1
|
Hamze H, Jaafar M, Khreiss A, Dominique C, Bourdeaux J, Santo P, Méndez-Godoy A, Kressler D, Humbert O, Plisson-Chastang C, Albert B, Henras A, Henry Y. The snoRNP chaperone snR190 and the Npa1 complex form a macromolecular assembly required for 60S ribosomal subunit maturation. Nucleic Acids Res 2025; 53:gkaf134. [PMID: 40037705 PMCID: PMC11879421 DOI: 10.1093/nar/gkaf134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
The early steps of large-ribosomal-subunit assembly feature among the least understood steps of ribosome synthesis in eukaryotes. In Saccharomyces cerevisiae, the box C/D chaperone small nucleolar ribonucleoprotein (snoRNP) snR190 and the Npa1 complex, composed of the α-solenoid scaffold proteins Npa1 and Npa2, the DEAD-box helicase Dbp6, the RNA-binding protein Nop8, and Rsa3, are likely involved in early 25S ribosomal RNA (rRNA) folding events. Here, we report for the first time the existence outside pre-ribosomal particles of an independent macromolecular assembly constituted by the Npa1 complex and the chaperone snoRNP snR190. Nop8 mediates the formation of this assembly and can associate on its own with free snR190 snoRNP. Moreover, Nop8 RNA Recognition Motif (RRM) helps tether the snR190 snoRNP to pre-ribosomal particles. The snR190 snoRNA features a specific central stem-loop structure, which is required for high-affinity binding between free snR190 snoRNP and the Npa1 complex. Deleting this extension does not prevent snR190 snoRNA association with pre-ribosomal particles but impairs snR190 activity in early pre-rRNA processing events. This work establishes the importance of association with auxiliary protein complexes for optimum snoRNP chaperone activity during rRNA folding events.
Collapse
Affiliation(s)
- Hussein Hamze
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Ali Khreiss
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Jessie Bourdeaux
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Paulo Espirito Santo
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Alfonso Méndez-Godoy
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Célia Plisson-Chastang
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| |
Collapse
|
2
|
Wang J, Wu S, Ye K. Complicated target recognition by archaeal box C/D guide RNAs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:631-644. [PMID: 38041781 DOI: 10.1007/s11427-022-2412-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 12/03/2023]
Abstract
Box C/D RNAs guide the site-specific formation of 2'-O-methylated nucleotides (Nm) of RNAs in eukaryotes and archaea. Although C/D RNAs have been profiled in several archaea, their targets have not been experimentally determined. Here, we mapped Nm in rRNAs, tRNAs, and abundant small RNAs (sRNAs) and profiled C/D RNAs in the crenarchaeon Sulfolobus islandicus. The targets of C/D RNAs were assigned by analysis of base-pairing interactions, in vitro modification assays, and gene deletion experiments, revealing a complicated landscape of C/D RNA-target interactions. C/D RNAs widely use dual antisense elements to target adjacent sites in rRNAs, enhancing modification at weakly bound sites. Two consecutive sites can be guided with the same antisense element upstream of box D or D', a phenomenon known as double-specificity that is exclusive to internal box D' in eukaryotic C/D RNAs. Several C/D RNAs guide modification at a single non-canonical site. This study reveals the global landscape of RNA-guided 2'-O-methylation in an archaeon and unexpected targeting rules employed by C/D RNA.
Collapse
Affiliation(s)
- Jiayin Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Porat J, Slat VA, Rader SD, Bayfield MA. The fission yeast methyl phosphate capping enzyme Bmc1 guides 2'-O-methylation of the U6 snRNA. Nucleic Acids Res 2023; 51:8805-8819. [PMID: 37403782 PMCID: PMC10484740 DOI: 10.1093/nar/gkad563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Splicing requires the tight coordination of dynamic spliceosomal RNAs and proteins. U6 is the only spliceosomal RNA transcribed by RNA Polymerase III and undergoes an extensive maturation process. In humans and fission yeast, this includes addition of a 5' γ-monomethyl phosphate cap by members of the Bin3/MePCE family as well as snoRNA guided 2'-O-methylation. Previously, we have shown that the Bin3/MePCE homolog Bmc1 is recruited to the S. pombe telomerase holoenzyme by the LARP7 family protein Pof8, where it acts in a catalytic-independent manner to protect the telomerase RNA and facilitate holoenzyme assembly. Here, we show that Bmc1 and Pof8 are required for the formation of a distinct U6 snRNP that promotes 2'-O-methylation of U6, and identify a non-canonical snoRNA that guides this methylation. We also show that the 5' γ-monomethyl phosphate capping activity of Bmc1 is not required for its role in promoting snoRNA guided 2'-O-methylation, and that this role relies on different regions of Pof8 from those required for Pof8 function in telomerase. Our results are consistent with a novel role for Bmc1/MePCE family members in stimulating 2'-O-methylation and a more general role for Bmc1 and Pof8 in guiding noncoding RNP assembly beyond the telomerase RNP.
Collapse
Affiliation(s)
| | - Viktor A Slat
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Stephen D Rader
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, Canada
| | | |
Collapse
|
4
|
Cao Y, Wang J, Wu S, Yin X, Shu J, Dai X, Liu Y, Sun L, Zhu D, Deng XW, Ye K, Qian W. The small nucleolar RNA SnoR28 regulates plant growth and development by directing rRNA maturation. THE PLANT CELL 2022; 34:4173-4190. [PMID: 36005862 PMCID: PMC9614442 DOI: 10.1093/plcell/koac265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNAs (ncRNAs) that guide chemical modifications of structural RNAs, which are essential for ribosome assembly and function in eukaryotes. Although numerous snoRNAs have been identified in plants by high-throughput sequencing, the biological functions of most of these snoRNAs remain unclear. Here, we identified box C/D SnoR28.1s as important regulators of plant growth and development by screening a CRISPR/Cas9-generated ncRNA deletion mutant library in Arabidopsis thaliana. Deletion of the SnoR28.1 locus, which contains a cluster of three genes producing SnoR28.1s, resulted in defects in root and shoot growth. SnoR28.1s guide 2'-O-ribose methylation of 25S rRNA at G2396. SnoR28.1s facilitate proper and efficient pre-rRNA processing, as the SnoR28.1 deletion mutants also showed impaired ribosome assembly and function, which may account for the growth defects. SnoR28 contains a 7-bp antisense box, which is required for 2'-O-ribose methylation of 25S rRNA at G2396, and an 8-bp extra box that is complementary to a nearby rRNA methylation site and is partially responsible for methylation of G2396. Both of these motifs are required for proper and efficient pre-rRNA processing. Finally, we show that SnoR28.1s genetically interact with HIDDEN TREASURE2 and NUCLEOLIN1. Our results advance our understanding of the roles of snoRNAs in Arabidopsis.
Collapse
Affiliation(s)
- Yuxin Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochang Yin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jia Shu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Xing Dai
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Yannan Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| |
Collapse
|
5
|
Lavering ED, Petros IN, Weeks DL. Component analysis of nucleolar protein compartments using Xenopus laevis oocytes. Dev Growth Differ 2022; 64:306-317. [PMID: 35607824 PMCID: PMC9474603 DOI: 10.1111/dgd.12794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
Abstract
The nucleolus is a multi‐compartment, non‐membrane‐bound organelle within the nucleus. Nucleolar assembly is influenced by proteins capable of phase separation. Xenopus laevis oocytes contain hundreds of large nucleoli that provide experimental access for nucleoli that is unavailable in other systems. Here we detail methods to streamline the in vivo analysis of the compartmentalization of nucleolar proteins that are suspected of phase separation. The nucleolus is the main hub of ribosome biogenesis and here we present data supporting the division of proteins into nucleolar domains based on their function in ribosome biogenesis. We also describe the use of vital dyes such as Hoechst 33342 and Thioflavin T in nucleolar staining. Additionally, we quantify nucleolar morphology changes induced by heat shock and actinomycin D treatments. We suggest these approaches will be valuable in a variety of studies that seek to better understand the nucleolus, particularly those regarding phase separation. These approaches may also be instructive for other studies on phase separation, especially in the nucleus.
