1
|
Filipek K, Blanchet S, Molestak E, Zaciura M, Wu CCC, Horbowicz-Drożdżal P, Grela P, Zalewski M, Kmiecik S, González-Ibarra A, Krokowski D, Latoch P, Starosta AL, Mołoń M, Shao Y, Borkiewicz L, Michalec-Wawiórka B, Wawiórka L, Kubiński K, Socała K, Wlaź P, Cunningham KW, Green R, Rodnina MV, Tchórzewski M. Phosphorylation of P-stalk proteins defines the ribosomal state for interaction with auxiliary protein factors. EMBO Rep 2024; 25:5478-5506. [PMID: 39468350 PMCID: PMC11624264 DOI: 10.1038/s44319-024-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Ribosomal action is facilitated by the orchestrated work of trans-acting factors and ribosomal elements, which are subject to regulatory events, often involving phosphorylation. One such element is the ribosomal P-stalk, which plays a dual function: it activates translational GTPases, which support basic ribosomal functions, and interacts with the Gcn2 kinase, linking the ribosomes to the ISR pathway. We show that P-stalk proteins, which form a pentamer, exist in the cell exclusively in a phosphorylated state at five C-terminal domains (CTDs), ensuring optimal translation (speed and accuracy) and may play a role in the timely regulation of the Gcn2-dependent stress response. Phosphorylation of the CTD induces a structural transition from a collapsed to a coil-like structure, and the CTD gains conformational freedom, allowing specific but transient binding to various protein partners, optimizing the ribosome action. The report reveals a unique feature of the P-stalk proteins, indicating that, unlike most ribosomal proteins, which are regulated by phosphorylation in an on/off manner, the P-stalk proteins exist in a constantly phosphorylated state, which optimizes their interaction with auxiliary factors.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Monika Zaciura
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Section of Translational Control of Gene Expression, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Patrycja Horbowicz-Drożdżal
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Grela
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mateusz Zalewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Alan González-Ibarra
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszow, Rzeszow, Poland
| | - Yutian Shao
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Lidia Borkiewicz
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
2
|
Mudryi V, Frister J, Peng BZ, Wohlgemuth I, Peske F, Rodnina M. Kinetic mechanism and determinants of EF-P recruitment to translating ribosomes. Nucleic Acids Res 2024; 52:11870-11883. [PMID: 39315709 PMCID: PMC11514478 DOI: 10.1093/nar/gkae815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
EF-P is a translation factor that facilitates the formation of peptide bonds between consecutive prolines. Using FRET between EF-P and ribosomal protein bL33, we studied dynamics and specificity of EF-P binding to the ribosome. Our findings reveal that EF-P rapidly scans for a free E site and can bind to any ribosome containing a P-site tRNA, regardless of the ribosome's functional state. The interaction with uL1 is essential for EF-P binding, while the β-Lys modification of EF-P doubles the association rate. Specific interactions with the D-loop of tRNAPro or tRNAfMet and via the β-Lys group with the tRNA in the peptidyl transferase center reduce the rate of EF-P dissociation from the ribosome, providing the specificity for complexes that need help in catalyzing peptide bond formation. The nature of the E-site codon has little effect on EF-P binding kinetics. Although EF-P dissociation is reduced upon recognizing its correct tRNA substrate, it remains sufficiently rapid compared to tRNA translocation and does not affect the translocation rate. These results highlight the importance of EF-P's scanning-engagement mechanism for dynamic substrate recognition during rapid translation.
Collapse
MESH Headings
- Ribosomes/metabolism
- Kinetics
- Protein Biosynthesis
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Peptide Elongation Factors/metabolism
- Peptide Elongation Factors/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- Protein Binding
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/chemistry
- Fluorescence Resonance Energy Transfer
- RNA, Transfer, Pro/metabolism
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Pro/chemistry
- Codon/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Binding Sites
Collapse
Affiliation(s)
- Vitalii Mudryi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Jan Ole Frister
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| |
Collapse
|
3
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
4
|
Moore PB. On the response of elongating ribosomes to forces opposing translocation. Biophys J 2024; 123:3010-3023. [PMID: 38845199 PMCID: PMC11427781 DOI: 10.1016/j.bpj.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The elongation phase of protein synthesis is a cyclic, steady-state process. It follows that its directionality is determined by the thermodynamics of the accompanying chemical reactions, which strongly favor elongation. Its irreversibility is guaranteed by its coupling to those reactions, rather being a consequence of any of the conformational changes that occur as it unfolds. It also follows that, in general, the rate of elongation is not proportional to the forward rate constants of any of its steps, including its final, mechano-chemical step, translocation. Instead, the reciprocal of the rate of elongation should be linearly related to the reciprocal of those rate constants. When the results of experiments done a decade ago to measure the effect that forces opposing translocation have on the rate of elongation are reinterpreted in light of these findings, it becomes clear that translocation was rate limiting under conditions in which those experiments were done, and that it is likely to be a Brownian ratchet process, as was concluded earlier.
Collapse
Affiliation(s)
- Peter B Moore
- Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
5
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
6
|
Marshall GF, Fasol M, Davies FCJ, Le Seelleur M, Fernandez Alvarez A, Bennett-Ness C, Gonzalez-Sulser A, Abbott CM. Face-valid phenotypes in a mouse model of the most common mutation in EEF1A2-related neurodevelopmental disorder. Dis Model Mech 2024; 17:dmm050501. [PMID: 38179821 PMCID: PMC10855229 DOI: 10.1242/dmm.050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
De novo heterozygous missense mutations in EEF1A2, encoding neuromuscular translation-elongation factor eEF1A2, are associated with developmental and epileptic encephalopathies. We used CRISPR/Cas9 to recapitulate the most common mutation, E122K, in mice. Although E122K heterozygotes were not observed to have convulsive seizures, they exhibited frequent electrographic seizures and EEG abnormalities, transient early motor deficits and growth defects. Both E122K homozygotes and Eef1a2-null mice developed progressive motor abnormalities, with E122K homozygotes reaching humane endpoints by P31. The null phenotype is driven by progressive spinal neurodegeneration; however, no signs of neurodegeneration were observed in E122K homozygotes. The E122K protein was relatively stable in neurons yet highly unstable in skeletal myocytes, suggesting that the E122K/E122K phenotype is instead driven by loss of function in muscle. Nevertheless, motor abnormalities emerged far earlier in E122K homozygotes than in nulls, suggesting a toxic gain of function and/or a possible dominant-negative effect. This mouse model represents the first animal model of an EEF1A2 missense mutation with face-valid phenotypes and has provided mechanistic insights needed to inform rational treatment design.
