possible models. DNA polymerases δ and ε (Pols δ and ε) are thought to be responsible for lagging and leading strand synthesis, respectively. Here the authors present evidence that Pol δ contributes to the initiation of leading strand replication in budding yeast by synthesizing DNA of both strands at replication origins.
Collapse
Affiliation(s)
- Marta A Garbacz
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Phillip B Cox
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Qiuqin Wu
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA
| | - Zhi-Xiong Zhou
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
8
|
Parasuram R, Coulther TA, Hollander JM, Keston-Smith E, Ondrechen MJ, Beuning PJ. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity. Biochemistry 2018; 57:1063-1072. [DOI: 10.1021/acs.biochem.7b01004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramya Parasuram
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Timothy A. Coulther
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Judith M. Hollander
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Elise Keston-Smith
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Le TT, Furukohri A, Tatsumi-Akiyama M, Maki H. Collision with duplex DNA renders Escherichia coli DNA polymerase III holoenzyme susceptible to DNA polymerase IV-mediated polymerase switching on the sliding clamp. Sci Rep 2017; 7:12755. [PMID: 29038530 PMCID: PMC5643309 DOI: 10.1038/s41598-017-13080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/18/2017] [Indexed: 11/12/2022] Open
Abstract
Organisms possess multiple DNA polymerases (Pols) and use each for a different purpose. One of the five Pols in Escherichia coli, DNA polymerase IV (Pol IV), encoded by the dinB gene, is known to participate in lesion bypass at certain DNA adducts. To understand how cells choose Pols when the replication fork encounters an obstacle on template DNA, the process of polymerase exchange from the primary replicative enzyme DNA polymerase III (Pol III) to Pol IV was studied in vitro. Replicating Pol III forming a tight holoenzyme (Pol III HE) with the sliding clamp was challenged by Pol IV on a primed ssDNA template carrying a short inverted repeat. A rapid and lesion-independent switch from Pol III to Pol IV occurred when Pol III HE encountered a hairpin stem duplex, implying that the loss of Pol III-ssDNA contact induces switching to Pol IV. Supporting this idea, mutant Pol III with an increased affinity for ssDNA was more resistant to Pol IV than wild-type Pol III was. We observed that an exchange between Pol III and Pol IV also occurred when Pol III HE collided with primer/template duplex. Our data suggest that Pol III-ssDNA interaction may modulate the susceptibility of Pol III HE to Pol IV-mediated polymerase exchange.
Collapse
Affiliation(s)
- Thanh Thi Le
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Asako Furukohri
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Masahiro Tatsumi-Akiyama
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hisaji Maki
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
10
|
Benkovic SJ, Spiering MM. Understanding DNA replication by the bacteriophage T4 replisome. J Biol Chem 2017; 292:18434-18442. [PMID: 28972188 DOI: 10.1074/jbc.r117.811208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The T4 replisome has provided a unique opportunity to investigate the intricacies of DNA replication. We present a comprehensive review of this system focusing on the following: its 8-protein composition, their individual and synergistic activities, and assembly in vitro and in vivo into a replisome capable of coordinated leading/lagging strand DNA synthesis. We conclude with a brief comparison with other replisomes with emphasis on how coordinated DNA replication is achieved.
Collapse
Affiliation(s)
- Stephen J Benkovic
- From the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michelle M Spiering
- From the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
11
|
Josephs EA, Marszalek PE. A 'Semi-Protected Oligonucleotide Recombination' Assay for DNA Mismatch Repair in vivo Suggests Different Modes of Repair for Lagging Strand Mismatches. Nucleic Acids Res 2017; 45:e63. [PMID: 28053122 PMCID: PMC5416779 DOI: 10.1093/nar/gkw1339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
In Escherichia coli, a DNA mismatch repair (MMR) pathway corrects errors that occur during DNA replication by coordinating the excision and re-synthesis of a long tract of the newly-replicated DNA between an epigenetic signal (a hemi-methylated d(GATC) site or a single-stranded nick) and the replication error after the error is identified by protein MutS. Recent observations suggest that this 'long-patch repair' between these sites is coordinated in the same direction of replication by the replisome. Here, we have developed a new assay that uniquely allows us to introduce targeted 'mismatches' directly into the replication fork via oligonucleotide recombination, examine the directionality of MMR, and quantify the nucleotide-dependence, sequence context-dependence, and strand-dependence of their repair in vivo-something otherwise nearly impossible to achieve. We find that repair of genomic lagging strand mismatches occurs bi-directionally in E. coli and that, while all MutS-recognized mismatches had been thought to be repaired in a consistent manner, the directional bias of repair and the effects of mutations in MutS are dependent on the molecular species of the mismatch. Because oligonucleotide recombination is routinely performed in both prokaryotic and eukaryotic cells, we expect this assay will be broadly applicable for investigating mechanisms of MMR in vivo.