Collapse
Affiliation(s)
- Emily D Lavering
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Irini N Petros
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Daniel L Weeks
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Bailey AD, Talkish J, Ding H, Igel H, Duran A, Mantripragada S, Paten B, Ares M. Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling. eLife 2022; 11:e76562. [PMID: 35384842 PMCID: PMC9045821 DOI: 10.7554/elife.76562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Nucleotides in RNA and DNA are chemically modified by numerous enzymes that alter their function. Eukaryotic ribosomal RNA (rRNA) is modified at more than 100 locations, particularly at highly conserved and functionally important nucleotides. During ribosome biogenesis, modifications are added at various stages of assembly. The existence of differently modified classes of ribosomes in normal cells is unknown because no method exists to simultaneously evaluate the modification status at all sites within a single rRNA molecule. Using a combination of yeast genetics and nanopore direct RNA sequencing, we developed a reliable method to track the modification status of single rRNA molecules at 37 sites in 18 S rRNA and 73 sites in 25 S rRNA. We use our method to characterize patterns of modification heterogeneity and identify concerted modification of nucleotides found near functional centers of the ribosome. Distinct, undermodified subpopulations of rRNAs accumulate upon loss of Dbp3 or Prp43 RNA helicases, suggesting overlapping roles in ribosome biogenesis. Modification profiles are surprisingly resistant to change in response to many genetic and acute environmental conditions that affect translation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture single-molecule RNA modification profiles provides new insights into the roles of nucleotide modifications in RNA function.
Collapse
Affiliation(s)
- Andrew D Bailey
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
| | - Jason Talkish
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Hongxu Ding
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
- Department of Pharmacy Practice & Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Haller Igel
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | | | | | - Benedict Paten
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
| | - Manuel Ares
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
7
|
Vaasjo LO. LncRNAs and Chromatin Modifications Pattern m6A Methylation at the Untranslated Regions of mRNAs. Front Genet 2022; 13:866772. [PMID: 35368653 PMCID: PMC8968631 DOI: 10.3389/fgene.2022.866772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
New roles for RNA in mediating gene expression are being discovered at an alarming rate. A broad array of pathways control patterning of N6-methyladenosine (m6A) methylation on RNA transcripts. This review comprehensively discusses long non-coding RNAs (lncRNAs) as an additional dynamic regulator of m6A methylation, with a focus on the untranslated regions (UTRs) of mRNAs. Although there is extensive literature describing m6A modification of lncRNA, the function of lncRNA in guiding m6A writers has not been thoroughly explored. The independent control of lncRNA expression, its heterogeneous roles in RNA metabolism, and its interactions with epigenetic machinery, alludes to their potential in dynamic patterning of m6A methylation. While epigenetic regulation by histone modification of H3K36me3 has been demonstrated to pattern RNA m6A methylation, these modifications were specific to the coding and 3′UTR regions. However, there are observations that 5′UTR m6A is distinct from that of the coding and 3′UTR regions, and substantial evidence supports the active regulation of 5′UTR m6A methylation. Consequently, two potential mechanisms in patterning the UTRs m6A methylation are discussed; (1) Anti-sense lncRNA (AS-lncRNA) can either bind directly to the UTR, or (2) act indirectly via recruitment of chromatin-modifying complexes to pattern m6A. Both pathways can guide the m6A writer complex, facilitate m6A methylation and modulate protein translation. Findings in the lncRNA-histone-m6A axis could potentially contribute to the discovery of new functions of lncRNAs and clarify lncRNA-m6A findings in translational medicine.
Collapse
Affiliation(s)
- Lee O. Vaasjo
- Cellular and Molecular Biology, Tulane University, New Orleans, LA, United States
- Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA, United States
- *Correspondence: Lee O. Vaasjo,
| |
Collapse
|
8
|
Fractional 2'-O-methylation in the ribosomal RNA of Dictyostelium discoideum supports ribosome heterogeneity in Amoebozoa. Sci Rep 2022; 12:1952. [PMID: 35121764 PMCID: PMC8817022 DOI: 10.1038/s41598-022-05447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
A hallmark of ribosomal RNA (rRNA) are 2′-O-methyl groups that are introduced sequence specifically by box C/D small nucleolar RNAs (snoRNAs) in ribonucleoprotein particles. Most data on this chemical modification and its impact on RNA folding and stability are derived from organisms of the Opisthokonta supergroup. Using bioinformatics and RNA-seq data, we identify 30 novel box C/D snoRNAs in Dictyostelium discoideum, many of which are differentially expressed during the multicellular development of the amoeba. By applying RiboMeth-seq, we find 49 positions in the 17S and 26S rRNA 2′-O-methylated. Several of these nucleotides are substoichiometrically modified, with one displaying dynamic modification levels during development. Using homology-based models for the D. discoideum rRNA secondary structures, we localize many modified nucleotides in the vicinity of the ribosomal A, P and E sites. For most modified positions, a guiding box C/D snoRNA could be identified, allowing to determine idiosyncratic features of the snoRNA/rRNA interactions in the amoeba. Our data from D. discoideum represents the first evidence for ribosome heterogeneity in the Amoebozoa supergroup, allowing to suggest that it is a common feature of all eukaryotes.
Collapse
|
9
|
Deogharia M, Gurha P. The "guiding" principles of noncoding RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1704. [PMID: 34856642 DOI: 10.1002/wrna.1704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/09/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
The human genome is pervasively transcribed and yet only a small fraction of these RNAs (less than 2%) are known to code for proteins. The vast majority of the RNAs are classified as noncoding RNAs (ncRNAs) and are further subgrouped as small (shorter than 200 bases) and long noncoding RNAs. The ncRNAs have been identified in all three domains of life and regulate diverse cellular processes through transcriptional and posttranscriptional gene regulation. Most of these RNAs work in conjunction with proteins forming a wide array of base pairing interactions. The determinants of these base pairing interactions are now becoming more evident and show striking similarities among the diverse group of ncRNAs. Here we present a mechanistic overview of pairing between RNA-RNA or RNA-DNA that dictates the function of ncRNAs; we provide examples to illustrate that ncRNAs work through shared evolutionary mechanisms that encompasses a guide-target interaction, involving not only classical Watson-Crick but also noncanonical Wobble and Hoogsteen base pairing. We also highlight the similarities in target selection, proofreading, and the ruler mechanism of ncRNA-protein complexes that confers target specificity and target site selection. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA-Based Catalysis > RNA-Mediated Cleavage RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, Houston, Texas, USA.,University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, Houston, Texas, USA.,University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Jaafar M, Contreras J, Dominique C, Martín-Villanueva S, Capeyrou R, Vitali P, Rodríguez-Galán O, Velasco C, Humbert O, Watkins NJ, Villalobo E, Bohnsack KE, Bohnsack MT, Henry Y, Merhi RA, de la Cruz J, Henras AK. Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. Nat Commun 2021; 12:6153. [PMID: 34686656 PMCID: PMC8536666 DOI: 10.1038/s41467-021-26207-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit. The molecular events underlying the assembly and maturation of the early pre-60S particles during eukaryotic ribosome synthesis are not well understood. Here, the authors combine yeast genetics and biochemical experiments to characterise the functions of two important players of eukaryotic ribosome biogenesis, the box C/D snoRNP snR190 and the helicase Dbp7, which both interact. They show that the snR190 snoRNA acts as a RNA chaperone that assists the structuring of the 25S rRNA during the maturation of early pre-60S particles and that Dbp7 is important for facilitating remodeling events in the peptidyl transferase center region of the 25S rRNAs during the maturation of early pre-60S particles.