Collapse
Affiliation(s)
- Grant F. Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Melissa Fasol
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Faith C. J. Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Matthew Le Seelleur
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alejandra Fernandez Alvarez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Cavan Bennett-Ness
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M. Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
7
|
Zafar H, Hassan AH, Demo G. Translation machinery captured in motion. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1792. [PMID: 37132456 DOI: 10.1002/wrna.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Translation accuracy is one of the most critical factors for protein synthesis. It is regulated by the ribosome and its dynamic behavior, along with translation factors that direct ribosome rearrangements to make translation a uniform process. Earlier structural studies of the ribosome complex with arrested translation factors laid the foundation for an understanding of ribosome dynamics and the translation process as such. Recent technological advances in time-resolved and ensemble cryo-EM have made it possible to study translation in real time at high resolution. These methods provided a detailed view of translation in bacteria for all three phases: initiation, elongation, and termination. In this review, we focus on translation factors (in some cases GTP activation) and their ability to monitor and respond to ribosome organization to enable efficient and accurate translation. This article is categorized under: Translation > Ribosome Structure/Function Translation > Mechanisms.
Collapse
Affiliation(s)
- Hassan Zafar
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Duss O, Nikolay R, Kraushar ML. Decoding a ribosome uncertainty. Trends Genet 2023; 39:639-641. [PMID: 37380507 DOI: 10.1016/j.tig.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
The ribosome is among the most ancient macromolecular complexes. Throughout evolution, the function of the ribosome has remained essential and conserved: the decoding of an mRNA template with tRNA-linked amino acids, to synthesize a protein. In a recent study, Holm et al. capture evolutionary distinctions in the structure and kinetics of 'mRNA decoding' by the human ribosome.
Collapse
Affiliation(s)
- Olivier Duss
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Rainer Nikolay
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
9
|
Tesina P, Ebine S, Buschauer R, Thoms M, Matsuo Y, Inada T, Beckmann R. Molecular basis of eIF5A-dependent CAT tailing in eukaryotic ribosome-associated quality control. Mol Cell 2023; 83:607-621.e4. [PMID: 36804914 DOI: 10.1016/j.molcel.2023.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Ribosome-associated quality control (RQC) is a conserved process degrading potentially toxic truncated nascent peptides whose malfunction underlies neurodegeneration and proteostasis decline in aging. During RQC, dissociation of stalled ribosomes is followed by elongation of the nascent peptide with alanine and threonine residues, driven by Rqc2 independently of mRNA, the small ribosomal subunit and guanosine triphosphate (GTP)-hydrolyzing factors. The resulting CAT tails (carboxy-terminal tails) and ubiquitination by Ltn1 mark nascent peptides for proteasomal degradation. Here we present ten cryogenic electron microscopy (cryo-EM) structures, revealing the mechanistic basis of individual steps of the CAT tailing cycle covering initiation, decoding, peptidyl transfer, and tRNA translocation. We discovered eIF5A as a crucial eukaryotic RQC factor enabling peptidyl transfer. Moreover, we observed dynamic behavior of RQC factors and tRNAs allowing for processivity of the CAT tailing cycle without additional energy input. Together, these results elucidate key differences as well as common principles between CAT tailing and canonical translation.
Collapse
Affiliation(s)
- Petr Tesina
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| | - Shuhei Ebine
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Robert Buschauer
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Matthias Thoms
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
10
|
Cozma E, Rao M, Dusick M, Genereaux J, Rodriguez-Mias RA, Villén J, Brandl CJ, Berg MD. Anticodon sequence determines the impact of mistranslating tRNA Ala variants. RNA Biol 2023; 20:791-804. [PMID: 37776539 PMCID: PMC10543346 DOI: 10.1080/15476286.2023.2257471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
Transfer RNAs (tRNAs) maintain translation fidelity through accurate charging by their cognate aminoacyl-tRNA synthetase and codon:anticodon base pairing with the mRNA at the ribosome. Mistranslation occurs when an amino acid not specified by the genetic message is incorporated into proteins and has applications in biotechnology, therapeutics and is relevant to disease. Since the alanyl-tRNA synthetase uniquely recognizes a G3:U70 base pair in tRNAAla and the anticodon plays no role in charging, tRNAAla variants with anticodon mutations have the potential to mis-incorporate alanine. Here, we characterize the impact of the 60 non-alanine tRNAAla anticodon variants on the growth of Saccharomyces cerevisiae. Overall, 36 tRNAAla anticodon variants decreased growth in single- or multi-copy. Mass spectrometry analysis of the cellular proteome revealed that 52 of 57 anticodon variants, not decoding alanine or stop codons, induced mistranslation when on single-copy plasmids. Variants with G/C-rich anticodons resulted in larger growth deficits than A/U-rich variants. In most instances, synonymous anticodon variants impact growth differently, with anticodons containing U at base 34 being the least impactful. For anticodons generating the same amino acid substitution, reduced growth generally correlated with the abundance of detected mistranslation events. Differences in decoding specificity, even between synonymous anticodons, resulted in each tRNAAla variant mistranslating unique sets of peptides and proteins. We suggest that these differences in decoding specificity are also important in determining the impact of tRNAAla anticodon variants.
Collapse
Affiliation(s)
- Ecaterina Cozma
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Megha Rao
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Madison Dusick
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Berg
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Belinite M, Khusainov I, Marzi S. Staphylococcus aureus 30S Ribosomal Subunit Purification and Its Biochemical and Cryo-EM Analysis. Bio Protoc 2022; 12:e4532. [PMID: 36353712 PMCID: PMC9606446 DOI: 10.21769/bioprotoc.4532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
The ribosome is a complex cellular machinery whose solved structure allowed for an incredible leap in structural biology research. Different ions bind to the ribosome, stabilizing inter-subunit interfaces and structurally linking rRNAs, proteins, and ligands. Besides cations such as K + and Mg 2+ , polyamines are known to stabilize the folding of RNA and overall structure. The bacterial ribosome is composed of a small (30S) subunit containing the decoding center and a large (50S) subunit devoted to peptide bond formation. We have previously shown that the small ribosomal subunit of Staphylococcus aureus is sensitive to changes in ionic conditions and polyamines concentration. In particular, its decoding center, where mRNA codons and tRNA anticodons interact, is prone to structural deformations in the absence of spermidine. Here, we report a detailed protocol for the purification of the intact and functional 30S, achieved through specific ionic conditions and the addition of spermidine. Using this protocol, we obtained the cryo-electron microscopy (cryo-EM) structure of the 30S-mRNA complex from S. aureus at 3.6 Å resolution. The 30S-mRNA complex formation was verified by a toeprinting assay. In this article, we also include a description of toeprinting and cryo-EM protocols. The described protocols can be further used to study the process of translation regulation. Graphical abstract.