Collapse
Affiliation(s)
- Eric A Josephs
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC, USA
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
RNA primer-primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication. Proc Natl Acad Sci U S A 2017; 114:5635-5640. [PMID: 28507156 DOI: 10.1073/pnas.1620459114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opposite strand polarity of duplex DNA necessitates that the leading strand is replicated continuously whereas the lagging strand is replicated in discrete segments known as Okazaki fragments. The lagging-strand polymerase sometimes recycles to begin the synthesis of a new Okazaki fragment before finishing the previous fragment, creating a gap between the Okazaki fragments. The mechanism and signal that initiate this behavior-that is, the signaling mechanism-have not been definitively identified. We examined the role of RNA primer-primase complexes left on the lagging ssDNA from primer synthesis in initiating early lagging-strand polymerase recycling. We show for the T4 bacteriophage DNA replication system that primer-primase complexes have a residence time similar to the timescale of Okazaki fragment synthesis and the ability to block a holoenzyme synthesizing DNA and stimulate the dissociation of the holoenzyme to trigger polymerase recycling. The collision with primer-primase complexes triggering the early termination of Okazaki fragment synthesis has distinct advantages over those previously proposed because this signal requires no transmission to the lagging-strand polymerase through protein or DNA interactions, the mechanism for rapid dissociation of the holoenzyme is always collision, and no unique characteristics need to be assigned to either identical polymerase in the replisome. We have modeled repeated cycles of Okazaki fragment initiation using a collision with a completed Okazaki fragment or primer-primase complexes as the recycling mechanism. The results reproduce experimental data, providing insights into events related to Okazaki fragment initiation and the overall functioning of DNA replisomes.
Collapse
|
13
|
Beattie TR, Kapadia N, Nicolas E, Uphoff S, Wollman AJ, Leake MC, Reyes-Lamothe R. Frequent exchange of the DNA polymerase during bacterial chromosome replication. eLife 2017; 6. [PMID: 28362256 PMCID: PMC5403216 DOI: 10.7554/elife.21763] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
The replisome is a multiprotein machine that carries out DNA replication. In Escherichia coli, a single pair of replisomes is responsible for duplicating the entire 4.6 Mbp circular chromosome. In vitro studies of reconstituted E. coli replisomes have attributed this remarkable processivity to the high stability of the replisome once assembled on DNA. By examining replisomes in live E. coli with fluorescence microscopy, we found that the Pol III* subassembly frequently disengages from the replisome during DNA synthesis and exchanges with free copies from solution. In contrast, the DnaB helicase associates stably with the replication fork, providing the molecular basis for how the E. coli replisome can maintain high processivity and yet possess the flexibility to bypass obstructions in template DNA. Our data challenges the widely-accepted semi-discontinuous model of chromosomal replication, instead supporting a fully discontinuous mechanism in which synthesis of both leading and lagging strands is frequently interrupted. DOI:http://dx.doi.org/10.7554/eLife.21763.001 New cells are created when an existing cell divides to produce two new ones. During this process the original cell must copy its DNA so each new cell inherits a full set of genetic material. DNA is made up of two strands that twist together to form a double helix. These strands need to be separated so they can be used as templates to make new DNA strands. An enzyme called DNA helicase is responsible for separating the two DNA strands and another enzyme makes the new DNA. These enzymes are part of a group of proteins collectively called the replisome that controls the whole DNA copying process. The replisome must be extremely reliable to avoid introducing mistakes into the cell’s genes. Previous research using replisomes extracted from cells indicated that replisomes are effective at copying DNA because the proteins they contain are strongly bound together and remain attached to the DNA for a long time. However, the behavior of replisomes in living cells has not been closely examined. Beattie, Kapadia et al. used microscopy to observe how the replisome copies DNA in a bacterium called Escherichia coli. The experiments revealed that most of the proteins within the replisome are constantly being replaced during DNA copying. The exception to this is DNA helicase, which stays in place at the front of the replisome, providing a landing platform for all the other parts of the machine to come and go. Future work will investigate why the parts of the replisome are replaced so frequently. This may allow us to alter the stability of the bacterial replisome, which may lead to new medical treatments and biotechnologies. DOI:http://dx.doi.org/10.7554/eLife.21763.002
Collapse
Affiliation(s)
| | - Nitin Kapadia
- Department of Biology, McGill University, Montreal, Canada