Collapse
Affiliation(s)
- Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon.,Cancer Research Center of Lyon (CRCL), 69 008, Lyon, France
| | - Julia Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Patrice Vitali
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Carmen Velasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Odile Humbert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077, Göttingen, Germany
| | - Yves Henry
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
11
|
Höfler S, Lukat P, Blankenfeldt W, Carlomagno T. Eukaryotic Box C/D methylation machinery has two non-symmetric protein assembly sites. Sci Rep 2021; 11:17561. [PMID: 34475498 PMCID: PMC8413462 DOI: 10.1038/s41598-021-97030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
Box C/D ribonucleoprotein complexes are RNA-guided methyltransferases that methylate the ribose 2'-OH of RNA. The central 'guide RNA' has box C and D motifs at its ends, which are crucial for activity. Archaeal guide RNAs have a second box C'/D' motif pair that is also essential for function. This second motif is poorly conserved in eukaryotes and its function is uncertain. Conflicting literature data report that eukaryotic box C'/D' motifs do or do not bind proteins specialized to recognize box C/D-motifs and are or are not important for function. Despite this uncertainty, the architecture of eukaryotic 2'-O-methylation enzymes is thought to be similar to that of their archaeal counterpart. Here, we use biochemistry, X-ray crystallography and mutant analysis to demonstrate the absence of functional box C'/D' motifs in more than 80% of yeast guide RNAs. We conclude that eukaryotic Box C/D RNPs have two non-symmetric protein assembly sites and that their three-dimensional architecture differs from that of archaeal 2'-O-methylation enzymes.
Collapse
Affiliation(s)
- Simone Höfler
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167, Hannover, Lower Saxony, Germany
| | - Peer Lukat
- Department of Structure and Function of Proteins, Helmholtz Centre of Infection Research, 38124, Braunschweig, Lower Saxony, Germany
| | - Wulf Blankenfeldt
- Department of Structure and Function of Proteins, Helmholtz Centre of Infection Research, 38124, Braunschweig, Lower Saxony, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Teresa Carlomagno
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167, Hannover, Lower Saxony, Germany.
- Group of NMR-Based Structural Chemistry, Helmholtz Centre of Infection Research, 38124, Braunschweig, Lower Saxony, Germany.
| |
Collapse
|
12
|
Aquino GRR, Krogh N, Hackert P, Martin R, Gallesio JD, van Nues RW, Schneider C, Watkins NJ, Nielsen H, Bohnsack KE, Bohnsack MT. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2'-O-methylation. Nucleic Acids Res 2021; 49:4066-4084. [PMID: 33721027 PMCID: PMC8053091 DOI: 10.1093/nar/gkab159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
RNA helicases play important roles in diverse aspects of RNA metabolism through their functions in remodelling ribonucleoprotein complexes (RNPs), such as pre-ribosomes. Here, we show that the DEAD box helicase Dbp3 is required for efficient processing of the U18 and U24 intron-encoded snoRNAs and 2′-O-methylation of various sites within the 25S ribosomal RNA (rRNA) sequence. Furthermore, numerous box C/D snoRNPs accumulate on pre-ribosomes in the absence of Dbp3. Many snoRNAs guiding Dbp3-dependent rRNA modifications have overlapping pre-rRNA basepairing sites and therefore form mutually exclusive interactions with pre-ribosomes. Analysis of the distribution of these snoRNAs between pre-ribosome-associated and ‘free’ pools demonstrated that many are almost exclusively associated with pre-ribosomal complexes. Our data suggest that retention of such snoRNPs on pre-ribosomes when Dbp3 is lacking may impede rRNA 2′-O-methylation by reducing the recycling efficiency of snoRNPs and by inhibiting snoRNP access to proximal target sites. The observation of substoichiometric rRNA modification at adjacent sites suggests that the snoRNPs guiding such modifications likely interact stochastically rather than hierarchically with their pre-rRNA target sites. Together, our data provide new insights into the dynamics of snoRNPs on pre-ribosomal complexes and the remodelling events occurring during the early stages of ribosome assembly.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Roman Martin
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Robert W van Nues
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicholas J Watkins
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark.,Genomics group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Wu S, Wang Y, Wang J, Li X, Li J, Ye K. Profiling of RNA ribose methylation in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:4104-4119. [PMID: 33784398 PMCID: PMC8053127 DOI: 10.1093/nar/gkab196] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic rRNAs and snRNAs are decorated with abundant 2′-O-methylated nucleotides (Nm) that are predominantly synthesized by box C/D snoRNA-guided enzymes. In the model plant Arabidopsis thaliana, C/D snoRNAs have been well categorized, but there is a lack of systematic mapping of Nm. Here, we applied RiboMeth-seq to profile Nm in cytoplasmic, chloroplast and mitochondrial rRNAs and snRNAs. We identified 111 Nm in cytoplasmic rRNAs and 19 Nm in snRNAs and assigned guide for majority of the detected sites using an updated snoRNA list. At least four sites are directed by guides with multiple specificities as shown in yeast. We found that C/D snoRNAs frequently form extra pairs with nearby sequences of methylation sites, potentially facilitating the substrate binding. Chloroplast and mitochondrial rRNAs contain five almost identical methylation sites, including two novel sites mediating ribosomal subunit joining. Deletion of FIB1 or FIB2 gene reduced the accumulation of C/D snoRNA and rRNA methylation with FIB1 playing a bigger role in methylation. Our data reveal the comprehensive 2′-O-methylation maps for Arabidopsis rRNAs and snRNAs and would facilitate study of their function and biosynthesis.
Collapse
Affiliation(s)
- Songlin Wu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xilong Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Baldini L, Charpentier B, Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Noncoding RNA 2021; 7:ncrna7020030. [PMID: 34066559 PMCID: PMC8162545 DOI: 10.3390/ncrna7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.