Collapse
Affiliation(s)
- Margarita Belinite
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
,
Architecture et Réactivité de l’ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
,
Institut Européen de Chimie et Biologie (IECB), ARNA U1212, Université de Bordeaux, Pessac, France
,
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Iskander Khusainov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
,
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Stefano Marzi
- Architecture et Réactivité de l’ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
,
*For correspondence:
| |
Collapse
|
12
|
Lombardi S, Testa MF, Pinotti M, Branchini A. Translation termination codons in protein synthesis and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:1-48. [PMID: 36088072 DOI: 10.1016/bs.apcsb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
13
|
Prabhakar A, Krahn N, Zhang J, Vargas-Rodriguez O, Krupkin M, Fu Z, Acosta-Reyes FJ, Ge X, Choi J, Crnković A, Ehrenberg M, Puglisi EV, Söll D, Puglisi J. Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Res 2022; 50:10201-10211. [PMID: 35882385 PMCID: PMC9561287 DOI: 10.1093/nar/gkac576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.
Collapse
Affiliation(s)
| | | | | | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Miri Krupkin
- Department of Structural Biology, Stanford University, Stanford, CA 94305-5126, USA
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Francisco J Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | - Junhong Choi
- Department of Structural Biology, Stanford University, Stanford, CA 94305-5126, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | | | - Dieter Söll
- Correspondence may also be addressed to Dieter Söll.
| | - Joseph Puglisi
- To whom correspondence should be addressed. Tel: +1 650 498 4397;
| |
Collapse
|
14
|
Wang A, Levi M, Mohanty U, Whitford PC. Diffuse Ions Coordinate Dynamics in a Ribonucleoprotein Assembly. J Am Chem Soc 2022; 144:9510-9522. [PMID: 35593477 DOI: 10.1021/jacs.2c04082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proper ionic concentrations are required for the functional dynamics of RNA and ribonucleoprotein (RNP) assemblies. While experimental and computational techniques have provided many insights into the properties of chelated ions, less is known about the energetic contributions of diffuse ions to large-scale conformational rearrangements. To address this, we present a model that is designed to quantify the influence of diffuse monovalent and divalent ions on the dynamics of biomolecular assemblies. This model employs all-atom (non-H) resolution and explicit ions, where effective potentials account for hydration effects. We first show that the model accurately predicts the number of excess Mg2+ ions for prototypical RNA systems, at a level comparable to modern coarse-grained models. We then apply the model to a complete ribosome and show how the balance between diffuse Mg2+ and K+ ions can control the dynamics of tRNA molecules during translation. The model predicts differential effects of diffuse ions on the free-energy barrier associated with tRNA entry and the energy of tRNA binding to the ribosome. Together, this analysis reveals the direct impact of diffuse ions on the dynamics of an RNP assembly.
Collapse
Affiliation(s)
- Ailun Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.,Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mariana Levi
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.,Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Shakya B, Joyner OG, Hartman MCT. Hyperaccurate Ribosomes for Improved Genetic Code Reprogramming. ACS Synth Biol 2022; 11:2193-2201. [PMID: 35549158 PMCID: PMC10100576 DOI: 10.1021/acssynbio.2c00150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reprogramming of the genetic code through the introduction of noncanonical amino acids (ncAAs) has enabled exciting advances in synthetic biology and peptide drug discovery. Ribosomes that function with high efficiency and fidelity are necessary for all of these efforts, but for challenging ncAAs, the competing processes of near-cognate readthrough and peptidyl-tRNA dropoff can be issues. Here we uncover the surprising extent of these competing pathways in the PURE translation system using mRNAs encoding peptides with affinity tags at the N- and C-termini. We also show that hyperaccurate or error restrictive ribosomes with mutations in ribosomal protein S12 lead to significant improvements in yield and fidelity in the context of both canonical AAs and a challenging α,α-disubstituted ncAA. Hyperaccurate ribosomes also improve yields for quadruplet codon readthrough for a tRNA containing an expanded anticodon stem-loop, although they are not able to eliminate triplet codon reading by this tRNA. The impressive improvements in fidelity and the simplicity of introducing this mutation alongside other efforts to engineer the translation apparatus make hyperaccurate ribosomes an important advance for synthetic biology.
Collapse
Affiliation(s)
- Bipasana Shakya
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Olivia G. Joyner
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Matthew C. T. Hartman
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
16
|
Abstract
Accurate protein synthesis (translation) relies on translation factors that rectify ribosome fluctuations into a unidirectional process. Understanding this process requires structural characterization of the ribosome and translation-factor dynamics. In the 2000s, crystallographic studies determined high-resolution structures of ribosomes stalled with translation factors, providing a starting point for visualizing translation. Recent progress in single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution of numerous structures sampled in heterogeneous complexes (ensembles). Ensemble and time-resolved cryo-EM have now revealed unprecedented views of ribosome transitions in the three principal stages of translation: initiation, elongation, and termination. This review focuses on how translation factors help achieve high accuracy and efficiency of translation by monitoring distinct ribosome conformations and by differentially shifting the equilibria of ribosome rearrangements for cognate and near-cognate substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
17
|
Jansson MD, Häfner SJ, Altinel K, Tehler D, Krogh N, Jakobsen E, Andersen JV, Andersen KL, Schoof EM, Ménard P, Nielsen H, Lund AH. Regulation of translation by site-specific ribosomal RNA methylation. Nat Struct Mol Biol 2021; 28:889-899. [PMID: 34759377 DOI: 10.1038/s41594-021-00669-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/03/2021] [Indexed: 11/09/2022]
Abstract
Ribosomes are complex ribozymes that interpret genetic information by translating messenger RNA (mRNA) into proteins. Natural variation in ribosome composition has been documented in several organisms and can arise from several different sources. A key question is whether specific control over ribosome heterogeneity represents a mechanism by which translation can be regulated. We used RiboMeth-seq to demonstrate that differential 2'-O-methylation of ribosomal RNA (rRNA) represents a considerable source of ribosome heterogeneity in human cells, and that modification levels at distinct sites can change dynamically in response to upstream signaling pathways, such as MYC oncogene expression. Ablation of one prominent methylation resulted in altered translation of select mRNAs and corresponding changes in cellular phenotypes. Thus, differential rRNA 2'-O-methylation can give rise to ribosomes with specialized function. This suggests a broader mechanism where the specific regulation of rRNA modification patterns fine tunes translation.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Sophia J Häfner
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kübra Altinel
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Disa Tehler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper L Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Patrice Ménard
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Vezeau GE, Salis HM. Tuning Cell-Free Composition Controls the Time Delay, Dynamics, and Productivity of TX-TL Expression. ACS Synth Biol 2021; 10:2508-2519. [PMID: 34498860 DOI: 10.1021/acssynbio.1c00136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The composition of cell-free expression systems (TX-TL) is adjusted by adding macromolecular crowding agents and salts. However, the effects of these cosolutes on the dynamics of individual gene expression processes have not been quantified. Here, we carry out kinetic mRNA and protein level measurements on libraries of genetic constructs using the common cosolutes PEG-8000, Ficoll-400, and magnesium glutamate. By combining these measurements with biophysical modeling, we show that cosolutes have differing effects on transcription initiation, translation initiation, and translation elongation rates with trade-offs between time delays, expression tunability, and maximum expression productivity. We also confirm that biophysical models can predict translation initiation rates in TX-TL using Escherichia coli lysate. We discuss how cosolute composition can be tuned to maximize performance across different cell-free applications, including biosensing, diagnostics, and biomanufacturing.
