1
|
Le X, Chen Q, Wen Q, Cao S, Zhang L, Hu L, Hu G, Li Q, Chen Z. Design, synthesis and optimization of Apcin analogues as Cdc20 inhibitors for triple-negative breast cancer therapy. Eur J Med Chem 2025; 289:117434. [PMID: 40020424 DOI: 10.1016/j.ejmech.2025.117434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Cell division cycle 20 homologue (Cdc20) is an essential mitotic regulator whose overexpression is closely associated with tumorigenesis and poor prognosis in triple-negative breast cancer (TNBC). Targeting Cdc20 has therefore emerged as a promising therapeutic avenue for this aggressive malignancy. In the present study, a receptor-based drug design approach was employed to optimize Apcin analogues as Cdc20 inhibitors. Through a two-step strategy-concept validation followed by structural optimization-we identified compound 14c, which demonstrated remarkable Cdc20 binding affinity (KD: 7.65 μM), potent antiproliferative effects against MDA-MB-231 TNBC cells (IC50: 3.28 μM), and a favorable selectivity index (4.22 for MCF-7 non-TNBC cells and 7.27 for MCF 10A normal cells). 14c effectively inhibited Cdc20 activity, induced G2/M phase arrest, promoted DNA damage accumulation, and stabilized key substrates such as Cyclin B1 and Bim, leading to enhanced apoptosis and suppression of tumor cell proliferation and migration. In vivo, 14c significantly inhibited tumor growth in an MDA-MB-231 xenograft model with a 90 % tumor inhibition rate and no observable toxicity. These results highlight the potential of 14c as a potent Cdc20 inhibitor, offering a promising therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Department of Pharmacy, Yiyang Central Hospital, Yiyang, Hunan, 413000, China
| | - Qingsong Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Qiwan Wen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Shuyang Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Lei Zhang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Sparr C, Meitinger F. Prolonged mitosis: A key indicator for detecting stressed and damaged cells. Curr Opin Cell Biol 2025; 92:102449. [PMID: 39721293 DOI: 10.1016/j.ceb.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity. The mitotic stopwatch pathway detects even moderately prolonged mitoses by integrating memories of mitotic durations, ultimately leading to p53-mediated cell cycle arrest or death. This mechanism competes with mitogen signaling to stop the proliferation of damaged and potentially dangerous cells at a pre-oncogenic stage. Mitosis is a highly vulnerable phase, which is affected by multiple types of cellular damages and diverse stresses. We discuss the hypothesis that the duration of mitosis serves as an indicator of cell health.
Collapse
Affiliation(s)
- Carmen Sparr
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
3
|
Fulcher LJ, Sobajima T, Batley C, Gibbs-Seymour I, Barr FA. MDM2 functions as a timer reporting the length of mitosis. Nat Cell Biol 2025; 27:262-272. [PMID: 39789219 PMCID: PMC11821534 DOI: 10.1038/s41556-024-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Delays in mitosis trigger p53-dependent arrest in G1 of the next cell cycle, thus preventing repeated cycles of chromosome instability and aneuploidy. Here we show that MDM2, the p53 ubiquitin ligase, is a key component of the timer mechanism triggering G1 arrest in response to prolonged mitosis. This timer function arises due to the attenuation of protein synthesis in mitosis. Because MDM2 has a short half-life and ongoing protein synthesis is therefore necessary to maintain its steady-state concentration, the amount of MDM2 gradually falls during mitosis but normally remains above a critical threshold for p53 regulation at the onset of G1. When mitosis is extended by prolonged spindle assembly checkpoint activation, the amount of MDM2 drops below this threshold, stabilizing p53. Subsequent p53-dependent p21 accumulation then channels G1 cells into a sustained cell-cycle arrest, whereas abrogation of the response in p53-deficient cells allows them to bypass this crucial defence mechanism.
Collapse
Affiliation(s)
- Luke J Fulcher
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Caleb Batley
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Fischer J, Erkner E, Radszuweit P, Hentrich T, Keppeler H, Korkmaz F, Schulze-Hentrich J, Fitzel R, Lengerke C, Schneidawind D, Schneidawind C. Only Infant MLL-Rearranged Leukemia Is Susceptible to an Inhibition of Polo-like Kinase 1 (PLK-1) by Volasertib. Int J Mol Sci 2024; 25:12760. [PMID: 39684470 DOI: 10.3390/ijms252312760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
MLL-rearranged (MLLr) leukemia is characterized by a poor prognosis. Depending on the cell of origin, it differs in the aggressiveness and therapy response. For instance, in adults, volasertib blocking Polo-like kinase 1 (PLK-1) exhibited limited success. Otherwise, PLK-1 characterizes an infant MLLr signature, indicating potential sensitivity. By using our CRISPR/Cas9 MLLr model in CD34+ cells from human cord blood (huCB) and bone marrow (huBM) mimicking the infant and adult patient diseases, we were able to shed light on this phenomenon. The PLK-1 mRNA level was significantly increased in our huCB compared to the huBM model, which was underpinned by analyzing infant and adult MLLr leukemia patients. Importantly, the expression levels correlated with a functional response. Volasertib induced a significant dose-dependent decrease in proliferation and cell cycle arrest, most pronounced in the infant model. Mechanistically, upon volasertib treatment, we uncovered negative feedback only in the huBM model by compensatory upregulation of PLK-1 and related genes like AURKA involved in mitosis. Importantly, the poor response could be overcome by a combinatorial strategy with alisertib, an Aurora kinase A inhibitor. Our study emphasizes the importance of considering the cell of origin in therapeutic decision-making and provides the rationale for evaluating volasertib and alisertib in MLLr leukemia.
Collapse
Affiliation(s)
- Jacqueline Fischer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Estelle Erkner
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Pia Radszuweit
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Julia Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Rahel Fitzel
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Claudia Lengerke
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
5
|
Ramesh J, Gopalakrishnan RM, Nguyen THA, Lai SK, Li HY, Kim PS, Kutzner A, Inoue N, Heese K. Deciphering the molecular landscape of the FAM72 gene family: Implications for stem cell biology and cancer. Neurochem Int 2024; 180:105853. [PMID: 39236808 DOI: 10.1016/j.neuint.2024.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Family with sequence similarity 72 (FAM72) is a protein-coding gene family located on chromosome 1 in humans, uniquely featuring four paralogs: FAM72A, FAM72B, FAM72C, and FAM72D. While FAM72's presence as a gene pair with the SLIT-ROBO Rho GTPase-activating protein 2 (SRGAP2) is intriguing, its functional roles, particularly in neural stem cells, remain incompletely understood. This review explores the distinct characteristics of FAM72, shedding light on its expression patterns, potential roles in cell cycle regulation, stem cell renewal and implications in neurogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr ALM Postgraduate Institute of Biomedical Sciences, University of Madras, Chennai, Tamil Nadu, 600-113, India.
| | - Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600-025, India.
| | - Tuan Hoang Anh Nguyen
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| | - Soak-Kuan Lai
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637-551, Singapore.
| | - Hoi-Yeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637-551, Singapore.
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul, 136-702, Republic of Korea.
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| | - Noriko Inoue
- Osaka University Institute for Sports and Global Health, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
6
|
Zeng Z, Shi Y, Cai Y, Yang X, Zheng X, Huang L, Liang Z, Liu Z, Luo S, Xiong L, Li S, Liu Z, Kang L, Liu H, Li W. PHLDA1 protects intestinal barrier function via restricting intestinal epithelial cells apoptosis in inflammatory bowel disease. Exp Cell Res 2024; 443:114322. [PMID: 39510153 DOI: 10.1016/j.yexcr.2024.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The current approach to treating inflammatory bowel disease (IBD) primarily focuses on managing inflammation rather than maintaining the integrity of the intestinal barrier. In our study, we sought to investigate the potential role of PHLDA1 in preserving intestinal barrier function as a promising strategy for treating IBD. We observed a significant decrease in PHLDA1 expression in intestinal epithelial cells (IECs) of both IBD patients and mice with chemically induced colitis. This deficiency of PHLDA1 led to increased apoptosis of IECs, resulting in a compromised epithelial barrier and the invasion of commensal bacteria into the mucosa. Consequently, this microbial invasion substantially exacerbated colonic inflammation in mice with the specific knockout of PHLDA1 in IECs (Phlda1IEC-KO) compared to their control littermates. Mechanistically, we found evidence of PHLDA1 interacting with MCL1 to protect against K48-linked polyubiquitylation at the K40 lysine residue, thus preventing ubiquitin-proteasome degradation through the MCL1 ubiquitin ligase E3 (Mule). We further confirmed that the PHLDA1-MCL1-Mule signaling pathway plays a critical role in the development of IBD. Notably, our study demonstrated that enhancing MCL1 levels or reducing Mule expression using adeno-associated virus (AAV) attenuated experimental colitis in Phlda1IEC-KO mice. Collectively, our findings emphasize the significance of PHLDA1 in the pathogenesis of IBD and propose that targeting the PHLDA1-MCL1-Mule signaling pathway could be a viable approach for combating IBD.