Collapse
Affiliation(s)
| | - Bruno Charpentier
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| | - Stéphane Labialle
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| |
Collapse
|
15
|
Höfler S, Lukat P, Blankenfeldt W, Carlomagno T. High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 amino-terminal domain. RNA (NEW YORK, N.Y.) 2021; 27:496-512. [PMID: 33483369 PMCID: PMC7962484 DOI: 10.1261/rna.077396.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Ribosomal RNA (rRNA) carries extensive 2'-O-methyl marks at functionally important sites. This simple chemical modification is thought to confer stability, promote RNA folding, and contribute to generate a heterogenous ribosome population with a yet-uncharacterized function. 2'-O-methylation occurs both in archaea and eukaryotes and is accomplished by the Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural information exists for the archaeal enzyme, while no structural data is available for the eukaryotic enzyme. The yeast Box C/D RNP consists of a guide RNA, the RNA-primary binding protein Snu13, the two scaffold proteins Nop56 and Nop58, and the enzymatic module Nop1. Here we present the high-resolution structure of the eukaryotic Box C/D methyltransferase Nop1 from Saccharomyces cerevisiae bound to the amino-terminal domain of Nop56. We discuss similarities and differences between the interaction modes of the two proteins in archaea and eukaryotes and demonstrate that eukaryotic Nop56 recruits the methyltransferase to the Box C/D RNP through a protein-protein interface that differs substantially from the archaeal orthologs. This study represents a first achievement in understanding the evolution of the structure and function of these proteins from archaea to eukaryotes.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Binding Sites
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Crystallography, X-Ray
- Gene Expression
- Methylation
- Models, Molecular
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Pyrococcus furiosus/genetics
- Pyrococcus furiosus/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Alignment
- Structural Homology, Protein
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Simone Höfler
- Leibniz University Hannover, Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), D-30167 Hannover, Germany
| | - Peer Lukat
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, D-38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, D-38124 Braunschweig, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), D-30167 Hannover, Germany
- Helmholtz Centre for Infection Research, Group of NMR-based Structural Chemistry, D-38124 Braunschweig, Germany
| |
Collapse
|
16
|
Yang Z, Wang J, Huang L, Lilley DMJ, Ye K. Functional organization of box C/D RNA-guided RNA methyltransferase. Nucleic Acids Res 2020; 48:5094-5105. [PMID: 32297938 PMCID: PMC7229835 DOI: 10.1093/nar/gkaa247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/14/2022] Open
Abstract
Box C/D RNA protein complexes (RNPs) catalyze site-specific 2'-O-methylation of RNA with specificity determined by guide RNAs. In eukaryotic C/D RNP, the paralogous Nop58 and Nop56 proteins specifically associate with terminal C/D and internal C'/D' motifs of guide RNAs, respectively. We have reconstituted active C/D RNPs with recombinant proteins of the thermophilic yeast Chaetomium thermophilum. Nop58 and Nop56 could not distinguish between the two C/D motifs in the reconstituted enzyme, suggesting that the assembly specificity is imposed by trans-acting factors in vivo. The two C/D motifs are functionally independent and halfmer C/D RNAs can also guide site-specific methylation. Extensive pairing between C/D RNA and substrate is inhibitory to modification for both yeast and archaeal C/D RNPs. N6-methylated adenine at box D/D' interferes with the function of the coupled guide. Our data show that all C/D RNPs share the same functional organization and mechanism of action and provide insight into the assembly specificity of eukaryotic C/D RNPs.
Collapse
Affiliation(s)
- Zuxiao Yang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020; 48:1627-1651. [PMID: 31828325 PMCID: PMC7038934 DOI: 10.1093/nar/gkz1140] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution. Here, we discuss the new and unforeseen roles attributed to snoRNAs, focusing on the presumed mechanisms of action. Furthermore, we review the experimental approaches to study snoRNA function, including high resolution RNA:protein and RNA:RNA interaction mapping, techniques for analyzing modifications on targeted RNAs, and cellular and animal models used in snoRNA biology research.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia
| | - Janja Božič
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia
| | - Boris Rogelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Paul A, Tiotiu D, Bragantini B, Marty H, Charpentier B, Massenet S, Labialle S. Bcd1p controls RNA loading of the core protein Nop58 during C/D box snoRNP biogenesis. RNA (NEW YORK, N.Y.) 2019; 25:496-506. [PMID: 30700579 PMCID: PMC6426285 DOI: 10.1261/rna.067967.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins (C/D snoRNPs) is guided by conserved trans-acting factors that act collectively to assemble the core proteins SNU13/Snu13, NOP58/Nop58, NOP56/Nop56, FBL/Nop1, and box C/D small nucleolar RNAs (C/D snoRNAs), in human and in yeast, respectively. This finely elaborated process involves the sequential interplay of snoRNP-related proteins and RNA through the formation of transient pre-RNP complexes. BCD1/Bcd1 protein is essential for yeast cell growth and for the specific accumulation of box C/D snoRNAs. In this work, chromatin, RNA, and protein immunoprecipitation assays revealed the ordered loading of several snoRNP-related proteins on immature and mature snoRNA species. Our results identify Bcd1p as an assembly factor of C/D snoRNP biogenesis that is likely recruited cotranscriptionally and that directs the loading of the core protein Nop58 on RNA.
Collapse
Affiliation(s)
- Arnaud Paul
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Decebal Tiotiu
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Hélène Marty
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | | | |
Collapse
|
19
|
Sloan KE, Knox AA, Wells GR, Schneider C, Watkins NJ. Interactions and activities of factors involved in the late stages of human 18S rRNA maturation. RNA Biol 2019; 16:196-210. [PMID: 30638116 PMCID: PMC6380343 DOI: 10.1080/15476286.2018.1564467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 01/25/2023] Open
Abstract
Ribosome production is an essential cellular process involving a plethora of trans-acting factors, such as nucleases, methyltransferases, RNA helicases and kinases that catalyse key maturation steps. Precise temporal and spatial regulation of such enzymes is essential to ensure accurate and efficient subunit assembly. Here, we focus on the maturation of the 3' end of the 18S rRNA in human cells. We reveal that human RIO2 is an active kinase that phosphorylates both itself and the rRNA methyltransferase DIM1 in vitro. In contrast to yeast, our data confirm that human DIM1 predominantly acts in the nucleus and we further demonstrate that the 21S pre-rRNA is the main target for DIM1-catalysed methylation. We show that the PIN domain of the endonuclease NOB1 is required for site 3 cleavage, while the zinc ribbon domain is essential for pre-40S recruitment. Furthermore, we also demonstrate that NOB1, PNO1 and DIM1 bind to a region of the pre-rRNA encompassing the 3' end of 18S and the start of ITS1, in vitro. Interestingly, NOB1 is present in the cell at higher levels than other pre-40S factors. We provide evidence that NOB1 is multimeric within the cell and show that NOB1 multimerisation is lost when ribosome biogenesis is blocked. Taken together, our data indicate a dynamic interplay of key factors associated with the 3' end of the 18S rRNA during human pre-40S biogenesis and highlight potential mechanisms by which this process can be regulated.
Collapse
Affiliation(s)
- Katherine Elizabeth Sloan
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Department of Molecular Biology, University Medical Centre, Goettingen, Goettingen, Germany
| | - Andrew Alexander Knox
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Graeme Raymond Wells
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas James Watkins
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Yu G, Zhao Y, Li H. The multistructural forms of box C/D ribonucleoprotein particles. RNA (NEW YORK, N.Y.) 2018; 24:1625-1633. [PMID: 30254138 PMCID: PMC6239191 DOI: 10.1261/rna.068312.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Structural biology studies of archaeal and yeast box C/D ribonucleoprotein particles (RNPs) reveal a surprisingly wide range of forms. If form ever follows function, the different structures of box C/D small ribonucleoprotein particles (snoRNPs) may reflect their versatile functional roles beyond what has been recognized. A large majority of box C/D RNPs serve to site-specifically methylate the ribosomal RNA, typically as independent complexes. Select members of the box C/D snoRNPs also are essential components of the megadalton RNP enzyme, the small subunit processome that is responsible for processing ribosomal RNA. Other box C/D RNPs continue to be uncovered with either unexpected or unknown functions. We summarize currently known box C/D RNP structures in this review and identify the Nop56/58 and box C/D RNA subunits as the key elements underlying the observed structural diversity, and likely, the diverse functional roles of box C/D RNPs.