Collapse
Affiliation(s)
- Grace E. Vezeau
- Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Howard M. Salis
- Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Demo G, Gamper HB, Loveland AB, Masuda I, Carbone CE, Svidritskiy E, Hou YM, Korostelev AA. Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation. Nat Commun 2021; 12:4644. [PMID: 34330903 PMCID: PMC8324841 DOI: 10.1038/s41467-021-24911-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.
Collapse
MESH Headings
- Biocatalysis
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Frameshifting, Ribosomal/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/genetics
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Conformation
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Howard B Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christine E Carbone
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
20
|
Bhaskar V, Graff-Meyer A, Schenk AD, Cavadini S, von Loeffelholz O, Natchiar SK, Artus-Revel CG, Hotz HR, Bretones G, Klaholz BP, Chao JA. Dynamics of uS19 C-Terminal Tail during the Translation Elongation Cycle in Human Ribosomes. Cell Rep 2021; 31:107473. [PMID: 32268098 DOI: 10.1016/j.celrep.2020.03.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/06/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Ribosomes undergo multiple conformational transitions during translation elongation. Here, we report the high-resolution cryoelectron microscopy (cryo-EM) structure of the human 80S ribosome in the post-decoding pre-translocation state (classical-PRE) at 3.3-Å resolution along with the rotated (hybrid-PRE) and the post-translocation states (POST). The classical-PRE state ribosome structure reveals a previously unobserved interaction between the C-terminal region of the conserved ribosomal protein uS19 and the A- and P-site tRNAs and the mRNA in the decoding site. In addition to changes in the inter-subunit bridges, analysis of different ribosomal conformations reveals the dynamic nature of this domain and suggests a role in tRNA accommodation and translocation during elongation. Furthermore, we show that disease-associated mutations in uS19 result in increased frameshifting. Together, this structure-function analysis provides mechanistic insights into the role of the uS19 C-terminal tail in the context of mammalian ribosomes.
Collapse
Affiliation(s)
- Varun Bhaskar
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | | | - Hans-Rudolf Hotz
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gabriel Bretones
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
21
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
22
|
Molecular Insights into Determinants of Translational Readthrough and Implications for Nonsense Suppression Approaches. Int J Mol Sci 2020; 21:ijms21249449. [PMID: 33322589 PMCID: PMC7764779 DOI: 10.3390/ijms21249449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
The fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense and stop codons. However, premature termination codons (PTCs) arising from mutations may, at low frequency, be misrecognized and result in PTC suppression, named ribosome readthrough, with production of full-length proteins through the insertion of a subset of amino acids. Since some drugs have been identified as readthrough inducers, this fidelity drawback has been explored as a therapeutic approach in several models of human diseases caused by nonsense mutations. Here, we focus on the mechanisms driving translation in normal and aberrant conditions, the potential fates of mRNA in the presence of a PTC, as well as on the results obtained in the research of efficient readthrough-inducing compounds. In particular, we describe the molecular determinants shaping the outcome of readthrough, namely the nucleotide and protein context, with the latter being pivotal to produce functional full-length proteins. Through the interpretation of experimental and mechanistic findings, mainly obtained in lysosomal and coagulation disorders, we also propose a scenario of potential readthrough-favorable features to achieve relevant rescue profiles, representing the main issue for the potential translatability of readthrough as a therapeutic strategy.
Collapse
|
23
|
Samhita L, Raval PK, Agashe D. Global mistranslation increases cell survival under stress in Escherichia coli. PLoS Genet 2020; 16:e1008654. [PMID: 32150542 PMCID: PMC7082066 DOI: 10.1371/journal.pgen.1008654] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/19/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Mistranslation is typically deleterious for cells, although specific mistranslated proteins can confer a short-term benefit in a particular environment. However, given its large overall cost, the prevalence of high global mistranslation rates remains puzzling. Altering basal mistranslation levels of Escherichia coli in several ways, we show that generalized mistranslation enhances early survival under DNA damage, by rapidly activating the SOS response. Mistranslating cells maintain larger populations after exposure to DNA damage, and thus have a higher probability of sampling critical beneficial mutations. Both basal and artificially increased mistranslation increase the number of cells that are phenotypically tolerant and genetically resistant under DNA damage; they also enhance survival at high temperature. In contrast, decreasing the normal basal mistranslation rate reduces cell survival. This wide-ranging stress resistance relies on Lon protease, which is revealed as a key effector that induces the SOS response in addition to alleviating proteotoxic stress. The new links between error-prone protein synthesis, DNA damage, and generalised stress resistance indicate surprising coordination between intracellular stress responses and suggest a novel hypothesis to explain high global mistranslation rates.
Collapse
Affiliation(s)
- Laasya Samhita
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Parth K. Raval
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
24
|
Ferreira N, Perks KL, Rossetti G, Rudler DL, Hughes LA, Ermer JA, Scott LH, Kuznetsova I, Richman TR, Narayana VK, Abudulai LN, Shearwood AJ, Cserne Szappanos H, Tull D, Yeoh GC, Hool LC, Filipovska A, Rackham O. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J 2019; 38:e102155. [PMID: 31721250 PMCID: PMC6912024 DOI: 10.15252/embj.2019102155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.