| | - Emilien Nicolas
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adam Jm Wollman
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, Heslington, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, Heslington, United Kingdom
| | | |
Collapse
|
14
|
Fernandez-Leiro R, Conrad J, Yang JC, Freund SMV, Scheres SHW, Lamers MH. Self-correcting mismatches during high-fidelity DNA replication. Nat Struct Mol Biol 2017; 24:140-143. [PMID: 28067916 DOI: 10.1038/nsmb.3348] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022]
Abstract
Faithful DNA replication is essential to all forms of life and depends on the action of 3'-5' exonucleases that remove misincorporated nucleotides from the newly synthesized strand. However, how the DNA is transferred from the polymerase to the exonuclease active site is not known. Here we present the cryo-EM structure of the editing mode of the catalytic core of the Escherichia coli replisome, revealing a dramatic distortion of the DNA whereby the polymerase thumb domain acts as a wedge that separates the two DNA strands. Importantly, NMR analysis of the DNA substrate shows that the presence of a mismatch increases the fraying of the DNA, thus enabling it to reach the exonuclease active site. Therefore the mismatch corrects itself, whereas the exonuclease subunit plays a passive role. Hence, our work provides unique insights into high-fidelity replication and establishes a new paradigm for the correction of misincorporated nucleotides.
Collapse
Affiliation(s)
| | | | - Ji-Chun Yang
- MRC laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
15
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
16
|
|
17
|
Zhang H, Tang Y, Lee SJ, Wei Z, Cao J, Richardson CC. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7. J Biol Chem 2015; 291:1472-80. [PMID: 26620561 DOI: 10.1074/jbc.m115.698233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
The formation of a replication loop on the lagging strand facilitates coordinated synthesis of the leading- and lagging-DNA strands and provides a mechanism for recycling of the lagging-strand DNA polymerase. As an Okazaki fragment is completed, the loop is released, and a new loop is formed as the synthesis of a new Okazaki fragment is initiated. Loop release requires the dissociation of the complex formed by the interactions among helicase, DNA polymerase, and DNA. The completion of the Okazaki fragment may result in either a nick or a single-stranded DNA region. In the replication system of bacteriophage T7, the dissociation of the polymerase from either DNA region is faster than that observed for the dissociation of the helicase from DNA polymerase, implying that the replication loop is released more likely through the dissociation of the lagging-strand DNA from polymerase, retaining the polymerase at replication fork. Both dissociation of DNA polymerase from DNA and that of helicase from a DNA polymerase · DNA complex are much faster at a nick DNA region than the release from a ssDNA region. These results suggest that the replication loop is released as a result of the nick formed when the lagging-strand DNA polymerase encounters the previously synthesized Okazaki fragment, releasing lagging-strand DNA and retaining DNA polymerase at the replication fork for the synthesis of next Okazaki fragment.
Collapse
Affiliation(s)
- Huidong Zhang
- From the Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China and the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boson, Massachusetts 02115
| | - Yong Tang
- From the Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China and
| | - Seung-Joo Lee
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boson, Massachusetts 02115
| | - Zeliang Wei
- From the Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China and
| | - Jia Cao
- From the Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China and
| | - Charles C Richardson
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boson, Massachusetts 02115
| |
Collapse
|
18
|
Fernandez-Leiro R, Conrad J, Scheres SH, Lamers MH. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. eLife 2015; 4. [PMID: 26499492 PMCID: PMC4703070 DOI: 10.7554/elife.11134] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
The replicative DNA polymerase PolIIIα from Escherichia coli is a uniquely fast and processive enzyme. For its activity it relies on the DNA sliding clamp β, the proofreading exonuclease ε and the C-terminal domain of the clamp loader subunit τ. Due to the dynamic nature of the four-protein complex it has long been refractory to structural characterization. Here we present the 8 Å resolution cryo-electron microscopy structures of DNA-bound and DNA-free states of the PolIII-clamp-exonuclease-τc complex. The structures show how the polymerase is tethered to the DNA through multiple contacts with the clamp and exonuclease. A novel contact between the polymerase and clamp is made in the DNA bound state, facilitated by a large movement of the polymerase tail domain and τc. These structures provide crucial insights into the organization of the catalytic core of the replisome and form an important step towards determining the structure of the complete holoenzyme.