Collapse
Affiliation(s)
- Ge Yu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Hong Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
21
|
Krogh N, Nielsen H. Sequencing-based methods for detection and quantitation of ribose methylations in RNA. Methods 2018; 156:5-15. [PMID: 30503826 DOI: 10.1016/j.ymeth.2018.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022] Open
Abstract
Ribose methylation is one of the most abundant RNA modifications and is found in all domains of life and all major classes of RNA (rRNA, tRNA, and mRNA). Ribose methylations are introduced by stand-alone enzymes or by generic enzymes guided to the target by small RNA guides. Recent years have seen the development of several sequencing-based methods for RNA modifications relying on different principles. In this review, we compare mapping and quantitation studies of ribose methylations from yeast and human culture cells. The emphasis is on ribosomal RNA for which the results can be compared to results from RNA fingerprinting and mass spectrometry. One sequencing approach is consistent with these methods and paints a conservative picture of rRNA modifications. Other approaches detect many more sites. Similar discrepancies are found in measurements of modification stoichiometry. The results are discussed in relation to the more challenging task of mapping ribose methylations in mRNA.
Collapse
Affiliation(s)
- Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
22
|
2'-O-Methylation of Ribosomal RNA: Towards an Epitranscriptomic Control of Translation? Biomolecules 2018; 8:biom8040106. [PMID: 30282949 PMCID: PMC6316387 DOI: 10.3390/biom8040106] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Ribosomal RNA (rRNA) undergoes post-transcriptional modification of over 200 nucleotides, predominantly 2′-O-methylation (2′-O-Me). 2′-O-Methylation protects RNA from hydrolysis and modifies RNA strand flexibility but does not contribute to Watson-Crick base pairing. The contribution of 2′-O-Me to the translational capacity of ribosomes has been established. Yet, how 2′-O-Me participates in ribosome biogenesis and ribosome functioning remains unclear. The development of 2′-O-Me quantitative mapping methods has contributed to the demonstration that these modifications are not constitutive but rather provide heterogeneity to the ribosomal population. Moreover, recent advances in ribosome structure analysis and in vitro translation assays have proven, for the first time, that 2′-O-Me contributes to regulating protein synthesis. This review highlights the recent data exploring the impact of 2′-O-Me on ribosome structure and function, and the emerging idea that the rRNA epitranscriptome is involved in translational control.
Collapse
|
23
|
van Nues RW, Watkins NJ. Unusual C΄/D΄ motifs enable box C/D snoRNPs to modify multiple sites in the same rRNA target region. Nucleic Acids Res 2018; 45:2016-2028. [PMID: 28204564 PMCID: PMC5389607 DOI: 10.1093/nar/gkw842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic box C/D small nucleolar (sno)RNPs catalyse the site-specific 2΄-O-methylation of ribosomal RNA. The RNA component (snoRNA) contains guide regions that base-pair with the target site to select the single nucleotide to be modified. The terminal C/D and internal C΄/D΄ motifs in the snoRNA, adjacent to the guide region, function as binding sites for the snoRNP proteins including the enzymatic subunit fibrillarin/Nop1. Four yeast snoRNAs are unusual in that they are predicted to methylate two nucleotides in a single target region. In each case, the internal C΄/D΄ motifs from these snoRNAs differ from the consensus. Our data indicate that the C΄/D΄ motifs in snR13, snR48 and U18 form two alternative structures that lead to differences in the position of the proteins bound to this motif. We propose that each snoRNA forms two different snoRNPs, subtly different in how the proteins are bound to the C΄/D΄ motif, leading to 2΄-O-methylation of different nucleotides in the target region. For snR48 and U18, the unusual C΄/D΄ alone is enough for the modification of two nucleotides. However, for the snR13 snoRNA the unusual C΄/D΄ motif and extra base-pairing, which stimulates rRNA 2΄-O-methylation, are both critical for multiple modifications in the target region.
Collapse
Affiliation(s)
- Robert Willem van Nues
- Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicholas James Watkins
- Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
24
|
Burke MF, Logan MK, Hebert MD. Identification of additional regulatory RNPs that impact rRNA and U6 snRNA methylation. Biol Open 2018; 7:bio.036095. [PMID: 30037971 PMCID: PMC6124571 DOI: 10.1242/bio.036095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ribosomes can be heterogeneous, and the major contributor to ribosome heterogeneity is variation in rRNA modification. There are two major types of rRNA modification, pseudouridylation and ribose methylation. In humans, the majority of these rRNA modifications are conducted by two classes of small nucleolar ribonucleoproteins (snoRNPs), which contain a guide RNA (small nucleolar RNA, snoRNA) complexed with proteins. Box H/ACA snoRNPs conduct pseudouridylation modifications and box C/D snoRNPs generate ribose methylation modifications. It is unclear how ribosome heterogeneity is accomplished in regards to the understanding of the signals and factors that regulate rRNA modifications. We have recently reported that a new class of RNP, that we term regulatory RNP (regRNP), may contribute to rRNA modification as well as the modification of nucleolar trafficked U6 snRNA, via interactions with snoRNPs. Here we report the identification of additional regRNP activities that influence the methylation of two sites within 18S rRNA, two sites within 28S rRNA and one site within U6 snRNA. These findings provide additional proof that regulation of snoRNP activity contributes to ribosome heterogeneity.
Collapse
Affiliation(s)
- Marilyn F Burke
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
25
|
Albihlal WS, Gerber AP. Unconventional
RNA
‐binding proteins: an uncharted zone in
RNA
biology. FEBS Lett 2018; 592:2917-2931. [DOI: 10.1002/1873-3468.13161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Waleed S. Albihlal
- Department of Microbial Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - André P. Gerber
- Department of Microbial Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| |
Collapse
|
26
|
Fang X, Yang D, Luo H, Wu S, Dong W, Xiao J, Yuan S, Ni A, Zhang KJ, Liu XY, Chu L. SNORD126 promotes HCC and CRC cell growth by activating the PI3K-AKT pathway through FGFR2. J Mol Cell Biol 2018; 9:243-255. [PMID: 27913571 DOI: 10.1093/jmcb/mjw048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023] Open
Abstract
Small nucleolar RNA (snoRNA) dysfunctions have been associated with cancer development. SNORD126 is an orphan C/D box snoRNA that is encoded within introns 5-6 of its host gene, cyclin B1-interacting protein 1 (CCNB1IP1). The cancer-associated molecular mechanisms triggered by SNORD126 are not fully understood. Here, we demonstrate that SNORD126 is highly expressed in hepatocellular carcinoma (HCC) and colorectal cancer (CRC) patient samples. SNORD126 increased Huh-7 and SW480 cell growth and tumorigenicity in nude mice. Knockdown of SNORD126 inhibited HepG2 and LS174T cell growth. We verified that SNORD126 was not processed into small RNAs with miRNA activity. Moreover, SNORD126 did not show a significant expression correlation with CCNB1IP1 in HCC samples or regulate CCNB1IP1 expression. Our gene expression profile analysis indicated that SNORD126-upregulated genes frequently mapped to the PI3K-AKT pathway. SNORD126 overexpression increased the levels of phosphorylated AKT, GSK-3β, and p70S6K and elevated fibroblast growth factor receptor 2 (FGFR2) expression. siRNA-mediated knockdown or AZD4547-mediated inactivation of FGFR2 in SNORD126-overexpressing Huh-7 cells inhibited AKT phosphorylation and suppressed cell growth. These findings indicate an oncogenic role for SNORD126 in cancer and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xianlong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongmei Yang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hongping Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjie Dong
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kang-Jian Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
27
|
Csde1 binds transcripts involved in protein homeostasis and controls their expression in an erythroid cell line. Sci Rep 2018; 8:2628. [PMID: 29422612 PMCID: PMC5805679 DOI: 10.1038/s41598-018-20518-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/18/2018] [Indexed: 01/12/2023] Open
Abstract
Expression of the RNA-binding protein Csde1 (Cold shock domain protein e1) is strongly upregulated during erythropoiesis compared to other hematopoietic lineages. Csde1 expression is impaired in the severe congenital anemia Diamond Blackfan Anemia (DBA), and reduced expression of Csde1 in healthy erythroblasts impaired their proliferation and differentiation. To investigate the cellular pathways controlled by Csde1 in erythropoiesis, we identified the transcripts that physically associate with Csde1 in erythroid cells. These mainly encoded proteins involved in ribogenesis, mRNA translation and protein degradation, but also proteins associated with the mitochondrial respiratory chain and mitosis. Crispr/Cas9-mediated deletion of the first cold shock domain of Csde1 affected RNA expression and/or protein expression of Csde1-bound transcripts. For instance, protein expression of Pabpc1 was enhanced while Pabpc1 mRNA expression was reduced indicating more efficient translation of Pabpc1 followed by negative feedback on mRNA stability. Overall, the effect of reduced Csde1 function on mRNA stability and translation of Csde1-bound transcripts was modest. Clones with complete loss of Csde1, however, could not be generated. We suggest that Csde1 is involved in feed-back control in protein homeostasis and that it dampens stochastic changes in mRNA expression.