Collapse
Affiliation(s)
- Nicola Ferreira
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Kara L Perks
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Judith A Ermer
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Louis H Scott
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Tara R Richman
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Vinod K Narayana
- Metabolomics AustraliaBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Laila N Abudulai
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaPerthWAAustralia
- School of Molecular SciencesThe University of Western Australia, CrawleyWAAustralia
- The School of Biomedical SciencesThe University of Western AustraliaNedlandsWAAustralia
| | - Anne‐Marie J Shearwood
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | | | - Dedreia Tull
- Metabolomics AustraliaBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - George C Yeoh
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
| | - Livia C Hool
- School of Human Sciences (Physiology)The University of Western AustraliaCrawleyWAAustralia
- Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
- School of Molecular SciencesThe University of Western Australia, CrawleyWAAustralia
| | - Oliver Rackham
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- School of Pharmacy and Biomedical SciencesCurtin UniversityBentleyWAAustralia
- Curtin Health Innovation Research InstituteCurtin UniversityBentleyWAAustralia
| |
Collapse
|
25
|
Schneider TD, Jejjala V. Restriction enzymes use a 24 dimensional coding space to recognize 6 base long DNA sequences. PLoS One 2019; 14:e0222419. [PMID: 31671158 PMCID: PMC6822723 DOI: 10.1371/journal.pone.0222419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/29/2019] [Indexed: 11/19/2022] Open
Abstract
Restriction enzymes recognize and bind to specific sequences on invading bacteriophage DNA. Like a key in a lock, these proteins require many contacts to specify the correct DNA sequence. Using information theory we develop an equation that defines the number of independent contacts, which is the dimensionality of the binding. We show that EcoRI, which binds to the sequence GAATTC, functions in 24 dimensions. Information theory represents messages as spheres in high dimensional spaces. Better sphere packing leads to better communications systems. The densest known packing of hyperspheres occurs on the Leech lattice in 24 dimensions. We suggest that the single protein EcoRI molecule employs a Leech lattice in its operation. Optimizing density of sphere packing explains why 6 base restriction enzymes are so common.
Collapse
Affiliation(s)
- Thomas D. Schneider
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, RNA Biology Laboratory, Frederick, Maryland, United States of America
| | - Vishnu Jejjala
- Mandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS, University of the Witwatersrand, Johannesburg, South Africa
- David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
26
|
Garofalo R, Wohlgemuth I, Pearson M, Lenz C, Urlaub H, Rodnina MV. Broad range of missense error frequencies in cellular proteins. Nucleic Acids Res 2019; 47:2932-2945. [PMID: 30649420 PMCID: PMC6451103 DOI: 10.1093/nar/gky1319] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/25/2022] Open
Abstract
Assessment of the fidelity of gene expression is crucial to understand cell homeostasis. Here we present a highly sensitive method for the systematic Quantification of Rare Amino acid Substitutions (QRAS) using absolute quantification by targeted mass spectrometry after chromatographic enrichment of peptides with missense amino acid substitutions. By analyzing incorporation of near- and non-cognate amino acids in a model protein EF-Tu, we show that most of missense errors are too rare to detect by conventional methods, such as DDA, and are estimated to be between <10−7–10-5 by QRAS. We also observe error hotspots of up to 10−3 for some types of mismatches, including the G-U mismatch. The error frequency depends on the expression level of EF-Tu and, surprisingly, the amino acid position in the protein. QRAS is not restricted to any particular miscoding event, organism, strain or model protein and is a reliable tool to analyze very rare proteogenomic events.
Collapse
Affiliation(s)
- Raffaella Garofalo
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Michael Pearson
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany.,Department of Clinical Chemistry, Bioanalytics, University Medical Center Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany.,Department of Clinical Chemistry, Bioanalytics, University Medical Center Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
27
|
A tRNA-mimic Strategy to Explore the Role of G34 of tRNA Gly in Translation and Codon Frameshifting. Int J Mol Sci 2019; 20:ijms20163911. [PMID: 31405256 PMCID: PMC6720975 DOI: 10.3390/ijms20163911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Decoding of the 61 sense codons of the genetic code requires a variable number of tRNAs that establish codon-anticodon interactions. Thanks to the wobble base pairing at the third codon position, less than 61 different tRNA isoacceptors are needed to decode the whole set of codons. On the tRNA, a subtle distribution of nucleoside modifications shapes the anticodon loop structure and participates to accurate decoding and reading frame maintenance. Interestingly, although the 61 anticodons should exist in tRNAs, a strict absence of some tRNAs decoders is found in several codon families. For instance, in Eukaryotes, G34-containing tRNAs translating 3-, 4- and 6-codon boxes are absent. This includes tRNA specific for Ala, Arg, Ile, Leu, Pro, Ser, Thr, and Val. tRNAGly is the only exception for which in the three kingdoms, a G34-containing tRNA exists to decode C3 and U3-ending codons. To understand why G34-tRNAGly exists, we analysed at the genome wide level the codon distribution in codon +1 relative to the four GGN Gly codons. When considering codon GGU, a bias was found towards an unusual high usage of codons starting with a G whatever the amino acid at +1 codon. It is expected that GGU codons are decoded by G34-containing tRNAGly, decoding also GGC codons. Translation studies revealed that the presence of a G at the first position of the downstream codon reduces the +1 frameshift by stabilizing the G34•U3 wobble interaction. This result partially explains why G34-containing tRNAGly exists in Eukaryotes whereas all the other G34-containing tRNAs for multiple codon boxes are absent.
Collapse
|
28
|
Holm M, Mandava CS, Ehrenberg M, Sanyal S. The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation. eLife 2019; 8:46124. [PMID: 31172942 PMCID: PMC6594751 DOI: 10.7554/elife.46124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023] Open
Abstract
Applying pre-steady state kinetics to an Escherichia-coli-based reconstituted translation system, we have studied how the antibiotic viomycin affects the accuracy of genetic code reading. We find that viomycin binds to translating ribosomes associated with a ternary complex (TC) consisting of elongation factor Tu (EF-Tu), aminoacyl tRNA and GTP, and locks the otherwise dynamically flipping monitoring bases A1492 and A1493 into their active conformation. This effectively prevents dissociation of near- and non-cognate TCs from the ribosome, thereby enhancing errors in initial selection. Moreover, viomycin shuts down proofreading-based error correction. Our results imply a mechanism in which the accuracy of initial selection is achieved by larger backward rate constants toward TC dissociation rather than by a smaller rate constant for GTP hydrolysis for near- and non-cognate TCs. Additionally, our results demonstrate that translocation inhibition, rather than error induction, is the major cause of cell growth inhibition by viomycin.