Collapse
Affiliation(s)
| | - Julian Conrad
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
19
|
Beattie TR, Reyes-Lamothe R. A Replisome's journey through the bacterial chromosome. Front Microbiol 2015; 6:562. [PMID: 26097470 PMCID: PMC4456610 DOI: 10.3389/fmicb.2015.00562] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/21/2015] [Indexed: 01/03/2023] Open
Abstract
Genome duplication requires the coordinated activity of a multi-component machine, the replisome. In contrast to the background of metabolic diversity across the bacterial domain, the composition and architecture of the bacterial replisome seem to have suffered few changes during evolution. This immutability underlines the replisome’s efficiency in copying the genome. It also highlights the success of various strategies inherent to the replisome for responding to stress and avoiding problems during critical stages of DNA synthesis. Here we summarize current understanding of bacterial replisome architecture and highlight the known variations in different bacterial taxa. We then look at the mechanisms in place to ensure that the bacterial replisome is assembled appropriately on DNA, kept together during elongation, and disassembled upon termination. We put forward the idea that the architecture of the replisome may be more flexible that previously thought and speculate on elements of the replisome that maintain its stability to ensure a safe journey from origin to terminus.
Collapse
|
20
|
Abstract
A cell can be thought of as a highly sophisticated micro factory: in a pool of billions of molecules - metabolites, structural proteins, enzymes, oligonucleotides - multi-subunit complexes assemble to perform a large number of basic cellular tasks, such as DNA replication, RNA/protein synthesis or intracellular transport. By purifying single components and using them to reconstitute molecular processes in a test tube, researchers have gathered crucial knowledge about mechanistic, dynamic and structural properties of biochemical pathways. However, to sort this information into an accurate cellular road map, we need to understand reactions in their relevant context within the cellular hierarchy, which is at the individual molecule level within a crowded, cellular environment. Reactions occur in a stochastic fashion, have short-lived and not necessarily well-defined intermediates, and dynamically form functional entities. With the use of single-molecule techniques these steps can be followed and detailed kinetic information that otherwise would be hidden in ensemble averaging can be obtained. One of the first complex cellular tasks that have been studied at the single-molecule level is the replication of DNA. The replisome, the multi-protein machinery responsible for copying DNA, is built from a large number of proteins that function together in an intricate and efficient fashion allowing the complex to tolerate DNA damage, roadblocks or fluctuations in subunit concentration. In this review, we summarize advances in single-molecule studies, both in vitro and in vivo, that have contributed to our current knowledge of the mechanistic principles underlying DNA replication.
Collapse
Affiliation(s)
- S A Stratmann
- Zernike Institute for Advanced Materials, Centre for Synthetic Biology, University of Groningen, The Netherlands.
| | | |
Collapse
|
21
|
Duderstadt KE, Reyes-Lamothe R, van Oijen AM, Sherratt DJ. Replication-fork dynamics. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a010157. [PMID: 23881939 DOI: 10.1101/cshperspect.a010157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication remains obscure. To better understand the replication mechanism, new methods must be developed that allow for the observation and characterization of short-lived states and dynamic events at single replication forks. Over the last decade, great progress has been made toward this goal with the development of novel DNA nanomanipulation and fluorescence imaging techniques allowing for the direct observation of replication-fork dynamics both reconstituted in vitro and in live cells. This article reviews these new single-molecule approaches and the revised understanding of replisome operation that has emerged.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, Netherlands
| | | | | | | |
Collapse
|
22
|
Yuan Q, McHenry CS. Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork. Nucleic Acids Res 2013; 42:1747-56. [PMID: 24234450 PMCID: PMC3919610 DOI: 10.1093/nar/gkt1098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two models have been proposed for triggering release of the lagging strand polymerase at the replication fork, enabling cycling to the primer for the next Okazaki fragment—either collision with the 5′-end of the preceding fragment (collision model) or synthesis of a new primer by primase (signaling model). Specific perturbation of lagging strand elongation on minicircles with a highly asymmetric G:C distribution with ddGTP or dGDPNP yielded results that confirmed the signaling model and ruled out the collision model. We demonstrated that the presence of a primer, not primase per se, provides the signal that triggers cycling. Lagging strand synthesis proceeds much faster than leading strand synthesis, explaining why gaps between Okazaki fragments are not found under physiological conditions.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
23
|