Collapse
|
28
|
Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT, Blanchard SC. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. SCIENCE ADVANCES 2018; 4:eaao0665. [PMID: 29503865 PMCID: PMC5829973 DOI: 10.1126/sciadv.aao0665] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/08/2018] [Indexed: 05/25/2023]
Abstract
The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome's molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease.
Collapse
Affiliation(s)
- Matthew M. Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chad M. Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Randall A. Dass
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Linda Bojmar
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - C. Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Scott C. Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
29
|
Poole AR, Vicino I, Adachi H, Yu YT, Hebert MD. Regulatory RNPs: a novel class of ribonucleoproteins that potentially contribute to ribosome heterogeneity. Biol Open 2017; 6:1342-1354. [PMID: 28808137 PMCID: PMC5612246 DOI: 10.1242/bio.028092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many ribonucleoproteins (RNPs), which are comprised of noncoding RNA and associated proteins, are involved in essential cellular processes such as translation and pre-mRNA splicing. One class of RNP is the small Cajal body-specific RNP (scaRNP), which contributes to the biogenesis of small nuclear RNPs (snRNPs) that are central components of the spliceosome. Three scaRNAs are internally processed, generating stable nucleolus-enriched RNAs of unknown function. Here, we provide data that show that these RNAs become part of RNPs we term regulatory RNPs (regRNPs). Most modifications within rRNA (predominantly pseudouridylation and ribose 2′-O-methylation) are conducted by small nucleolar RNPs (snoRNPs), and we provide evidence that the activity of at least some of these snoRNPs is under the control of regRNPs. Because modifications within rRNA can vary in different physiological or pathological situations, rRNA modifications are thought to be the major source of ribosome heterogeneity. Our identification of regRNPs thus provides a potential mechanism for how ribosome heterogeneity may be accomplished. This work also provides additional functional connections between the Cajal body and the nucleolus. Summary: Processed scaRNAs give rise to a novel regulatory RNP, which regulates the modification of ribosomal RNA. These findings provide insight into the mechanisms governing ribosome heterogeneity.
Collapse
Affiliation(s)
- Aaron R Poole
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Ian Vicino
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
30
|
Zhu Y, Pirnie SP, Carmichael GG. High-throughput and site-specific identification of 2'- O-methylation sites using ribose oxidation sequencing (RibOxi-seq). RNA (NEW YORK, N.Y.) 2017; 23:1303-1314. [PMID: 28495677 PMCID: PMC5513074 DOI: 10.1261/rna.061549.117] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/07/2017] [Indexed: 05/18/2023]
Abstract
Ribose methylation (2'-O-methylation, 2'-OMe) occurs at high frequencies in rRNAs and other small RNAs and is carried out using a shared mechanism across eukaryotes and archaea. As RNA modifications are important for ribosome maturation, and alterations in these modifications are associated with cellular defects and diseases, it is important to characterize the landscape of 2'-O-methylation. Here we report the development of a highly sensitive and accurate method for ribose methylation detection using next-generation sequencing. A key feature of this method is the generation of RNA fragments with random 3'-ends, followed by periodate oxidation of all molecules terminating in 2',3'-OH groups. This allows only RNAs harboring 2'-OMe groups at their 3'-ends to be sequenced. Although currently requiring microgram amounts of starting material, this method is robust for the analysis of rRNAs even at low sequencing depth.
Collapse
Affiliation(s)
- Yinzhou Zhu
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut 06030, USA
| | - Stephan P Pirnie
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut 06030, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut 06030, USA
| |
Collapse
|
31
|
Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochem J 2017; 474:195-214. [PMID: 28062837 DOI: 10.1042/bcj20160516] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022]
Abstract
Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.
Collapse
|
32
|
Sharma S, Yang J, van Nues R, Watzinger P, Kötter P, Lafontaine DLJ, Granneman S, Entian KD. Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation. PLoS Genet 2017; 13:e1006804. [PMID: 28542199 PMCID: PMC5464676 DOI: 10.1371/journal.pgen.1006804] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/08/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
Box C/D snoRNAs are known to guide site-specific ribose methylation of ribosomal RNA. Here, we demonstrate a novel and unexpected role for box C/D snoRNAs in guiding 18S rRNA acetylation in yeast. Our results demonstrate, for the first time, that the acetylation of two cytosine residues in 18S rRNA catalyzed by Kre33 is guided by two orphan box C/D snoRNAs-snR4 and snR45 -not known to be involved in methylation in yeast. We identified Kre33 binding sites on these snoRNAs as well as on the 18S rRNA, and demonstrate that both snR4 and snR45 establish extended bipartite complementarity around the cytosines targeted for acetylation, similar to pseudouridylation pocket formation by the H/ACA snoRNPs. We show that base pairing between these snoRNAs and 18S rRNA requires the putative helicase activity of Kre33, which is also needed to aid early pre-rRNA processing. Compared to yeast, the number of orphan box C/D snoRNAs in higher eukaryotes is much larger and we hypothesize that several of these may be involved in base-modifications.