Collapse
Affiliation(s)
- Mikael Holm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Klimova M, Senyushkina T, Samatova E, Peng BZ, Pearson M, Peske F, Rodnina MV. EF-G-induced ribosome sliding along the noncoding mRNA. SCIENCE ADVANCES 2019; 5:eaaw9049. [PMID: 31183409 PMCID: PMC6551183 DOI: 10.1126/sciadv.aaw9049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/25/2019] [Indexed: 05/02/2023]
Abstract
Translational bypassing is a recoding event during which ribosomes slide over a noncoding region of the messenger RNA (mRNA) to synthesize one protein from two discontinuous reading frames. Structures in the mRNA orchestrate forward movement of the ribosome, but what causes ribosomes to start sliding remains unclear. Here, we show that elongation factor G (EF-G) triggers ribosome take-off by a pseudotranslocation event using a small mRNA stem-loop as an A-site transfer RNA mimic and requires hydrolysis of about two molecules of guanosine 5'-triphosphate per nucleotide of the noncoding gap. Bypassing ribosomes adopt a hyper-rotated conformation, also observed with ribosomes stalled by the SecM sequence, suggesting common ribosome dynamics during translation stalling. Our results demonstrate a new function of EF-G in promoting ribosome sliding along the mRNA, in contrast to codon-wise ribosome movement during canonical translation, and suggest a mechanism by which ribosomes could traverse untranslated parts of mRNAs.
Collapse
|
30
|
Advani VM, Ivanov P. Translational Control under Stress: Reshaping the Translatome. Bioessays 2019; 41:e1900009. [PMID: 31026340 PMCID: PMC6541386 DOI: 10.1002/bies.201900009] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Indexed: 01/01/2023]
Abstract
Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Collapse
Affiliation(s)
- Vivek M. Advani
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts, United States of America
| |
Collapse
|
31
|
Abstract
The eukaryotic translation pathway has been studied for more than four decades, but the molecular mechanisms that regulate each stage of the pathway are not completely defined. This is in part because we have very little understanding of the kinetic framework for the assembly and disassembly of pathway intermediates. Steps of the pathway are thought to occur in the subsecond to second time frame, but most assays to monitor these events require minutes to hours to complete. Understanding translational control in sufficient detail will therefore require the development of assays that can precisely monitor the kinetics of the translation pathway in real time. Here, we describe the translation pathway from the perspective of its kinetic parameters, discuss advances that are helping us move toward the goal of a rigorous kinetic understanding, and highlight some of the challenges that remain.
Collapse
|
32
|
Joshi K, Cao L, Farabaugh PJ. The problem of genetic code misreading during protein synthesis. Yeast 2019; 36:35-42. [DOI: 10.1002/yea.3374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 02/01/2023] Open
Affiliation(s)
- Kartikeya Joshi
- Department of Biological Sciences; University of Maryland Baltimore County; Baltimore Maryland, USA
| | - Ling Cao
- Department of Biological Sciences; University of Maryland Baltimore County; Baltimore Maryland, USA
| | - Philip J. Farabaugh
- Department of Biological Sciences; University of Maryland Baltimore County; Baltimore Maryland, USA
| |
Collapse
|
33
|
Opron K, Burton ZF. Ribosome Structure, Function, and Early Evolution. Int J Mol Sci 2018; 20:ijms20010040. [PMID: 30583477 PMCID: PMC6337491 DOI: 10.3390/ijms20010040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are among the largest and most dynamic molecular motors. The structure and dynamics of translation initiation and elongation are reviewed. Three ribosome motions have been identified for initiation and translocation. A swivel motion between the head/beak and the body of the 30S subunit was observed. A tilting dynamic of the head/beak versus the body of the 30S subunit was detected using simulations. A reversible ratcheting motion was seen between the 30S and the 50S subunits that slide relative to one another. The 30S⁻50S intersubunit contacts regulate translocation. IF2, EF-Tu, and EF-G are homologous G-protein GTPases that cycle on and off the same site on the ribosome. The ribosome, aminoacyl-tRNA synthetase (aaRS) enzymes, transfer ribonucleic acid (tRNA), and messenger ribonucleic acid (mRNA) form the core of information processing in cells and are coevolved. Surprisingly, class I and class II aaRS enzymes, with distinct and incompatible folds, are homologs. Divergence of class I and class II aaRS enzymes and coevolution of the genetic code are described by analysis of ancient archaeal species.
Collapse
Affiliation(s)
- Kristopher Opron
- Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109-0674, USA.
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, 603 Wilson Rd., Michigan State University, MI 48824-1319, USA.
| |
Collapse
|
34
|
Abrahams L, Hurst LD. Refining the Ambush Hypothesis: Evidence That GC- and AT-Rich Bacteria Employ Different Frameshift Defence Strategies. Genome Biol Evol 2018; 10:1153-1173. [PMID: 29617761 PMCID: PMC5909447 DOI: 10.1093/gbe/evy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Stop codons are frequently selected for beyond their regular termination function for error control. The “ambush hypothesis” proposes out-of-frame stop codons (OSCs) terminating frameshifted translations are selected for. Although early indirect evidence was partially supportive, recent evidence suggests OSC frequencies are not exceptional when considering underlying nucleotide content. However, prior null tests fail to control amino acid/codon usages or possible local mutational biases. We therefore return to the issue using bacterial genomes, considering several tests defining and testing against a null. We employ simulation approaches preserving amino acid order but shuffling synonymous codons or preserving codons while shuffling amino acid order. Additionally, we compare codon usage in amino acid pairs, where one codon can but the next, otherwise identical codon, cannot encode an OSC. OSC frequencies exceed expectations typically in AT-rich genomes, the +1 frame and for TGA/TAA but not TAG. With this complex evidence, simply rejecting or accepting the ambush hypothesis is not warranted. We propose a refined post hoc model, whereby AT-rich genomes have more accidental frameshifts, handled by RF2–RF3 complexes (associated with TGA/TAA) and are mostly +1 (or −2) slips. Supporting this, excesses positively correlate with in silico predicted frameshift probabilities. Thus, we propose a more viable framework, whereby genomes broadly adopt one of the two strategies to combat frameshifts: preventing frameshifting (GC-rich) or permitting frameshifts but minimizing impacts when most are caught early (AT-rich). Our refined framework holds promise yet some features, such as the bias of out-of-frame sense codons, remain unexplained.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, United Kingdom
| |
Collapse
|
35
|
Hartono YD, Ito M, Villa A, Nilsson L. Computational Study of Uracil Tautomeric Forms in the Ribosome: The Case of Uracil and 5-Oxyacetic Acid Uracil in the First Anticodon Position of tRNA. J Phys Chem B 2018; 122:1152-1160. [PMID: 29260566 DOI: 10.1021/acs.jpcb.7b10878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tautomerism is important in many biomolecular interactions, not least in RNA biology. Crystallographic studies show the possible presence of minor tautomer forms of transfer-RNA (tRNA) anticodon bases in the ribosome. The hydrogen positions are not resolved in the X-ray studies, and we have used ab initio calculations and molecular dynamics simulations to understand if and how the minor enol form of uracil (U), or the modified uracil 5-oxyacetic acid (cmo5U), can be accommodated in the tRNA-messenger-RNA interactions in the ribosome decoding center. Ab initio calculations on isolated bases show that the modification affects the keto-enol equilibrium of the uracil base only slightly; the keto form is dominant (>99.99%) in both U and cmo5U. Other factors such as interactions with the surrounding nucleotides or ions would be required to shift the equilibrium toward the enol tautomer. Classical molecular simulations show a better agreement with the X-ray structures for the enol form, but free energy calculations indicate that the most stable form is the keto. In the ribosome, the enol tautomers of U and cmo5U pair with a guanine forming two hydrogen bonds, which do not involve the enol group. The oxyacetic acid modification has a minor effect on the keto-enol equilibrium.