Collapse
Affiliation(s)
- Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Shi
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yonghua Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanzhen Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuangling Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shujuan Li
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihang Liu
- The "Double-First Class" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, China
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Oleksak P, Rysanek D, Vancurova M, Vasicova P, Urbancokova A, Novak J, Maurencova D, Kashmel P, Houserova J, Mikyskova R, Novotny O, Reinis M, Juda P, Hons M, Kroupova J, Sedlak D, Sulimenko T, Draber P, Chlubnova M, Nepovimova E, Kuca K, Lisa M, Andrys R, Kobrlova T, Soukup O, Janousek J, Prchal L, Bartek J, Musilek K, Hodny Z. Discovery of a 6-Aminobenzo[ b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities. ACS Pharmacol Transl Sci 2024; 7:2755-2783. [PMID: 39296273 PMCID: PMC11406704 DOI: 10.1021/acsptsci.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.
Collapse
Affiliation(s)
- Patrik Oleksak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Vancurova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Dominika Maurencova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Kashmel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Houserova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ondrej Novotny
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Jirina Kroupova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Draber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Chlubnova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Miroslav Lisa
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Janousek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Danish Cancer Institute, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
8
|
Sachdeva A, Roy A, Gupta MK, Mandal S. Pharmacological inhibition of protein kinase D2/Aurora kinase A signalling axis suppresses G2/M cell cycle progression and proliferation of epithelial ovarian cancer cells. Pathol Res Pract 2024; 260:155390. [PMID: 38878668 DOI: 10.1016/j.prp.2024.155390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 08/09/2024]
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy with poor prognosis and patient survival outcome. Protein kinase D2 (PKD2) belongs to Ca++/calmodulin-dependent serine/threonine kinase family and its aberrant expression is associated with many cellular and physiological functions associated with tumorigenesis including cell proliferation. We show that PKD2 is activated during G2/M cell cycle transition and its catalytic inactivation by small molecule inhibitor CRT0066101 or genetic knockdown caused suppression of EOC cell proliferation followed by a delay into mitotic entry. Our RNASeq analysis of PKD2-inactivated EOC cells revealed significant downregulation of genes associated with cell cycle including Aurora kinase A, a critical mitotic regulator. Mechanistically, PKD2 positively regulated Aurora kinase A stability at both transcriptional and post-translational levels by interfering with the function of Fbxw7, drove G2/M cell cycle transition and EOC cell proliferation. Moreover, pharmacological inhibition of Aurora kinase A by small molecule CD532 or its shRNA-mediated genetic knockdown suppressed EOC cell proliferation, induced G2/M cell cycle arrest and mitotic catastrophe followed by apoptosis. Taken together, our results indicated that PKD2 positively regulates Aurora kinase A during G2/M cell cycle entry and pharmacological targeting of PKD2/Aurora kinase A signalling axis could serve as a novel therapeutic intervention against a lethal pathology like EOC.
Collapse
Affiliation(s)
- Abha Sachdeva
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| | - Manoj Kumar Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
9
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Apoptosis. Mol Neurobiol 2024; 61:3934-3948. [PMID: 38040996 DOI: 10.1007/s12035-023-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Apoptosis, a highly controlled homeostatic mechanism that eliminates single cells without destroying tissue function, occurs during growing development and senescence. N6-methyladenosine (m6A), as the most common internal modification of eukaryotic mRNA, fine-tunes gene expression by regulating many aspects of mRNA metabolism, such as splicing, nucleation, stability, translation, and degradation. Remarkably, recent reports have indicated that aberrant methylation of m6A-related RNA may directly or indirectly influence the expression of apoptosis-related genes, thus regulating the process of cell apoptosis. In this review, we summarized the relationship between m6A modification and cell apoptosis, especially its role in the nervous system, and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Ghosh S, Choudhury D, Ghosh D, Mondal M, Singha D, Malakar P. Characterization of polyploidy in cancer: Current status and future perspectives. Int J Biol Macromol 2024; 268:131706. [PMID: 38643921 DOI: 10.1016/j.ijbiomac.2024.131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.
Collapse
Affiliation(s)
- Srijonee Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Debopriya Choudhury
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Dhruba Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India.
| |
Collapse
|
11
|
Deng H, Han Y, Liu L, Zhang H, Liu D, Wen J, Huang M, Zhao L. Targeting Myeloid Leukemia-1 in Cancer Therapy: Advances and Directions. J Med Chem 2024; 67:5963-5998. [PMID: 38597264 DOI: 10.1021/acs.jmedchem.3c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
As a tripartite cell death switch, B-cell lymphoma protein 2 (Bcl-2) family members precisely regulate the endogenous apoptosis pathway in response to various cell signal stresses through protein-protein interactions. Myeloid leukemia-1 (Mcl-1), a key anti-apoptotic Bcl-2 family member, is positioned downstream in the endogenous apoptotic pathway and plays a central role in regulating mitochondrial function. Mcl-1 is highly expressed in a variety of hematological malignancies and solid tumors, contributing to tumorigenesis, poor prognosis, and chemoresistance, making it an attractive target for cancer treatment. This Perspective aims to discuss the mechanism by which Mcl-1 regulates apoptosis and non-apoptotic functions in cancer cells and to outline the discovery and optimization process of potent Mcl-1 modulators. In addition, we summarize the structural characteristics of potent inhibitors that bind to Mcl-1 through multiple co-crystal structures and analyze the cardiotoxicity caused by current Mcl-1 inhibitors, providing prospects for rational targeting of Mcl-1.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Yang C, Ge Y, Zang Y, Xu M, Jin L, Wang Y, Xu X, Xue B, Wang Z, Wang L. CDC20 promotes radioresistance of prostate cancer by activating Twist1 expression. Apoptosis 2023; 28:1584-1595. [PMID: 37535214 DOI: 10.1007/s10495-023-01877-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.
Collapse
Affiliation(s)
- Chuanlai Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Scientific Research Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yuegang Ge
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yachen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ming Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yang Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xinyu Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, 233003, Anhui, China.
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
13
|
Li Z, Zhang W, Xu J, Mo X. Cdk1 protects against oxygen-glucose deprivation and reperfusion-induced Golgi fragmentation and apoptosis through mediating GM130 phosphorylation. J Mol Histol 2023; 54:609-619. [PMID: 37831422 DOI: 10.1007/s10735-023-10164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
Increasing evidence has indicated that the Golgi apparatus (GA) is involved in the development of cerebral ischemia-reperfusion (IR) injury. Finding effective neuroprotective agents targeting GA has become a priority in the treatment of ischemic stroke. GM130, a key structural protein present on the cis-face of the GA, maintains its structure through its phosphorylation and dephosphorylation. However, the molecular mechanisms by which GM130 regulates IR-induced neuronal apoptosis are not well elucidated. Mouse neuroblastoma Neuro2a (N2A) cells were subjected to oxygen-glucose deprivation and reperfusion (OGDR) insult. Cell proliferation and apoptosis were determined using MTT assay, TUNEL staining, and flow cytometry. GA morphology was detected by immunocytochemical staining and immunofluorescence microscopy. GA-related protein and mRNA levels were detected by WB and qPCR, respectively. Treatment with Purvalanol A, an effective Cdk1 inhibitor, and transfection of Cdk1-shRNA were carried out to inhibit OGDR-induced Cdk1 elevation. The results demonstrated that OGDR induced Golgi fragmentation, neuronal apoptosis, GM130 phosphorylation, and p115 cleavage in N2A cells. Cdk1 elevation after OGDR was closely correlated with GM130 phosphorylation, not p115. Inhibition of Cdk1 significantly attenuated OGDR-induced Golgi fragmentation and cell apoptosis. Cdk1 interacted with GM130 and decreased its phosphorylation on the serine 25 site in N2A cells exposed to OGDR. The present findings reveal that Cdk1 protects against IR-induced GA fragmentation and apoptosis, likely through the mediation of GM130 phosphorylation. This neuroprotective potential of Cdk1 against IR insult and the underlying mechanism will pave the way for potential clinical applications targeting the GA organelle for cerebral IR-related disorders.