Chaurasiya KR, Ruslie C, Silva MC, Voortman L, Nevin P, Lone S, Beuning PJ, Williams MC. Polymerase manager protein UmuD directly regulates Escherichia coli DNA polymerase III α binding to ssDNA. Nucleic Acids Res 2013; 41:8959-68. [PMID: 23901012 PMCID: PMC3799427 DOI: 10.1093/nar/gkt648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication by Escherichia coli DNA polymerase III is disrupted on encountering DNA damage. Consequently, specialized Y-family DNA polymerases are used to bypass DNA damage. The protein UmuD is extensively involved in modulating cellular responses to DNA damage and may play a role in DNA polymerase exchange for damage tolerance. In the absence of DNA, UmuD interacts with the α subunit of DNA polymerase III at two distinct binding sites, one of which is adjacent to the single-stranded DNA-binding site of α. Here, we use single molecule DNA stretching experiments to demonstrate that UmuD specifically inhibits binding of α to ssDNA. We predict using molecular modeling that UmuD residues D91 and G92 are involved in this interaction and demonstrate that mutation of these residues disrupts the interaction. Our results suggest that competition between UmuD and ssDNA for α binding is a new mechanism for polymerase exchange.
Collapse
Affiliation(s)
- Kathy R. Chaurasiya
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Clarissa Ruslie
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Michelle C. Silva
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Lukas Voortman
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Philip Nevin
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Samer Lone
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
| | - Penny J. Beuning
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
- *To whom correspondence should be addressed. Tel: +1 617 373 7323; Fax: +1 617 373 2943;
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA and Department of Chemical Sciences, Bridgewater State University, Bridgewater, MA 02325, USA
- *To whom correspondence should be addressed. Tel: +1 617 373 7323; Fax: +1 617 373 2943;
| |
Collapse
|
24
|
Pomerantz RT, Kurth I, Goodman MF, O'Donnell ME. Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination. Nat Struct Mol Biol 2013; 20:748-55. [PMID: 23686288 PMCID: PMC3685420 DOI: 10.1038/nsmb.2573] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/27/2013] [Indexed: 12/14/2022]
Abstract
Although homologous recombination (HR) is considered an accurate form of DNA repair, genetics suggest that Escherichia coli (E. coli) translesion DNA polymerase (pol) IV (DinB) promotes error-prone recombination during stress which allows cells to overcome adverse conditions. How pol IV functions and is regulated during recombination under stress, however, is unknown. We show that pol IV is highly proficient in error-prone recombination, and is preferentially recruited to D-loops at stress-induced concentrations in vitro. Unexpectedly, we find that high-fidelity pol II switches to exonuclease mode at D-loops which is stimulated by topological stress and reduced deoxy-ribonucleotide pools observed during stationary-phase. The exonuclease activity of pol II enables it to compete with pol IV which likely suppresses error-prone recombination. These findings indicate that preferential D-loop extension by pol IV facilitates error-prone recombination and explain how pol II reduces such errors in vivo.
Collapse
Affiliation(s)
- Richard T Pomerantz
- The Rockefeller University, Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | |
Collapse
|
25
|
Kurth I, Georgescu RE, O'Donnell ME. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases. Nature 2013; 496:119-22. [PMID: 23535600 PMCID: PMC3618558 DOI: 10.1038/nature11988] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022]
Abstract
Chromosomal replication machines contain coupled DNA polymerases that simultaneously replicate the leading and lagging strands1. However, coupled replication presents a largely unrecognized topological problem. Since DNA polymerase must travel a helical path during synthesis, the physical connection between leading and lagging strand polymerases causes the daughter strands to entwine, or produces extensive buildup of negative supercoils in the newly synthesized DNA2–4. How DNA polymerases maintain their connection during coupled replication despite these topological challenges is a mystery. Here, we examine the dynamics of the E. coli replisome, by ensemble and single-molecule methods that may solve this topological problem independent of topoisomerases. We find that the lagging strand polymerase frequently releases from an Okazaki fragment before completion, leaving single-strand gaps behind. Dissociation of the polymerase does not result in loss from the replisome due to its contact with the leading-strand polymerase. This behavior, referred to as “signal release”, had been thought to require a protein, possibly primase, to pry polymerase from incompletely extended DNA fragments5–7. However, we observe that signal release is independent of primase and does not appear to require a protein trigger at all. Instead, the lagging-strand polymerase is simply less processive in the context of a replisome. Interestingly, when the lagging-strand polymerase is supplied with primed DNA in trans, uncoupling it from the fork, high processivity is restored. Hence, we propose that coupled polymerases introduce topological changes, possibly by accumulation of superhelical tension in the newly synthesized DNA, that cause lower processivity and transient lagging-strand polymerase dissociation from DNA.