Collapse
Affiliation(s)
- Yossa Dwi Hartono
- Department of Biosciences and Nutrition, Karolinska Institutet , SE-141 83 Huddinge, Sweden.,Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, 637551 Singapore
| | - Mika Ito
- Department of Biosciences and Nutrition, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| |
Collapse
|
36
|
Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0182. [PMID: 28138068 PMCID: PMC5311926 DOI: 10.1098/rstb.2016.0182] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
37
|
Translational fidelity and mistranslation in the cellular response to stress. Nat Microbiol 2017; 2:17117. [PMID: 28836574 DOI: 10.1038/nmicrobiol.2017.117] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022]
Abstract
Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, and the widespread evolutionary conservation of aaRS proofreading pathways, requirements for translation quality control vary depending on cellular physiology and changes in growth conditions, and translation errors are not always detrimental. Recent work has demonstrated that mistranslation can also be beneficial to cells, and some organisms have selected for a higher degree of mistranslation than others. The aims of this Review Article are to summarize the known mechanisms of protein translational fidelity and explore the diversity and impact of mistranslation events as a potentially beneficial response to environmental and cellular stress.
Collapse
|
38
|
Hwang Fu YH, Huang WYC, Shen K, Groves JT, Miller T, Shan SO. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting. eLife 2017; 6. [PMID: 28753124 PMCID: PMC5533587 DOI: 10.7554/elife.25885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/28/2017] [Indexed: 01/25/2023] Open
Abstract
The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting. DOI:http://dx.doi.org/10.7554/eLife.25885.001
Collapse
Affiliation(s)
- Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - William Y C Huang
- Department of Chemistry, University of California at Berkeley, Berkeley, United States
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Jay T Groves
- Department of Chemistry, University of California at Berkeley, Berkeley, United States
| | - Thomas Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
39
|
Ranjan N, Rodnina MV. Thio-Modification of tRNA at the Wobble Position as Regulator of the Kinetics of Decoding and Translocation on the Ribosome. J Am Chem Soc 2017; 139:5857-5864. [PMID: 28368583 DOI: 10.1021/jacs.7b00727] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uridine 34 (U34) at the wobble position of the tRNA anticodon is post-transcriptionally modified, usually to mcm5s2, mcm5, or mnm5. The lack of the mcm5 or s2 modification at U34 of tRNALys, tRNAGlu, and tRNAGln causes ribosome pausing at the respective codons in yeast. The pauses occur during the elongation step, but the mechanism that triggers ribosome pausing is not known. Here, we show how the s2 modification in yeast tRNALys affects mRNA decoding and tRNA-mRNA translocation. Using real-time kinetic analysis we show that mcm5-modified tRNALys lacking the s2 group has a lower affinity of binding to the cognate codon and is more efficiently rejected than the fully modified tRNALys. The lack of the s2 modification also slows down the rearrangements in the ribosome-EF-Tu-GDP-Pi-Lys-tRNALys complex following GTP hydrolysis by EF-Tu. Finally, tRNA-mRNA translocation is slower with the s2-deficient tRNALys. These observations explain the observed ribosome pausing at AAA codons during translation and demonstrate how the s2 modification helps to ensure the optimal translation rates that maintain proteome homeostasis of the cell.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
40
|
Maracci C, Rodnina MV. Review: Translational GTPases. Biopolymers 2017; 105:463-75. [PMID: 26971860 PMCID: PMC5084732 DOI: 10.1002/bip.22832] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
Translational GTPases (trGTPases) play key roles in facilitating protein synthesis on the ribosome. Despite the high degree of evolutionary conservation in the sequences of their GTP-binding domains, the rates of GTP hydrolysis and nucleotide exchange vary broadly between different trGTPases. EF-Tu, one of the best-characterized model G proteins, evolved an exceptionally rapid and tightly regulated GTPase activity, which ensures rapid and accurate incorporation of amino acids into the nascent chain. Other trGTPases instead use the energy of GTP hydrolysis to promote movement or to ensure the forward commitment of translation reactions. Recent data suggest the GTPase mechanism of EF-Tu and provide an insight in the catalysis of GTP hydrolysis by its unusual activator, the ribosome. Here we summarize these advances in understanding the functional cycle and the regulation of trGTPases, stimulated by the elucidation of their structures on the ribosome and the progress in dissecting the reaction mechanism of GTPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 463-475, 2016.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| |
Collapse
|
41
|
Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol 2017; 52:205-219. [PMID: 28075177 DOI: 10.1080/10409238.2016.1274284] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mistranslation describes errors during protein synthesis that prevent the amino acid sequences specified in the genetic code from being reflected within proteins. For a long time, mistranslation has largely been considered an aberrant cellular process that cells actively avoid at all times. However, recent evidence has demonstrated that cells from all three domains of life not only tolerate certain levels and forms of mistranslation, but actively induce mistranslation under certain circumstances. To this end, dedicated biological mechanisms have recently been found to reduce translational fidelity, which indicates that mistranslation is not exclusively an erroneous process and can even benefit cells in particular cellular contexts. There currently exists a spectrum of mistranslational processes that differ not only in their origins, but also in their molecular and cellular effects. These findings suggest that the optimal degree of translational fidelity largely depends on a specific cellular context. This review aims to conceptualize the basis and functional consequence of the diverse types of mistranslation that have been described so far.
Collapse
Affiliation(s)
- Michael H Schwartz
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| | - Tao Pan
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| |
Collapse
|
42
|
Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs 2016; 30:49-74. [PMID: 26886021 DOI: 10.1007/s40259-016-0157-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.