Collapse
Affiliation(s)
- Zheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ji Xu
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
14
|
Kouba S, Buscaglia P, Guéguinou M, Ibrahim S, Félix R, Guibon R, Fromont G, Pigat N, Capiod T, Vandier C, Mignen O, Potier-Cartereau M. Pivotal role of the ORAI3-STIM2 complex in the control of mitotic death and prostate cancer cell cycle progression. Cell Calcium 2023; 115:102794. [PMID: 37597301 DOI: 10.1016/j.ceca.2023.102794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Prostate cancer (PCa) represents one of the most frequent diagnosed cancer in males worldwide. Due to routine screening tests and the efficiency of available treatments, PCa-related deaths have significantly decreased over the past decades. However, PCa remains a critical threat if detected at a late stage in which, cancer cells would have already detached from the primary tumor to spread and invade other parts of the body. Calcium (Ca2+) channels and their protein regulators are now considered as hallmarks of cancer and some of them have been well examined in PCa. Among these Ca2+ channels, isoform 3 of the ORAI channel family has been shown to regulate the proliferation of PCa cells via the Arachidonic Acid-mediated Ca2+ entry, requiring the involvement of STIM1 (Stromal Interaction Molecule 1). Still, no study has yet demonstrated a role of the "neglected" STIM2 isoform in PCa or if it may interact with ORAI3 to promote an oncogenic behavior. In this study, we demonstrate that ORAI3 and STIM2 are upregulated in human PCa tissues. In old KIMAP (Knock-In Mouse Prostate Adenocarcinoma) mice, ORAI3 and STIM2 mRNA levels were significantly higher than ORAI1 and STIM1. In vitro, we show that ORAI3-STIM2 interact under basal conditions in PC-3 cells. ORAI3 silencing increased Store Operated Ca2+ Entry (SOCE) and induced a significant increase of the cell population in G2/M phase of the cell cycle, consistent with the role of ORAI3 as a negative regulator of SOCE. Higher expression levels of CDK1-Y15/Cyclin B1 were detected and mitotic arrest-related death occurred after ORAI3 silencing, which resulted in activating Bax/Bcl-2-mediated apoptotic pathway and caspase-8 activation and cleavage. STIM2 and ORAI3 expression increased in M phase while STIM1 expression and SOCE amplitude significantly decreased. Taken together, ORAI3 -STIM2 complex allows a successful progression through mitosis of PCa cells by evading mitotic catastrophe.
Collapse
Affiliation(s)
- Sana Kouba
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France
| | - Paul Buscaglia
- INSERM U1227, LBAI: Lymphocytes B, Autoimmunité et Immunotherapies, University of Bretagne Occidentale, Brest, France
| | - Maxime Guéguinou
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France
| | - Sajida Ibrahim
- EA 7501, University of Tours - ERL 7001 LNOx - CNRS, GICC: Groupe Innovation et Ciblage Cellulaire, Tours, France
| | - Romain Félix
- INSERM U1227, LBAI: Lymphocytes B, Autoimmunité et Immunotherapies, University of Bretagne Occidentale, Brest, France
| | - Roseline Guibon
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France; Service d'Anatomie et cytologie pathologiques, Bretonneau, Centre Hospitalier Régional et Universitaire, Tours, France
| | - Gaëlle Fromont
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France; Service d'Anatomie et cytologie pathologiques, Bretonneau, Centre Hospitalier Régional et Universitaire, Tours, France
| | - Natascha Pigat
- INSERM U1151, Institut Necker Enfants Malades, Universiy of Paris, 160 rue de Vaugirard, Paris 75015 France
| | - Thierry Capiod
- INSERM U1151, Institut Necker Enfants Malades, Universiy of Paris, 160 rue de Vaugirard, Paris 75015 France
| | - Christophe Vandier
- INSERM U1069, N2C: Nutrition, Croissance et Cancer, University of Tours, Tours, France
| | - Olivier Mignen
- INSERM U1227, LBAI: Lymphocytes B, Autoimmunité et Immunotherapies, University of Bretagne Occidentale, Brest, France.
| | | |
Collapse
|
15
|
Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res 2023; 13:4832-4871. [PMID: 37970337 PMCID: PMC10636691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a post-translational modification process, plays a precise role in regulating the formation and function of different death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in apoptosis and LC can provide insights into potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
16
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
17
|
Novitasari D, Jenie RI, Kato JY, Meiyanto E. Chemoprevention curcumin analog 1.1 promotes metaphase arrest and enhances intracellular reactive oxygen species levels on TNBC MDA-MB-231 and HER2-positive HCC1954 cells. Res Pharm Sci 2023; 18:358-370. [PMID: 37614620 PMCID: PMC10443663 DOI: 10.4103/1735-5362.378083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 05/23/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Previous studies highlighted that chemoprevention curcumin analog-1.1 (CCA-1.1) demonstrated an antitumor effect on breast, leukemia, and colorectal cancer cells. By utilizing immortalized MDA-MB-231 and HCC1954 cells, we evaluated the anticancer properties of CCA-1.1 and its mediated activity to promote cellular death. Experimental approach Cytotoxicity and anti-proliferation were assayed using trypan blue exclusion. The cell cycle profile after CCA-1.1 treatment was established through flow cytometry. May-Grünwald-Giemsa and Hoechst staining were performed to determine the cell cycle arrest upon CCA-1.1 treatment. The involvement of CCA-1.1 in mitotic kinases (aurora A, p-aurora A, p-PLK1, and p-cyclin B1) expression was investigated by immunoblotting. CCA-1.1-treated cells were stained with the X-gal solution to examine the effect on senescence. ROS level and mitochondrial respiration were assessed by DCFDA assay and mitochondrial oxygen consumption rate, respectively. Findings/Results CCA-1.1 exerted cytotoxic activity and inhibited cell proliferation with an irreversible effect, and the flow cytometry analysis demonstrated that CCA-1.1 significantly halted during the G2/M phase, and further assessment revealed that CCA-1.1 caused metaphase arrest. Immunoblot assays confirmed CCA-1.1 suppressed aurora A kinase in MDA-MB-231 cells. The ROS level was elevated after treatment with CCA-1.1, which might promote cellular senescence and suppress basal mitochondrial respiration in MDA-MB-231 cells. Conclusion and implications Our data suggested the in vitro proof-of-concept that supports the involvement in cell cycle regulation and ROS generation as contributors to the effectiveness of CCA-1.1 in suppressing breast cancer cell growth.
Collapse
Affiliation(s)
- Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jun-ya Kato
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
18
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
19
|
Cheng J, Huang A, Cheng J, Pei X, Yu L, Jin G, Xu E. Profile analysis of differentially expressed long non‑coding RNAs in metabolic memory induced by high glucose in human umbilical vein endothelial cells. Exp Ther Med 2023; 25:288. [PMID: 37206566 PMCID: PMC10189608 DOI: 10.3892/etm.2023.11987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 05/21/2023] Open
Abstract
Numerous long non-coding RNAs (lncRNAs) are dysregulated in the hyperglycemia-induced phenomenon of metabolic memory (MM). In the present study, the significance of these lncRNAs in MM was explored by screening for MM-involved differentially expressed lncRNAs (MMDELs) in human umbilical vein endothelial cells (HUVECs) induced by high glucose. A total of nine HUVEC samples were divided into three groups to mimic conditions of low and high glucose environments, as well as induce the state of metabolic memory. The expression of lncRNAs was profiled using RNA sequencing. Bioinformatic analysis was performed using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases to explore the parental genes from which the lncRNAs are transcribed and target genes of the MMDELs and generate enrichment datasets. Reverse transcription-quantitative PCR was performed to validate the expression levels of the selected lncRNAs. The present study identified 308 upregulated and 157 downregulated MMDELs, which were enriched in numerous physiologic processes. Key functional enrichment terms included 'cell cycle', 'oocyte meiosis' and 'p53 signaling pathway'. In conclusion, certain MMDELs may regulate the expression level of highly associated mRNAs through various mechanisms and pathways, thereby interfering with several processes, such as the regulation of the cell cycle, and affecting vascular endothelial cell function. Furthermore, the disorders of these lncRNAs can be retained in MM, further investigation into the functions of these lncRNAs may result in novel insights and treatments, which could help control MM in patients with diabetes.