Collapse
Affiliation(s)
- Isabel Kurth
- The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
26
|
Indiani C, O'Donnell M. A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 2013; 18:312-23. [PMID: 23276924 DOI: 10.2741/4102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome replication is performed by numerous proteins that function together as a "replisome". The replisome machinery duplicates both strands of the parental DNA simultaneously. Upon DNA damage to the cell, replisome action produces single-strand DNA to which RecA binds, enabling its activity in cleaving the LexA repressor and thus inducing the SOS response. How single-strand DNA is produced by a replisome acting on damaged DNA is not clear. For many years it has been assumed the single-strand DNA is generated by the replicative helicase, which continues unwinding DNA even after DNA polymerase stalls at a template lesion. Recent studies indicate another source of the single-strand DNA, resulting from an inherently dynamic replisome that may hop over template lesions on both leading and lagging strands, thereby leaving single-strand gaps in the wake of the replication fork. These single-strand gaps are proposed to be the origin of the single-strand DNA that triggers the SOS response after DNA damage.
Collapse
Affiliation(s)
- Chiara Indiani
- Manhattan College 4513 Manhattan College Pkwy, Riverdale, NY 10471, USA.
| | | |
Collapse
|
27
|
New insights into replisome fluidity during chromosome replication. Trends Biochem Sci 2012; 38:195-203. [PMID: 23153958 DOI: 10.1016/j.tibs.2012.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 11/21/2022]
Abstract
Several paradigm shifting advances have recently been made on the composition and function of the chromosomal DNA replication machinery. Replisomes appear to be more fluid and dynamic than ever imagined, enabling rapid and efficient bypass of roadblocks and template lesions while faithfully replicating chromosomal DNA. This fluidity is determined by many layers of regulation, which reach beyond the role of replisome components themselves. In fact, recent studies show that additional polymerases, post-transcriptional modifications, and chromatin structure are required for complete chromosome duplication. Many of these factors are involved with the more complex events that take place during lagging-strand synthesis. These, and other recent discoveries, are the focus of this review.
Collapse
|
28
|
Silva MC, Nevin P, Ronayne EA, Beuning PJ. Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res 2012; 40:5511-22. [PMID: 22406830 PMCID: PMC3384344 DOI: 10.1093/nar/gks229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA polymerase III (DNA pol III) efficiently replicates the Escherichia coli genome, but it cannot bypass DNA damage. Instead, translesion synthesis (TLS) DNA polymerases are employed to replicate past damaged DNA; however, the exchange of replicative for TLS polymerases is not understood. The umuD gene products, which are up-regulated during the SOS response, were previously shown to bind to the α, β and ε subunits of DNA pol III. Full-length UmuD inhibits DNA replication and prevents mutagenic TLS, while the cleaved form UmuD' facilitates mutagenesis. We show that α possesses two UmuD binding sites: at the N-terminus (residues 1-280) and the C-terminus (residues 956-975). The C-terminal site favors UmuD over UmuD'. We also find that UmuD, but not UmuD', disrupts the α-β complex. We propose that the interaction between α and UmuD contributes to the transition between replicative and TLS polymerases by removing α from the β clamp.