Collapse
|
43
|
Wang J, Kwiatkowski M, Forster AC. Ribosomal Peptide Syntheses from Activated Substrates Reveal Rate Limitation by an Unexpected Step at the Peptidyl Site. J Am Chem Soc 2016; 138:15587-15595. [DOI: 10.1021/jacs.6b06936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinfan Wang
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Anthony C. Forster
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| |
Collapse
|
44
|
Noel JK, Whitford PC. How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome. Nat Commun 2016; 7:13314. [PMID: 27796304 PMCID: PMC5095583 DOI: 10.1038/ncomms13314] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
It has long been recognized that the thermodynamics of mRNA–tRNA base pairing is insufficient to explain the high fidelity and efficiency of aminoacyl-tRNA (aa-tRNA) selection by the ribosome. To rationalize this apparent inconsistency, Hopfield proposed that the ribosome may improve accuracy by utilizing a multi-step kinetic proofreading mechanism. While biochemical, structural and single-molecule studies have provided a detailed characterization of aa-tRNA selection, there is a limited understanding of how the physical–chemical properties of the ribosome enable proofreading. To this end, we probe the role of EF-Tu during aa-tRNA accommodation (the proofreading step) through the use of energy landscape principles, molecular dynamics simulations and kinetic models. We find that the steric composition of EF-Tu can reduce the free-energy barrier associated with the first step of accommodation: elbow accommodation. We interpret this effect within an extended kinetic model of accommodation and show how EF-Tu can contribute to efficient and accurate proofreading.
The translation of mRNA by the ribosome is governed by a series of large-scale conformational transitions. Here the authors use MD simulations to demonstrate how the rate of dissociation of elongation factor Tu affects the dynamics of tRNA accommodation and proofreading.
Collapse
Affiliation(s)
- Jeffrey K Noel
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA.,Max Delbrück Center for Molecular Medicine, Kristallographie, Robert-Rössle-Strasse 10, Berlin 13125, Germany.,Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
45
|
Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016; 44:8020-40. [PMID: 27448410 PMCID: PMC5041475 DOI: 10.1093/nar/gkw608] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/11/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon-anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson-Crick pairs in the codon-anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon-anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids.
Collapse
Affiliation(s)
- Henri Grosjean
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
46
|
Sharma H, Adio S, Senyushkina T, Belardinelli R, Peske F, Rodnina MV. Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits. Cell Rep 2016; 16:2187-2196. [PMID: 27524615 DOI: 10.1016/j.celrep.2016.07.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/30/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
Ribosome dynamics play an important role in translation. The rotation of the ribosomal subunits relative to one another is essential for tRNA-mRNA translocation. An important unresolved question is whether subunit rotation limits the rate of translocation. Here, we monitor subunit rotation relative to peptide bond formation and translocation using ensemble kinetics and single-molecule FRET. We observe that spontaneous forward subunit rotation occurs at a rate of 40 s(-1), independent of the rate of preceding peptide bond formation. Elongation factor G (EF-G) accelerates forward subunit rotation to 200 s(-1). tRNA-mRNA movement is much slower (10-40 s(-1)), suggesting that forward subunit rotation does not limit the rate of translocation. The transition back to the non-rotated state of the ribosome kinetically coincides with tRNA-mRNA movement. Thus, large-scale movements of the ribosome are intrinsically rapid and gated by its ligands such as EF-G and tRNA.
Collapse
Affiliation(s)
- Heena Sharma
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
47
|
Rodnina MV. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 2016; 25:1390-406. [PMID: 27198711 DOI: 10.1002/pro.2950] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is shaped by the combined activities of the gene expression and quality control machineries. While transcription plays an undoubtedly important role, in recent years also translation emerged as a key step that defines the composition and quality of the proteome and the functional activity of proteins in the cell. Among the different post-transcriptional control mechanisms, translation initiation and elongation provide multiple checkpoints that can affect translational efficiency. A multitude of specific signals in mRNAs can determine the frequency of translation initiation, choice of the open reading frame, global and local elongation velocities, and the folding of the emerging protein. In addition to specific signatures in the mRNAs, also variations in the global pools of translation components, including ribosomes, tRNAs, mRNAs, and translation factors can alter translational efficiencies. The cellular outcomes of phenomena such as mRNA codon bias are sometimes difficult to understand due to the staggering complexity of covariates that affect codon usage, translation, and protein folding. Here we summarize the experimental evidence on how the ribosome-together with the other components of the translational machinery-can alter translational efficiencies of mRNA at the initiation and elongation stages and how translation velocity affects protein folding. We seek to explain these findings in the context of mechanistic work on the ribosome. The results argue in favour of a new understanding of translation control as a hub that links mRNA homeostasis to production and quality control of proteins in the cell.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| |
Collapse
|
48
|
Protein Elongation, Co-translational Folding and Targeting. J Mol Biol 2016; 428:2165-85. [DOI: 10.1016/j.jmb.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
|
49
|
Piatkov KI, Vu TTM, Hwang CS, Varshavsky A. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 2:376-393. [PMID: 26866044 PMCID: PMC4745127 DOI: 10.15698/mic2015.10.231] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 02/04/2023]
Abstract
In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N-terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N-terminally formylated (Nt-formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt-formylation in bacteria. We addressed this hypothesis about fMet-based degradation signals, termed fMet/N-degrons, using specific E. coli mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N-degrons, in contrast to the cotranslational design of analogous Ac/N-degrons in eukaryotes.
Collapse
Affiliation(s)
- Konstantin I. Piatkov
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
- Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Tri T. M. Vu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 790-784, South Korea
| | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
50
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Theoretical Insights on the Mechanism of the GTP Hydrolysis Catalyzed by the Elongation Factor Tu (EF-Tu). J Phys Chem B 2015; 120:89-101. [PMID: 26653849 DOI: 10.1021/acs.jpcb.5b10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this work is to have a better understanding of the mechanism of GTP hydrolysis catalyzed by the elongation factor Tu. Two main aspects are being discussed in the literature: the associative or dissociative character of the process and the nature of nucleophile activation. The calculations of the QM subsystem have been done by means of the M06-2X density functional and the split valence triple-ζ 6-311+G(d,p) basis set. The environmental effect has been introduced through the continuum SMD method. We have studied three models of increasing complexity in order to analyze the different factors that intervene in the catalytic action. The results obtained in this paper confirm that the protonated His84 plays a fundamental role in the catalytic mechanism, but we have also found that the crystallographic sodium ion has a notable effect in the catalysis. So, our work has permitted a new insight, complementary to those obtained with QM/MM calculations, into this very complex process.
Collapse
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| |
Collapse
|