Collapse
Affiliation(s)
- Jingya Cheng
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Anqi Huang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Ji Cheng
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lei Yu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
- Correspondence to: Professor Guoxi Jin, Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzihu, Bengbu, Anhui 233004, P.R. China
| | - Erqin Xu
- Department of Physical Diagnostics, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
20
|
Chen CL, Tseng PC, Chao YP, Shen TJ, Jhan MK, Wang YT, Nguyen TT, Lin CF. Polypeptide antibiotic actinomycin D induces Mcl-1 uncanonical downregulation in lung cancer cell apoptosis. Life Sci 2023; 321:121615. [PMID: 37001403 DOI: 10.1016/j.lfs.2023.121615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
AIMS Actinomycin (Act) D, a polypeptide antibiotic, is used clinically to inhibit the growth of malignant tumors. Act D binds to DNA at the transcription initiation complex to prevent the elongation of RNA. Act D causes DNA damage, growth inhibition, and cell death. Myeloid cell leukemia (Mcl-1) is an anti-apoptotic Bcl-2 family member protein, and the present study explored the effects and molecular mechanism of Act D-induced Mcl-1 downregulation. MAIN METHODS Human adenocarcinoma A549 cells were used to check the cytotoxic signaling pathways of Act D, particularly in apoptotic mechanism, in a cell-based study approach. Specific blockers targeting the apoptotic factors were examined for their possible roles. KEY FINDINGS We found that Act D caused cell growth inhibition and apoptosis. Propidium iodide-based flow cytometric analysis and immunostaining confirmed cell apoptosis. Treatment with Act D caused DNA damage, followed by p53-independent cell death. Western blotting showed a significant decrease in Mcl-1 expression, mitochondrial transmembrane potential loss, and caspase-9/caspase-3 cascade activation. The proteasome inhibitor MG132 reversed Act D-induced Mcl-1 downregulation. However, pharmacological inhibition of glycogen synthase kinase-3, p53 expression, ER stress, autophagy, and vesicle acidification, which are Mcl-1-regulating signaling pathways, did not rescue these effects. Notably, Cullin-Ring E3 ligase partially mediated Mcl-1 downregulation. Administration of transforming growth factor-β induced mesenchymal cell differentiation, but Act D still decreased Mcl-1 and caused cell apoptosis. SIGNIFICANCE All of these data show a potential pro-apoptotic effect for Act D by facilitating Mcl-1 uncanonical downregulation.
Collapse
|
21
|
CDC20 inhibition alleviates fibrotic response of renal tubular epithelial cells and fibroblasts by regulating nuclear translocation of β-catenin. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166663. [PMID: 36764621 DOI: 10.1016/j.bbadis.2023.166663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Fibrosis is a common pathological phenomenon in progressive kidney disease leading to eventual loss of kidney function. Previous studies demonstrated that CDC20 plays a role in cancers by regulating epithelial-mesenchymal transition (EMT) and the infiltration of fibroblasts, suggesting the potential of CDC20 in regulating fibrotic response. However, the role of CDC20 in renal fibrosis is yet unclear. Herein, we reported that renal CDC20 was remarkably upregulated in renal tubular epithelial cells and fibroblasts in chronic kidney disease (CKD) patients, which was in line with a positive correlation with the severity of kidney fibrosis. In mice with unilateral urinary obstruction, CDC20 was also strikingly enhanced, and treatment with Apcin, an inhibitor of CDC20, ameliorated kidney fibrosis. Consistently, the pharmacological inhibition of CDC20 in mouse proximal tubular epithelial cells and rat fibroblasts attenuated TGF-β1-induced fibrotic responses, while overexpression of CDC20 aggravated such responses. Additional studies revealed that CDC20 induces nuclear translocation of β-catenin, which in turn initiates and promotes the pathological process of fibrosis in CKD. Thus, enhanced CDC20 in renal tubular cells and fibroblasts promotes renal fibrosis by activating β-catenin, and CDC20 inhibition may serve as a promising strategy for the prevention and treatment of renal fibrosis.
Collapse
|
22
|
Fu Y, Jia X, Yuan J, Yang Y, Zhang T, Yu Q, Zhou J, Wang T. Fam72a functions as a cell-cycle-controlled gene during proliferation and antagonizes apoptosis through reprogramming PP2A substrates. Dev Cell 2023; 58:398-415.e7. [PMID: 36868233 DOI: 10.1016/j.devcel.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
The cell cycle is key to life. After decades of research, it is unclear whether any parts of this process have yet to be identified. Fam72a is a poorly characterized gene and is evolutionarily conserved across multicellular organisms. Here, we have found that Fam72a is a cell-cycle-regulated gene that is transcriptionally and post-transcriptionally regulated by FoxM1 and APC/C, respectively. Functionally, Fam72a directly binds to tubulin and both the Aα and B56 subunits of PP2A-B56 to modulate tubulin and Mcl1 phosphorylation, which in turn affects the progression of the cell cycle and signaling of apoptosis. Moreover, Fam72a is involved in early responses to chemotherapy, and it efficiently antagonizes various anticancer compounds such as CDK and Bcl2 inhibitors. Thus, Fam72a switches the tumor-suppressive PP2A to be oncogenic by reprogramming its substrates. These findings identify a regulatory axis of PP2A and a protein member in the cell cycle and tumorigenesis regulatory network in human cells.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Thoracic Oncology, Tianjin Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin Medical University, Tianjin 300070, China.
| | - Xiaofan Jia
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinwei Yuan
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuting Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Teng Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiujing Yu
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Thoracic Oncology, Tianjin Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
23
|
Pavani M, Chiroli E, Cancrini C, Gross F, Bonaiuti P, Villa S, Giavazzi F, Matafora V, Bachi A, Fava LL, Lischetti T, Ciliberto A. Triap1 upregulation promotes escape from mitotic-slippage-induced G1 arrest. Cell Rep 2023; 42:112215. [PMID: 36917609 DOI: 10.1016/j.celrep.2023.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Drugs targeting microtubules rely on the mitotic checkpoint to arrest cell proliferation. The prolonged mitotic arrest induced by such drugs is followed by a G1 arrest. Here, we follow for several weeks the fate of G1-arrested human cells after treatment with nocodazole. We find that a small fraction of cells escapes from the arrest and resumes proliferation. These escaping cells experience reduced DNA damage and p21 activation. Cells surviving treatment are enriched for anti-apoptotic proteins, including Triap1. Increasing Triap1 levels allows cells to survive the first treatment with reduced DNA damage and lower levels of p21; accordingly, decreasing Triap1 re-sensitizes cells to nocodazole. We show that Triap1 upregulation leads to the retention of cytochrome c in the mitochondria, opposing the partial activation of caspases caused by nocodazole. In summary, our results point to a potential role of Triap1 upregulation in the emergence of resistance to drugs that induce prolonged mitotic arrest.
Collapse
Affiliation(s)
- Mattia Pavani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Elena Chiroli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Camilla Cancrini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Fridolin Gross
- ImmunoConcEpT, CNRS UMR5164, Université de Bordeaux, 33076 Bordeaux, France
| | - Paolo Bonaiuti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Stefano Villa
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, 20090 Segrate, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, 20090 Segrate, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Tiziana Lischetti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Andrea Ciliberto
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy; Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, 1083 Budapest, Hungary.
| |
Collapse
|
24
|
He Y, Le X, Hu G, Li Q, Chen Z. Discovery of Ureido-Based Apcin Analogues as Cdc20-specific Inhibitors against Cancer. Pharmaceuticals (Basel) 2023; 16:304. [PMID: 37259447 PMCID: PMC9964651 DOI: 10.3390/ph16020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 09/14/2024] Open
Abstract
Cdc20 is a promising drug target that plays an important role in the mid-anaphase process of cellular mitosis, and Apcin is the only reported core structure of the Cdc20-specific inhibitor. Some potent Apcin derivatives were obtained in our previous research, and a structure-activity relationship was determined. In this study, we designed and synthesized a series of ureido-based Apcin derivatives. The proliferation-inhibition experiments on four cancer-cell lines showed that ureido skeleton could promote the anti-proliferation activity of purine-substituted compounds, whereas the ureido analogues with pyrimidine substitutes showed no significant improvement in the inhibitory effect compared with the original ones. Further tests confirmed that ureido-based compounds can enhance the binding affinity to Cdc20 by increasing the levels of Cdc20 downstream proteins. Compound 27 revealed a remarkably antitumor activity pattern against Hela (IC50 = 0.06 ± 0.02 μM) and potent binding affinity to Cdc20. Moreover, compound 20 induced caspase-dependent apoptosis and cell-cycle arrest at the G2/M phase, and compound 27 induced caspase-dependent apoptosis and promoted microtubule polymerization. Finally, a molecular-docking simulation was performed for compounds 20 and 27 to predict the potential ligand-protein interactions with the active sites of the Cdc20 proteins.