Collapse
Affiliation(s)
- Sunny Sharma
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
- RNA Molecular Biology and CMMI, F.R.S./FNRS and Université Libre de Bruxelles Rue Profs Jeener & Brachet, Charleroi–Gosselies, Belgium
| | - Jun Yang
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Rob van Nues
- Institute of Structural and Molecular Biology, Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, United Kingdom
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Watzinger
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Peter Kötter
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Denis L. J. Lafontaine
- RNA Molecular Biology and CMMI, F.R.S./FNRS and Université Libre de Bruxelles Rue Profs Jeener & Brachet, Charleroi–Gosselies, Belgium
| | - Sander Granneman
- Institute of Structural and Molecular Biology, Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, United Kingdom
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Henras AK, Plisson-Chastang C, Humbert O, Romeo Y, Henry Y. Synthesis, Function, and Heterogeneity of snoRNA-Guided Posttranscriptional Nucleoside Modifications in Eukaryotic Ribosomal RNAs. Enzymes 2017; 41:169-213. [PMID: 28601222 DOI: 10.1016/bs.enz.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
34
|
Gumienny R, Jedlinski DJ, Schmidt A, Gypas F, Martin G, Vina-Vilaseca A, Zavolan M. High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq. Nucleic Acids Res 2017; 45:2341-2353. [PMID: 28031372 PMCID: PMC5389715 DOI: 10.1093/nar/gkw1321] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023] Open
Abstract
High-throughput sequencing has greatly facilitated the discovery of long and short non-coding RNAs (ncRNAs), which frequently guide ribonucleoprotein complexes to RNA targets, to modulate their metabolism and expression. However, for many ncRNAs, the targets remain to be discovered. In this study, we developed computational methods to map C/D box snoRNA target sites using data from core small nucleolar ribonucleoprotein crosslinking and immunoprecipitation and from transcriptome-wide mapping of 2΄-O-ribose methylation sites. We thereby assigned the snoRNA guide to a known methylation site in the 18S rRNA, we uncovered a novel partially methylated site in the 28S ribosomal RNA, and we captured a site in the 28S rRNA in interaction with multiple snoRNAs. Although we also captured mRNAs in interaction with snoRNAs, we did not detect 2΄-O-methylation of these targets. Our study provides an integrated approach to the comprehensive characterization of 2΄-O-methylation targets of snoRNAs in species beyond those in which these interactions have been traditionally studied and contributes to the rapidly developing field of 'epitranscriptomics'.
Collapse
MESH Headings
- Algorithms
- Base Sequence
- Cross-Linking Reagents/chemistry
- Databases, Genetic
- High-Throughput Nucleotide Sequencing/methods
- Immunoprecipitation
- Methylation
- Protein Binding
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribose/metabolism
- Software
- Transcriptome
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Rafal Gumienny
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| | | | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland
| | - Foivos Gypas
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
| | - Arnau Vina-Vilaseca
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
35
|
Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016; 14:1138-1152. [PMID: 27911188 PMCID: PMC5699541 DOI: 10.1080/15476286.2016.1259781] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.
Collapse
Affiliation(s)
- Katherine E Sloan
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Ahmed S Warda
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Sunny Sharma
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Karl-Dieter Entian
- c Institute for Molecular Biosciences, Goethe University , Frankfurt am Main , Germany
| | - Denis L J Lafontaine
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Markus T Bohnsack
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany.,d Göttingen Centre for Molecular Biosciences, Georg-August-University , Göttingen , Germany
| |
Collapse
|
36
|
Krogh N, Jansson MD, Häfner SJ, Tehler D, Birkedal U, Christensen-Dalsgaard M, Lund AH, Nielsen H. Profiling of 2'-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res 2016; 44:7884-95. [PMID: 27257078 PMCID: PMC5027482 DOI: 10.1093/nar/gkw482] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023] Open
Abstract
Ribose methylation is one of the two most abundant modifications in human ribosomal RNA and is believed to be important for ribosome biogenesis, mRNA selectivity and translational fidelity. We have applied RiboMeth-seq to rRNA from HeLa cells for ribosome-wide, quantitative mapping of 2'-O-Me sites and obtained a comprehensive set of 106 sites, including two novel sites, and with plausible box C/D guide RNAs assigned to all but three sites. We find approximately two-thirds of the sites to be fully methylated and the remainder to be fractionally modified in support of ribosome heterogeneity at the level of RNA modifications. A comparison to HCT116 cells reveals similar 2'-O-Me profiles with distinct differences at several sites. This study constitutes the first comprehensive mapping of 2'-O-Me sites in human rRNA using a high throughput sequencing approach. It establishes the existence of a core of constitutively methylated positions and a subset of variable, potentially regulatory positions, and paves the way for experimental analyses of the role of variations in rRNA methylation under different physiological or pathological settings.
Collapse
Affiliation(s)
- Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200N, Denmark
| | - Martin D Jansson
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200N, Denmark
| | - Sophia J Häfner
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200N, Denmark
| | - Disa Tehler
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200N, Denmark
| | - Ulf Birkedal
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200N, Denmark
| | | | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200N, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200N, Denmark
| |
Collapse
|
37
|
Haag S, Sloan KE, Ranjan N, Warda AS, Kretschmer J, Blessing C, Hübner B, Seikowski J, Dennerlein S, Rehling P, Rodnina MV, Höbartner C, Bohnsack MT. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J 2016; 35:2104-2119. [PMID: 27497299 PMCID: PMC5048346 DOI: 10.15252/embj.201694885] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial gene expression uses a non‐universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt‐)tRNAMet mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt‐tRNAMet to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising m5C34 of mt‐tRNAMet to generate an f5C34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of m5C34 mt‐tRNAMet in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt‐tRNAMet function. Together, our data reveal how modifications in mt‐tRNAMet are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNAMet to recognise the different codons encoding methionine.
Collapse
Affiliation(s)
- Sara Haag
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ahmed S Warda
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Jens Kretschmer
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Charlotte Blessing
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Benedikt Hübner
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Jan Seikowski
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen Georg-August-University, Göttingen, Germany
| | - Peter Rehling
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Institute for Cellular Biochemistry, University Medical Center Göttingen Georg-August-University, Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
38
|
Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci U S A 2016; 113:E1625-34. [PMID: 26957605 DOI: 10.1073/pnas.1519292113] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
C/D box small nucleolar RNAs (SNORDs) are small noncoding RNAs, and their best-understood function is to target the methyltransferase fibrillarin to rRNA (for example, SNORD27 performs 2'-O-methylation of A27 in 18S rRNA). Unexpectedly, we found a subset of SNORDs, including SNORD27, in soluble nuclear extract made under native conditions, where fibrillarin was not detected, indicating that a fraction of the SNORD27 RNA likely forms a protein complex different from canonical snoRNAs found in the insoluble nuclear fraction. As part of this previously unidentified complex,SNORD27 regulates the alternative splicing of the transcription factor E2F7p re-mRNA through direct RNA-RNA interaction without methylating the RNA, likely by competing with U1 small nuclear ribonucleoprotein (snRNP). Furthermore, knockdown of SNORD27 activates previously "silent" exons in several other genes through base complementarity across the entire SNORD27 sequence, not just the antisense boxes. Thus, some SNORDs likely function in both rRNA and pre-mRNA processing, which increases the repertoire of splicing regulators and links both processes.