Collapse
Affiliation(s)
- Michelle C Silva
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
30
|
Dohrmann PR, Manhart CM, Downey CD, McHenry CS. The rate of polymerase release upon filling the gap between Okazaki fragments is inadequate to support cycling during lagging strand synthesis. J Mol Biol 2011; 414:15-27. [PMID: 21986197 DOI: 10.1016/j.jmb.2011.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 10/17/2022]
Abstract
Upon completion of synthesis of an Okazaki fragment, the lagging strand replicase must recycle to the next primer at the replication fork in under 0.1 s to sustain the physiological rate of DNA synthesis. We tested the collision model that posits that cycling is triggered by the polymerase encountering the 5'-end of the preceding Okazaki fragment. Probing with surface plasmon resonance, DNA polymerase III holoenzyme initiation complexes were formed on an immobilized gapped template. Initiation complexes exhibit a half-life of dissociation of approximately 15 min. Reduction in gap size to 1 nt increased the rate of dissociation 2.5-fold, and complete filling of the gap increased the off-rate an additional 3-fold (t(1/2)~2 min). An exogenous primed template and ATP accelerated dissociation an additional 4-fold in a reaction that required complete filling of the gap. Neither a 5'-triphosphate nor a 5'-RNA terminated oligonucleotide downstream of the polymerase accelerated dissociation further. Thus, the rate of polymerase release upon gap completion and collision with a downstream Okazaki fragment is 1000-fold too slow to support an adequate rate of cycling and likely provides a backup mechanism to enable polymerase release when the other cycling signals are absent. Kinetic measurements indicate that addition of the last nucleotide to fill the gap is not the rate-limiting step for polymerase release and cycling. Modest (approximately 7 nt) strand displacement is observed after the gap between model Okazaki fragments is filled. To determine the identity of the protein that senses gap filling to modulate affinity of the replicase for the template, we performed photo-cross-linking experiments with highly reactive and non-chemoselective diazirines. Only the α subunit cross-linked, indicating that it serves as the sensor.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
31
|
McHenry CS. Bacterial replicases and related polymerases. Curr Opin Chem Biol 2011; 15:587-94. [PMID: 21855395 DOI: 10.1016/j.cbpa.2011.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/24/2022]
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, Pol III, a β(2) processivity factor and a DnaX complex ATPase that loads β(2) onto DNA and chaperones Pol III onto the newly loaded β(2). Many bacteria encode both a full length τ and a shorter γ form of DnaX by a variety of mechanisms. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to prototypical ɛ Mg(2+)-dependent exonuclease, but also contains a second Zn(2+)-dependent proofreading exonuclease, at least in some bacteria. Replication of the chromosomes of low GC Gram-positive bacteria require two Pol IIIs, one of which, DnaE, appears to extend RNA primers a only short distance before handing the product off to the major replicase, PolC. Other bacteria encode a second Pol III (ImuC) that apparently replaces Pol V, required for induced mutagenesis in E. coli. Approaches that permit simultaneous biochemical screening of all components of complex bacterial replicases promise inhibitors of specific protein targets and reaction stages.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309, USA.
| |
Collapse
|
32
|
Timinskas K, Venclovas Č. The N-terminal region of the bacterial DNA polymerase PolC features a pair of domains, both distantly related to domain V of the DNA polymerase III τ subunit. FEBS J 2011; 278:3109-18. [DOI: 10.1111/j.1742-4658.2011.08236.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
E. coli DNA replication in the absence of free β clamps. EMBO J 2011; 30:1830-40. [PMID: 21441898 DOI: 10.1038/emboj.2011.84] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/28/2011] [Indexed: 11/08/2022] Open
Abstract
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess β clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.
Collapse
|
34
|
Balakrishnan L, Bambara RA. Eukaryotic lagging strand DNA replication employs a multi-pathway mechanism that protects genome integrity. J Biol Chem 2010; 286:6865-70. [PMID: 21177245 DOI: 10.1074/jbc.r110.209502] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic nuclear DNA replication, one strand of DNA is synthesized continuously, but the other is made as Okazaki fragments that are later joined. Discontinuous synthesis is inherently more complex, and fragmented intermediates create risks for disruptions of genome integrity. Genetic analyses and biochemical reconstitutions indicate that several parallel pathways evolved to ensure that the fragments are made and joined with integrity. An RNA primer is removed from each fragment before joining by a process involving polymerase-dependent displacement into a single-stranded flap. Evidence in vitro suggests that, with most fragments, short flaps are displaced and efficiently cleaved. Some flaps can become long, but these are also removed to allow joining. Rarely, a flap can form structure, necessitating displacement of the entire fragment. There is now evidence that post-translational protein modification regulates the flow through the pathways to favor protection of genomic information in regions of actively transcribed chromatin.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
35
|
Abstract
In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field.
Collapse
Affiliation(s)
- Samir M. Hamdan
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Antoine M. van Oijen
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|