Collapse
Affiliation(s)
- Yiqin He
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, China
| |
Collapse
|
25
|
Phosphorylation of VP1 Mediated by CDK1-Cyclin B1 Facilitates Infectious Bursal Disease Virus Replication. J Virol 2023; 97:e0194122. [PMID: 36602364 PMCID: PMC9888224 DOI: 10.1128/jvi.01941-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus belonging to the genus Avibirnavirus in the family Birnaviridae. It can cause serious failure of vaccination in young poultry birds with impaired immune systems. Post-translational modifications of the VP1 protein are essential for viral RNA transcription, genome replication, and viral multiplication. Little information is available so far regarding the exact mechanism of phosphorylation of IBDV VP1 and its significance in the viral life cycle. Here, we provide several lines of evidence that the cyclin-dependent kinase 1 (CDK1)-cyclin B1 complex phosphorylates VP1, which facilitates viral replication. We show that the CDK1-cyclin B1 specifically interacts with VP1 and phosphorylates VP1 on the serine 7 residue, located in the N-terminal 7SPAQ10 region, which follows the optimal phosphorylation motif of CDK1, p-S/T-P. Additionally, IBDV infection drives the cytoplasmic accumulation of CDK1-cyclin B1, which co-localizes with VP1, supporting the kinase activity of CDK1-cyclin B1. Treatment with CDK1 inhibitor RO3306 and knockdown of CDK1-cyclin B1 severely disrupts the polymerase activity of VP1, resulting in diminished viral replication. Moreover, the replication of S7A mutant recombinant IBDV was significantly decreased compared to that of wild-type (WT) IBDV. Thus, CDK1-cyclin B1 is a crucial enzyme which phosphorylates IBDV VP1 on serine 7, which is necessary both for the polymerase activity of VP1 and for viral replication. IMPORTANCE Infectious bursal disease virus still poses a great economic threat to the global poultry farming industry. Detailed information on the steps of viral genome replication is essential for the development of antiviral therapeutics. Phosphorylation is a common post-translational modification in several viral proteins. There is a lack of information regarding the significance of VP1 phosphorylation and its role in modulating the viral life cycle. In this study, we found that CDK1-cyclin B1 accumulates in the cytoplasm and phosphorylates VP1 on serine 7. The presence of a CDK1 inhibitor and the silencing of CDK1-cyclin B1 decrease IBDV replication. The mutation of VP1 serine 7 to alanine reduces VP1 polymerase activity, disrupting the viral life cycle, which suggests that this residue serves an essential function. Our study offers novel insights into the regulatory mechanism of VP1 phosphorylation.
Collapse
|
26
|
He W, Meng J. CDC20: a novel therapeutic target in cancer. Am J Transl Res 2023; 15:678-693. [PMID: 36915766 PMCID: PMC10006751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/27/2022] [Indexed: 03/16/2023]
Abstract
Cell division cycle protein 20 (Cdc20) is a member of the cell cyclin family. In the early stage of mitosis, it activates the anaphase-promoting complex (APC) and forms the E3 ubiquitin ligase complex APCCdc20, which destroys key regulators of the cell cycle and promotes mitosis. Cdc20 serves as a target for the spindle checkpoint, ensuring proper chromosome segregation. As an oncoprotein, Cdc20 is highly expressed in a variety of malignant tumors, and Cdc20 overexpression is associated with poor prognosis of these tumors. This review aims to dissect the tumorigenic role of Cdc20 in human malignancies and its targeting strategies.
Collapse
Affiliation(s)
- Wenning He
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| | - Jun Meng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| |
Collapse
|
27
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Ni K, Hong L. Current Progress and Perspectives of CDC20 in Female Reproductive Cancers. Curr Mol Med 2023; 23:193-199. [PMID: 35319365 DOI: 10.2174/1573405618666220321130102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
The cancers of the cervix, endometrium, ovary, and breast are great threats to women's health. Cancer is characterized by the uncontrolled proliferation of cells and deregulated cell cycle progression is one of the main causes of malignancy. Agents targeting cell cycle regulators may have potential anti-tumor effects. CDC20 (cell division cycle 20 homologue) is a co-activator of the anaphase-promoting complex/cyclosome (APC/C) and thus acts as a mitotic regulator. In addition, CDC20 serves as a subunit of the mitotic checkpoint complex (MCC) whose function is to inhibit APC/C. Recently, higher expression of CDC20 has been reported in these cancers and was closely associated with their clinicopathological parameters, indicating CDC20 a potential target for cancer treatment that is worth further study. In the present review, we summarized current progress and put forward perspectives of CDC20 in female reproductive cancers.
Collapse
Affiliation(s)
- Ke Ni
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
29
|
Weiss JG, Gallob F, Rieder P, Villunger A. Apoptosis as a Barrier against CIN and Aneuploidy. Cancers (Basel) 2022; 15:cancers15010030. [PMID: 36612027 PMCID: PMC9817872 DOI: 10.3390/cancers15010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68-90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy response and frequently worsens prognosis. Chromosomal instability (CIN) is recognized as the main cause of aneuploidy. CIN itself is a dynamic but stochastic process consisting of different DNA content-altering events. These can include impaired replication fidelity and insufficient clearance of DNA damage as well as chromosomal mis-segregation, micronuclei formation, chromothripsis or cytokinesis failure. All these events can disembogue in segmental, structural and numerical chromosome alterations. While low levels of CIN can foster malignant disease, high levels frequently trigger cell death, which supports the "aneuploidy paradox" that refers to the intrinsically negative impact of a highly aberrant karyotype on cellular fitness. Here, we review how the cellular response to CIN and aneuploidy can drive the clearance of karyotypically unstable cells through the induction of apoptosis. Furthermore, we discuss the different modes of p53 activation triggered in response to mitotic perturbations that can potentially trigger CIN and/or aneuploidy.
Collapse
Affiliation(s)
- Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Filip Gallob
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patricia Rieder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43–512-9003-70380; Fax: +43–512-9003-73960
| |
Collapse
|
30
|
Tian X, Xu WH, Xu FJ, Li H, Anwaier A, Wang HK, Wan FN, Zhu Y, Cao DL, Zhu YP, Shi GH, Qu YY, Zhang HL, Ye DW. Identification of prognostic biomarkers in papillary renal cell carcinoma and PTTG1 may serve as a biomarker for predicting immunotherapy response. Ann Med 2022; 54:211-226. [PMID: 35037540 PMCID: PMC8765283 DOI: 10.1080/07853890.2021.2011956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE This study aims to identify potential prognostic and therapeutic biomarkers in papillary renal cell carcinoma (pRCC). METHODS Two microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were identified. The protein-protein interaction (PPI) networks and functional annotations of DEGs were established. Survival analysis was utilized to evaluate the prognostic significance of the DEGs and the association between the expression level of candidate biomarkers and various tumour-infiltrating immune cells was explored. The role of PTTG1 in tumour microenvironments (TME) was further explored using Single-cell RNA-seq and its prognostic and therapeutic significance was validated in Fudan University Shanghai Cancer Centre (FUSCC) cohort. RESULTS Eight genes, including BUB1B, CCNB1, CCNB2, MAD2L1, TTK, CDC20, PTTG1, and MCM were found to be negatively associated with patients' prognosis. The expression level of PTTG1 was found to be significantly associated with lymphocytes, immunomodulators, and chemokine in the TCGA cohort. Single-cell RNA-seq information indicated that PTTG1 was strongly associated with the proliferation of T cells. In the FUSCC cohort, the expression level of PTTG1 was also statistically significant for both progression-free survival (PFS) and overall survival (OS) prediction (HR = 2.683, p < .001; HR = 2.673, p = .001). And higher expression level of PTTG1 was significantly associated with immune checkpoint blockade (ICB) response in the FUSCC cohort (χ2=3.99, p < .05). CONCLUSIONS Eight genes were identified as a prognostic biomarker and the expression level of PTTG1 was also found to serve as a potential predictor for ICB response in pRCC patients.Key messages:Eight genes, including BUB1B, CCNB1, CCNB2, MAD2L1, TTK, CDC20, PTTG1, and MCM were found to be negatively associated with pRCC patients' prognosis.Expression level of PTTG1 was significantly associated with tumour microenvironment including lymphocytes, immunomodulators, and chemokines.Higher expression level of PTTG1 was significantly associated with immune checkpoint blockade (ICB) response in FUSCC cohort.
Collapse
Affiliation(s)
- Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fu-Jiang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Hui Li
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai, P.R. China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hong-Kai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fang-Ning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yu- Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yi-Ping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
31
|
Zhang Y, Xie Y, Huang X, Zhang L, Shu K. Screening of Hub Genes in Hepatocellular Carcinoma Based on Network Analysis and Machine Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7300788. [PMID: 36479313 PMCID: PMC9722289 DOI: 10.1155/2022/7300788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (LIHC) is the fifth common cancer worldwide, and it requires effective diagnosis and treatment to prevent aggressive metastasis. The purpose of this study was to construct a machine learning-based diagnostic model for the diagnosis of liver cancer. Using weighted correlation network analysis (WGCNA), univariate analysis, and Lasso-Cox regression analysis, protein-protein interactions network analysis is used to construct gene networks from transcriptome data of hepatocellular carcinoma patients and find hub genes for machine learning. The five models, including gradient boosting, random forest, support vector machine, logistic regression, and integrated learning, were to identify a multigene prediction model of patients. Immunological assessment, TP53 gene mutation and promoter methylation level analysis, and KEGG pathway analysis were performed on these groups. Potential drug molecular targets for the corresponding hepatocellular carcinomas were obtained by molecular docking for analysis, resulting in the screening of 2 modules that may be relevant to the survival of hepatocellular carcinoma patients, and the construction of 5 diagnostic models and multiple interaction networks. The modes of action of drug-molecule interactions that may be effective against hepatocellular carcinoma core genes CCNA2, CCNB1, and CDK1 were investigated. This study is expected to provide research ideas for early diagnosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu Zhang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| | - Yongfang Xie
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| | - Xiaorong Huang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| | - Langlang Zhang
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| | - Kunxian Shu
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400000, China
| |
Collapse
|
32
|
Xian F, Yang X, Xu G. Prognostic significance of CDC20 expression in malignancy patients: A meta-analysis. Front Oncol 2022; 12:1017864. [PMID: 36479068 PMCID: PMC9720739 DOI: 10.3389/fonc.2022.1017864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Cell Division Cycle Protein 20(CDC20) is reported to promote cancer initiation, progression and drug resistance in many preclinical models and is demonstrated in human cancer tissues. However, the correlation between CDC20 and cancer patients' prognosis has not yet been systematically evaluated. Therefore, this present meta-analysis was performed to determine the prognostic value of CDC20 expression in various malignancy tumors. METHODS A thorough database search was performed in EMBASE, PubMed, Cochrane Library and Web of Science from inception to May 2022. Stata14.0 Software was used for the statistical analysis. The pooled hazard ratios(HRs) and their 95% confidence intervals (95% CIs) were used to analysis of overall survival (OS), recurrence-free survival (RFS), distant-metastasis free survival (DMFS). Qualities of the included literature were assessed by JBI Critical appraisal checklist. Egger's test was used to assess publication bias in the included studies. RESULTS Ten articles were selected, and 2342 cancer patients were enrolled. The cancer types include breast, colorectal, lung, gastric, oral, prostate, urothelial bladder cancer, and hepatocellular carcinoma. The result showed strong significant associations between high expression of CDC20 and endpoints: OS (HR 2.52, 95%CI 2.13-2.99; HR 2.05, 95% CI 1.50-2.82, respectively) in the multivariate analysis and in the univariate analysis. Also, high expression of CDC20 was significantly connected with poor RFS (HR 2.08, 95%CI 1.46-2.98) and poor DMFS (HR 4.49, 95%CI 1.57-12.85). The subgroup analysis was also performed, which revealed that CDC20 upregulated expression was related to poor OS in non-small cell lung cancer (HR 2.40, 95% CI 1.91-3.02). CONCLUSIONS This meta-analysis demonstrated that highly expressing CDC20 was associated with poor survival in human malignancy tumors. CDC20 may be a valuable prognostic predictive biomarker and a potential therapeutic target in various cancer parents.
Collapse
Affiliation(s)
- Feng Xian
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Xuegang Yang
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guohui Xu
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
33
|
BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia. Cell Death Dis 2022; 13:966. [PMID: 36396625 PMCID: PMC9672126 DOI: 10.1038/s41419-022-05418-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Mitophagy is an important metabolic mechanism that modulates mitochondrial quality and quantity by selectively removing damaged or unwanted mitochondria. BNIP3 (BCL2/adenovirus e1B 19 kDa protein interacting protein 3), a mitochondrial outer membrane protein, is a mitophagy receptor that mediates mitophagy under various stresses, particularly hypoxia, since BNIP3 is a hypoxia-responsive protein. However, the underlying mechanisms that regulate BNIP3 and thus mediate mitophagy under hypoxic conditions remain elusive. Here, we demonstrate that in hypoxia JNK1/2 (c-Jun N-terminal kinase 1/2) phosphorylates BNIP3 at Ser 60/Thr 66, which hampers proteasomal degradation of BNIP3 and drives mitophagy by facilitating the direct binding of BNIP3 to LC3 (microtubule-associated protein 1 light chain 3), while PP1/2A (protein phosphatase 1/2A) represses mitophagy by dephosphorylating BNIP3 and triggering its proteasomal degradation. These findings reveal the intrinsic mechanisms cells use to regulate mitophagy via the JNK1/2-BNIP3 pathway in response to hypoxia. Thus, the JNK1/2-BNIP3 signaling pathway strongly links mitophagy to hypoxia and may be a promising therapeutic target for hypoxia-related diseases.
Collapse
|
34
|
Hänle-Kreidler S, Richter KT, Hoffmann I. The SCF-FBXW7 E3 ubiquitin ligase triggers degradation of histone 3 lysine 4 methyltransferase complex component WDR5 to prevent mitotic slippage. J Biol Chem 2022; 298:102703. [PMID: 36395886 PMCID: PMC9764181 DOI: 10.1016/j.jbc.2022.102703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
During prolonged mitotic arrest induced by antimicrotubule drugs, cell fate decision is determined by two alternative pathways, one leading to cell death and the other inducing premature escape from mitosis by mitotic slippage. FBWX7, a member of the F-box family of proteins and substrate-targeting subunit of the SKP1-CUL1-F-Box E3 ubiquitin ligase complex, promotes mitotic cell death and prevents mitotic slippage, but molecular details underlying these roles for FBWX7 are unclear. In this study, we report that WDR5 (WD-repeat containing protein 5), a component of the mixed lineage leukemia complex of histone 3 lysine 4 methyltransferases, is a substrate of FBXW7. We determined by coimmunoprecipitation experiments and in vitro binding assays that WDR5 interacts with FBXW7 in vivo and in vitro. SKP1-CUL1-F-Box-FBXW7 mediates ubiquitination of WDR5 and targets it for proteasomal degradation. Furthermore, we find that WDR5 depletion counteracts FBXW7 loss of function by reducing mitotic slippage and polyploidization. In conclusion, our data elucidate a new mechanism in mitotic cell fate regulation, which might contribute to prevent chemotherapy resistance in patients after antimicrotubule drug treatment.
Collapse
Affiliation(s)
- Simon Hänle-Kreidler
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Heidelberg, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kai T. Richter
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Heidelberg, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Heidelberg, Germany,For correspondence: Ingrid Hoffmann
| |
Collapse
|
35
|
Deritei D, Kunšič N, Csermely P. Probabilistic edge weights fine-tune Boolean network dynamics. PLoS Comput Biol 2022; 18:e1010536. [PMID: 36215324 PMCID: PMC9584532 DOI: 10.1371/journal.pcbi.1010536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/20/2022] [Accepted: 09/02/2022] [Indexed: 11/04/2022] Open
Abstract
Biological systems are noisy by nature. This aspect is reflected in our experimental measurements and should be reflected in the models we build to better understand these systems. Noise can be especially consequential when trying to interpret specific regulatory interactions, i.e. regulatory network edges. In this paper, we propose a method to explicitly encode edge-noise in Boolean dynamical systems by probabilistic edge-weight (PEW) operators. PEW operators have two important features: first, they introduce a form of edge-weight into Boolean models through the noise, second, the noise is dependent on the dynamical state of the system, which enables more biologically meaningful modeling choices. Moreover, we offer a simple-to-use implementation in the already well-established BooleanNet framework. In two application cases, we show how the introduction of just a few PEW operators in Boolean models can fine-tune the emergent dynamics and increase the accuracy of qualitative predictions. This includes fine-tuning interactions which cause non-biological behaviors when switching between asynchronous and synchronous update schemes in dynamical simulations. Moreover, PEW operators also open the way to encode more exotic cellular dynamics, such as cellular learning, and to implementing edge-weights for regulatory networks inferred from omics data.
Collapse
Affiliation(s)
- Dávid Deritei
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States of America
- * E-mail:
| | - Nina Kunšič
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Péter Csermely
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
Sancho M, Leiva D, Lucendo E, Orzáez M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. FEBS J 2022; 289:6209-6234. [PMID: 34310025 PMCID: PMC9787394 DOI: 10.1111/febs.16136] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Myeloid cell leukemia-1 (MCL1), an antiapoptotic member of the BCL2 family characterized by a short half-life, functions as a rapid sensor that regulates cell death and other relevant processes that include cell cycle progression and mitochondrial homeostasis. In cancer, MCL1 overexpression contributes to cell survival and resistance to diverse chemotherapeutic agents; for this reason, several MCL1 inhibitors are currently under preclinical and clinical development for cancer treatment. However, the nonapoptotic functions of MCL1 may influence their therapeutic potential. Overall, the complexity of MCL1 regulation and function represent challenges to the clinical application of MCL1 inhibitors. We now summarize the current knowledge regarding MCL1 structure, regulation, and function that could impact the clinical success of MCL1 inhibitors.
Collapse
Affiliation(s)
- Mónica Sancho
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Diego Leiva
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Estefanía Lucendo
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Mar Orzáez
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
37
|
Suleimenov M, Bekbayev S, Ten M, Suleimenova N, Tlegenova M, Nurmagambetova A, Kauanova S, Vorobjev I. Bcl-xL activity influences outcome of the mitotic arrest. Front Pharmacol 2022; 13:933112. [PMID: 36188556 PMCID: PMC9520339 DOI: 10.3389/fphar.2022.933112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubule-targeting (MT) drugs taxanes and vinca alkaloids are widely used as chemotherapeutic agents against different tumors for more than 30 years because of their ability to block mitotic progression by disrupting the mitotic spindle and activating the spindle assembly checkpoint (SAC) for a prolonged period of time. However, responses to mitotic arrest are different—some cells die during mitotic arrest, whereas others undergo mitotic slippage and survive becoming able for proliferation. Using normal fibroblasts and several cancer cell types we determined two critical doses, T1 and T2, of mitotic inhibitors (nocodazole, Taxol, and vinorelbine). T1 is the maximal dose cells can tolerate undergoing normal division, and T2 is the minimal mitostatic dose, wherein > 90% of mitotic cells are arrested in mitosis. In all studied cell lines after treatment with mitotic inhibitors in a dose above T2 cells had entered mitosis either die or undergo mitotic slippage. We show that for all three drugs used cell death during mitotic arrest and after slippage proceeded via mitochondria-dependent apoptosis. We determined two types of cancer cells: sensitive to mitotic arrest, that is, undergoing death in mitosis (DiM) frequently, and resistant to mitotic arrest, that is, undergoing mitotic slippage followed by prolonged survival. We then determined that inhibition of Bcl-xL, but not other anti-apoptotic proteins of the Bcl-2 group that regulate MOMP, make resistant cells susceptible to DiM induced by mitotic inhibitors. Combined treatment with MT drugs and highly specific Bcl-xL inhibitors A-1155643 or A-1331852 allows achieving 100% DiM in a time significantly shorter than maximal duration of mitotic arrest in all types of cultured cells tested. We further examined efficacy of sequential treatment of cultured cells using mitotic inhibitors followed by inhibitors of Bcl-xL anti-apoptotic protein and for the first time show that sensitivity to Bcl-xL inhibitors rapidly declines after mitotic slippage. Thus sequential use of mitotic inhibitors and inhibitors of Bcl-xL anti-apoptotic protein will be efficient only if the Bcl-xL inhibitor will be added before mitotic slippage occurs or soon afterward. The combined treatment proposed might be an efficient approach to anti-cancer therapy.
Collapse
Affiliation(s)
- M. Suleimenov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - S. Bekbayev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - M. Ten
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - N. Suleimenova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - M. Tlegenova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - A. Nurmagambetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- School of Engineering and Digital Science, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - S. Kauanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - I. Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: I. Vorobjev,
| |
Collapse
|
38
|
Liu W, Lu Y, Yan X, Lu Q, Sun Y, Wan X, Li Y, Zhao J, Li Y, Jiang G. Current understanding on the role of CCT3 in cancer research. Front Oncol 2022; 12:961733. [PMID: 36185198 PMCID: PMC9520704 DOI: 10.3389/fonc.2022.961733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chaperonin containing TCP1 Subunit 3 (CCT3) is an important member of the chaperone protein family, providing a favorable environment for the correct folding of proteins in cell division, proliferation, and apoptosis pathways, which is involved in a variety of biological processes as well as the development and invasion of many malignant tumors. Many malignancies have been extensively examined with CCT3. It is presently used as a possible target for the treatment of many malignancies since it is not only a novel biomarker for the screening and diagnosis of different tumors, but it is also closely associated with tumor progression, prognosis, and survival. Recent studies have shown that the expression of CCT3 is up-regulated in some tumors, such as liver cancer, breast cancer, colon cancer, acute myeloid leukemia, etc. In this paper, we review the role of CCT3 in various tumors.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Yan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Quansheng Lu
- Department of Dermatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, China
| | - Yujin Sun
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Wan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yizhi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaqin Zhao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuchen Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
39
|
Kim G, Jang SK, Kim YJ, Jin HO, Bae S, Hong J, Park IC, Lee JH. Inhibition of Glutamine Uptake Resensitizes Paclitaxel Resistance in SKOV3-TR Ovarian Cancer Cell via mTORC1/S6K Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158761. [PMID: 35955892 PMCID: PMC9369036 DOI: 10.3390/ijms23158761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is a carcinoma that affects women and that has a high mortality rate. Overcoming paclitaxel resistance is important for clinical application. However, the effect of amino acid metabolism regulation on paclitaxel-resistant ovarian cancer is still unknown. In this study, the effect of an amino acid-deprived condition on paclitaxel resistance in paclitaxel-resistant SKOV3-TR cells was analyzed. We analyzed the cell viability of SKOV3-TR in culture conditions in which each of the 20 amino acids were deprived. As a result, the cell viability of the SKOV3-TR was significantly reduced in cultures deprived of arginine, glutamine, and lysine. Furthermore, we showed that the glutamine-deprived condition inhibited mTORC1/S6K signaling. The decreased cell viability and mTORC1/S6K signaling under glutamine-deprived conditions could be restored by glutamine and α-KG supplementation. Treatment with PF-4708671, a selective S6K inhibitor, and the selective glutamine transporter ASCT2 inhibitor V-9302 downregulated mTOR/S6K signaling and resensitized SKOV3-TR to paclitaxel. Immunoblotting showed the upregulation of Bcl-2 phosphorylation and a decrease in Mcl-1 expression in SKOV3-TR via the cotreatment of paclitaxel with PF-4708671 and V-9302. Collectively, this study demonstrates that the inhibition of glutamine uptake can resensitize SKOV3-TR to paclitaxel and represents a promising therapeutic target for overcoming paclitaxel resistance in ovarian cancer.
Collapse
Affiliation(s)
- Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Food and Microbial Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul 01797, Korea
| | - Yu Jin Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Department of Biological Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Jungil Hong
- Department of Food and Microbial Technology, Seoul Women’s University, 621 Hwarangro, Nowon-gu, Seoul 01797, Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea
- Correspondence: (I.-C.P.); (J.H.L.)
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: (I.-C.P.); (J.H.L.)
| |
Collapse
|
40
|
Cheng Y, Du Y, Zhang X, Zhang P, Liu Y. Conditional knockout of Cdc20 attenuates osteogenesis in craniofacial bones. Tissue Cell 2022; 77:101829. [DOI: 10.1016/j.tice.2022.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
41
|
The Prognostic Assessment of CDC20 in Patients with Renal Clear Cell Carcinoma and Its Relationship with Body Immunity. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7727539. [PMID: 35800227 PMCID: PMC9200543 DOI: 10.1155/2022/7727539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
This article analyzes the relationship between cell division cycle (CDC20) molecules and oncology outcomes in patients with renal clear cell carcinoma (KIRC). CDC20 appears to act as a regulatory protein interacting with many other proteins at multiple points in the cycle. The RNA sequencing data and corresponding clinical information of CDC20 molecules were obtained from The Cancer Genome Atlas (TCGA) database. The expression of CDC20 in kidney renal clear cell carcinoma tissue and adjacent normal tissue was detected by immunohistochemical methods. Logistic analysis was performed to analyze the role of CDC20 in the clinicopathological characteristics and prognosis of KIRC. Gene Set Enrichment Analysis (GSEA) was used to identify the signal pathways which were related to CDC20. Independent prognostic factors were evaluated using univariate and multivariate Cox regression analysis. A nomogram involved in CDC20 expression and clinicopathological variables was conducted to predict overall survival (OS) in KIRC patients at 1, 3, and 5 years. Furthermore, the relation between CDC20 and immunity was also studied. Our results showed that CDC20 was upregulated in kidney renal clear cell carcinoma tissues, accompanying shorter OS (all P < 0.05). According to the results obtained by immunohistochemistry and TCGA database, CDC20 was significantly upregulated in kidney renal clear cell carcinoma tissues compared with neighboring normal kidney tissues. Univariate and multivariate Cox regression analysis showed that high expression of CDC20 was an independent prognostic factor of poor prognosis in kidney renal clear cell carcinoma patients (all P < 0.05). GSEA analysis suggested that the high expression of CDC20 was related to eight multiple signaling pathways. In addition, CDC20 was linked to tumour mutation burden (TMB), immune checkpoint molecules, tumour microenvironment, and immunological infiltration.
Collapse
|
42
|
Winder ML, Campbell KJ. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022; 21:1439-1455. [PMID: 35349392 PMCID: PMC9278428 DOI: 10.1080/15384101.2022.2054096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).
Collapse
Affiliation(s)
- Matthew L Winder
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| |
Collapse
|
43
|
Greil C, Engelhardt M, Wäsch R. The Role of the APC/C and Its Coactivators Cdh1 and Cdc20 in Cancer Development and Therapy. Front Genet 2022; 13:941565. [PMID: 35832196 PMCID: PMC9273091 DOI: 10.3389/fgene.2022.941565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
To sustain genomic stability by correct DNA replication and mitosis, cell cycle progression is tightly controlled by the cyclic activity of cyclin-dependent kinases, their binding to cyclins in the respective phase and the regulation of cyclin levels by ubiquitin-dependent proteolysis. The spindle assembly checkpoint plays an important role at the metaphase-anaphase transition to ensure a correct separation of sister chromatids before cytokinesis and to initiate mitotic exit, as an incorrect chromosome distribution may lead to genetically unstable cells and tumorigenesis. The ubiquitin ligase anaphase-promoting complex or cyclosome (APC/C) is essential for these processes by mediating the proteasomal destruction of cyclins and other important cell cycle regulators. To this end, it interacts with the two regulatory subunits Cdh1 and Cdc20. Both play a role in tumorigenesis with Cdh1 being a tumor suppressor and Cdc20 an oncogene. In this review, we summarize the current knowledge about the APC/C-regulators Cdh1 and Cdc20 in tumorigenesis and potential targeted therapeutic approaches.
Collapse
|
44
|
Sulkshane P, Teni T. Myeloid cell leukemia-1: a formidable barrier to anticancer therapeutics and the quest of targeting it. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:278-296. [PMID: 36045907 PMCID: PMC9400788 DOI: 10.37349/etat.2022.00083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Glickman Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
45
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
46
|
Rezaeian AH, Wei W, Inuzuka H. The regulation of neuronal autophagy and cell survival by MCL1 in Alzheimer's disease. ACTA MATERIA MEDICA 2022; 1:42-55. [PMID: 35233562 DOI: 10.15212/amm-2021-0002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining neuronal integrity and functions requires precise mechanisms controlling organelle and protein quality. Alzheimer's disease (AD) is characterized by functional defects in the clearance and recycling of intracellular components. As such, neuronal homeostasis involves autophagy, mitophagy, and apoptosis. Compromised activity in these cellular processes may cause pathological phenotypes of AD. Dysfunction of mitochondria is one of the hallmarks of AD. Mitophagy is a critical mitochondria quality control system, and the impaired mitophagy is observed in AD. Myeloid cell leukemia 1 (MCL1), a member of the pro-survival B-cell lymphoma protein 2 (BCL2) family, is a mitochondria-targeted protein that contributes to maintaining mitochondrial integrity. Mcl1 knockout mice display peri-implantation lethality. The studies on conditional Mcl1 knockout mice demonstrate that MCL1 plays a central role in neurogenesis and neuronal survival during brain development. Accumulating evidence reveals the critical role of MCL1 as a regulator of neuronal autophagy, mitophagy, and survival. In this review, we discuss the emerging neuroprotective function of MCL1 and how dysregulation of MCL1 signaling is involved in the pathogenesis of AD. As the pro-survival BCL2 family of proteins are promising targets of pharmacological intervention with BH3 mimetic drugs, we also discuss the promise of MCL1-targeting therapy in AD.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Skp2 stabilizes Mcl-1 and confers radioresistance in colorectal cancer. Cell Death Dis 2022; 13:249. [PMID: 35301297 PMCID: PMC8930992 DOI: 10.1038/s41419-022-04685-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022]
Abstract
AbstractOverexpression of Skp2 plays a critical role in tumorigenesis and correlates with poor prognosis in human malignancies. Thus, Skp2 has been proposed as an attractive target for anti-tumor interventions. The expression of Skp2 in human colorectal cancer (CRC) and the role of Skp2 in tumorigenic properties and irradiation sensitivities of CRC cells were examined by anchorage-dependent and -independent growth assays, immunoblot, flow cytometry, immunohistochemical staining, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiments. Skp2 is highly expressed in CRC patient tissues. Blocking Skp2 expression reduces the tumorigenic properties of CRC cells in vitro and in vivo. Depletion of Skp2 confers sensitivity to irradiation of CRC cells. Skp2 deficiency enhances irradiation-induced intrinsic apoptosis by facilitating E3 ligase FBW7-mediated Mcl-1 ubiquitination and degradation. Knockout of Skp2 sensitizes CRC cells to irradiation treatments in vivo. Our findings indicate that Skp2 stabilizes Mcl-1, and targeting Skp2 in combination with traditional radiotherapy might be efficacious in treating CRC.
Collapse
|
48
|
Feng J, Liu P, Li X, Zhang D, Lin H, Hou Z, Guo C, Niu Y, Dai B, Wang O, Qi M, Wang H, Zhou H. The deubiquitinating enzyme USP20 regulates the stability of the MCL1 protein. Biochem Biophys Res Commun 2022; 593:122-128. [DOI: 10.1016/j.bbrc.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
|
49
|
Pollak N, Lindner A, Imig D, Kuritz K, Fritze JS, Decker L, Heinrich I, Stadager J, Eisler S, Stöhr D, Allgöwer F, Scheurich P, Rehm M. Cell cycle progression and transmitotic apoptosis resistance promote escape from extrinsic apoptosis. J Cell Sci 2021; 134:273757. [PMID: 34806752 DOI: 10.1242/jcs.258966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Extrinsic apoptosis relies on TNF-family receptor activation by immune cells or receptor-activating drugs. Here, we monitored cell cycle progression at a resolution of minutes to relate apoptosis kinetics and cell-to-cell heterogeneities in death decisions to cell cycle phases. Interestingly, we found that cells in S phase delay TRAIL receptor-induced death in favour of mitosis, thereby passing on an apoptosis-primed state to their offspring. This translates into two distinct fates, apoptosis execution post mitosis or cell survival from inefficient apoptosis. Transmitotic resistance is linked to Mcl-1 upregulation and its increased accumulation at mitochondria from mid-S phase onwards, which allows cells to pass through mitosis with activated caspase-8, and with cells escaping apoptosis after mitosis sustaining sublethal DNA damage. Antagonizing Mcl-1 suppresses cell cycle-dependent delays in apoptosis, prevents apoptosis-resistant progression through mitosis and averts unwanted survival after apoptosis induction. Cell cycle progression therefore modulates signal transduction during extrinsic apoptosis, with Mcl-1 governing decision making between death, proliferation and survival. Cell cycle progression thus is a crucial process from which cell-to-cell heterogeneities in fates and treatment outcomes emerge in isogenic cell populations during extrinsic apoptosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine Pollak
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany
| | - Aline Lindner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Dirke Imig
- Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Karsten Kuritz
- Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Jacques S Fritze
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lorena Decker
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Isabel Heinrich
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Jannis Stadager
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stephan Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany
| | - Daniela Stöhr
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Frank Allgöwer
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany.,Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Peter Scheurich
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany
| |
Collapse
|
50
|
Roberts JZ, Crawford N, Longley DB. The role of Ubiquitination in Apoptosis and Necroptosis. Cell Death Differ 2021; 29:272-284. [PMID: 34912054 PMCID: PMC8817035 DOI: 10.1038/s41418-021-00922-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Cell death pathways have evolved to maintain tissue homoeostasis and eliminate potentially harmful cells from within an organism, such as cells with damaged DNA that could lead to cancer. Apoptosis, known to eliminate cells in a predominantly non-inflammatory manner, is controlled by two main branches, the intrinsic and extrinsic apoptotic pathways. While the intrinsic pathway is regulated by the Bcl-2 family members, the extrinsic pathway is controlled by the Death receptors, members of the tumour necrosis factor (TNF) receptor superfamily. Death receptors can also activate a pro-inflammatory type of cell death, necroptosis, when Caspase-8 is inhibited. Apoptotic pathways are known to be tightly regulated by post-translational modifications, especially by ubiquitination. This review discusses research on ubiquitination-mediated regulation of apoptotic signalling. Additionally, the emerging importance of ubiquitination in regulating necroptosis is discussed.
Collapse
Affiliation(s)
- Jamie Z Roberts
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | - Nyree Crawford
- Almac Discovery Laboratories, Health Sciences Building, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|