Collapse
|
39
|
Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar RNAs in cell biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:381-97. [PMID: 25879954 PMCID: PMC4696412 DOI: 10.1002/wrna.1284] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a large class of small noncoding RNAs present in all eukaryotes sequenced thus far. As a family, they have been well characterized as playing a central role in ribosome biogenesis, guiding either the sequence-specific chemical modification of pre-rRNA (ribosomal RNA) or its processing. However, in higher eukaryotes, numerous orphan snoRNAs were described over a decade ago, with no known target or ascribed function, suggesting the possibility of alternative cellular functionality. In recent years, thanks in great part to advances in sequencing methodologies, we have seen many examples of the diversity that exists in the snoRNA family on multiple levels. In this review, we discuss the identification of novel snoRNA members, of unexpected binding partners, as well as the clarification and extension of the snoRNA target space and the characterization of diverse new noncanonical functions, painting a new and extended picture of the snoRNA landscape. Under the deluge of novel features and functions that have recently come to light, snoRNAs emerge as a central, dynamic, and highly versatile group of small regulatory RNAs. WIREs RNA 2015, 6:381–397. doi: 10.1002/wrna.1284
Collapse
Affiliation(s)
- Fabien Dupuis-Sandoval
- Biochemistry Department, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Mikaël Poirier
- Biochemistry Department, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle S Scott
- Biochemistry Department and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
40
|
Sloan KE, Leisegang MS, Doebele C, Ramírez AS, Simm S, Safferthal C, Kretschmer J, Schorge T, Markoutsa S, Haag S, Karas M, Ebersberger I, Schleiff E, Watkins NJ, Bohnsack MT. The association of late-acting snoRNPs with human pre-ribosomal complexes requires the RNA helicase DDX21. Nucleic Acids Res 2014; 43:553-64. [PMID: 25477391 PMCID: PMC4288182 DOI: 10.1093/nar/gku1291] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Translation fidelity and efficiency require multiple ribosomal (r)RNA modifications that are mostly mediated by small nucleolar (sno)RNPs during ribosome production. Overlapping basepairing of snoRNAs with pre-rRNAs often necessitates sequential and efficient association and dissociation of the snoRNPs, however, how such hierarchy is established has remained unknown so far. Here, we identify several late-acting snoRNAs that bind pre-40S particles in human cells and show that their association and function in pre-40S complexes is regulated by the RNA helicase DDX21. We map DDX21 crosslinking sites on pre-rRNAs and show their overlap with the basepairing sites of the affected snoRNAs. While DDX21 activity is required for recruitment of the late-acting snoRNAs SNORD56 and SNORD68, earlier snoRNAs are not affected by DDX21 depletion. Together, these observations provide an understanding of the timing and ordered hierarchy of snoRNP action in pre-40S maturation and reveal a novel mode of regulation of snoRNP function by an RNA helicase in human cells.
Collapse
Affiliation(s)
- Katherine E Sloan
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Matthias S Leisegang
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Carmen Doebele
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Ana S Ramírez
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Charlotta Safferthal
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Jens Kretschmer
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Tobias Schorge
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Stavroula Markoutsa
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Sara Haag
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University, 60438 Frankfurt, Germany
| | - Nicholas J Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Markus T Bohnsack
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Macromolecular Complexes, Goethe University, 60438 Frankfurt, Germany Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
41
|
Martin R, Hackert P, Ruprecht M, Simm S, Brüning L, Mirus O, Sloan KE, Kudla G, Schleiff E, Bohnsack MT. A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. RNA (NEW YORK, N.Y.) 2014; 20:1173-82. [PMID: 24947498 PMCID: PMC4105744 DOI: 10.1261/rna.044669.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/20/2014] [Indexed: 05/23/2023]
Abstract
Ribosome biogenesis in yeast requires 75 small nucleolar RNAs (snoRNAs) and a myriad of cofactors for processing, modification, and folding of the ribosomal RNAs (rRNAs). For the 19 RNA helicases implicated in ribosome synthesis, their sites of action and molecular functions have largely remained unknown. Here, we have used UV cross-linking and analysis of cDNA (CRAC) to reveal the pre-rRNA binding sites of the RNA helicase Rok1, which is involved in early small subunit biogenesis. Several contact sites were identified in the 18S rRNA sequence, which interestingly all cluster in the "foot" region of the small ribosomal subunit. These include a major binding site in the eukaryotic expansion segment ES6, where Rok1 is required for release of the snR30 snoRNA. Rok1 directly contacts snR30 and other snoRNAs required for pre-rRNA processing. Using cross-linking, ligation and sequencing of hybrids (CLASH) we identified several novel pre-rRNA base-pairing sites for the snoRNAs snR30, snR10, U3, and U14, which cluster in the expansion segments of the 18S rRNA. Our data suggest that these snoRNAs bridge interactions between the expansion segments, thereby forming an extensive interaction network that likely promotes pre-rRNA maturation and folding in early pre-ribosomal complexes and establishes long-range rRNA interactions during ribosome synthesis.
Collapse
MESH Headings
- Base Pairing
- DEAD-box RNA Helicases/metabolism
- Nucleic Acid Conformation
- Protein Binding
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Philipp Hackert
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Maike Ruprecht
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Lukas Brüning
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Oliver Mirus
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Katherine E Sloan
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany
| | - Markus T Bohnsack
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany Göttingen Center for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
42
|
Abstract
snoRNAs (small nucleolar RNAs) constitute one of the largest and best-studied classes of non-coding RNAs that confer enzymatic specificity. With associated proteins, these snoRNAs form ribonucleoprotein complexes that can direct 2'-O-methylation or pseudouridylation of target non-coding RNAs. Aided by computational methods and high-throughput sequencing, new studies have expanded the diversity of known snoRNA functions. Complexes incorporating snoRNAs have dynamic specificity, and include diverse roles in RNA silencing, telomerase maintenance and regulation of alternative splicing. Evidence that dysregulation of snoRNAs can cause human disease, including cancer, indicates that the full scope of snoRNA roles remains an unfinished story. The diversity in structure, genomic origin and function between snoRNAs found in different complexes and among different phyla illustrates the surprising plasticity of snoRNAs in evolution. The ability of snoRNAs to direct highly specific interactions with other RNAs is a consistent thread in their newly discovered functions. Because they are ubiquitous throughout Eukarya and Archaea, it is likely they were a feature of the last common ancestor of these two domains, placing their origin over two billion years ago. In the present chapter, we focus on recent advances in our understanding of these ancient, but functionally dynamic RNA-processing machines.
Collapse
|
43
|
Lebaron S, Segerstolpe A, French SL, Dudnakova T, de Lima Alves F, Granneman S, Rappsilber J, Beyer AL, Wieslander L, Tollervey D. Rrp5 binding at multiple sites coordinates pre-rRNA processing and assembly. Mol Cell 2013; 52:707-19. [PMID: 24239293 PMCID: PMC3991325 DOI: 10.1016/j.molcel.2013.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/27/2013] [Accepted: 10/08/2013] [Indexed: 01/01/2023]
Abstract
In vivo UV crosslinking identified numerous preribosomal RNA (pre-rRNA) binding sites for the large, highly conserved ribosome synthesis factor Rrp5. Intramolecular complementation has shown that the C-terminal domain (CTD) of Rrp5 is required for pre-rRNA cleavage at sites A0–A2 on the pathway of 18S rRNA synthesis, whereas the N-terminal domain (NTD) is required for A3 cleavage on the pathway of 5.8S/25S rRNA synthesis. The CTD was crosslinked to sequences flanking A2 and to the snoRNAs U3, U14, snR30, and snR10, which are required for cleavage at A0–A2. The NTD was crosslinked to sequences flanking A3 and to the RNA component of ribonuclease MRP, which cleaves site A3. Rrp5 could also be directly crosslinked to several large structural proteins and nucleoside triphosphatases. A key role in coordinating preribosomal assembly and processing was confirmed by chromatin spreads. Following depletion of Rrp5, cotranscriptional cleavage was lost and preribosome compaction greatly reduced. Rrp5 binds multiple dispersed sites in the pre-rRNA The NTD and CTD of Rrp5 each bind adjacent to sites of cleavages that require them Rrp5 directly binds large, structural proteins and NTPases Rrp5 is required for preribosome compaction
Collapse
Affiliation(s)
- Simon Lebaron
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Asa Segerstolpe
- Department of Molecular Biosciences, WGI, Stockholm University, 106 91 Stockholm, Sweden
| | - Sarah L French
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Tatiana Dudnakova
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Sander Granneman
- SynthSys, JR Waddington Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland
| | - Ann L Beyer
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Lars Wieslander
- Department of Molecular Biosciences, WGI, Stockholm University, 106 91 Stockholm, Sweden
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland.
| |
Collapse
|
44
|
Neumüller RA, Gross T, Samsonova AA, Vinayagam A, Buckner M, Founk K, Hu Y, Sharifpoor S, Rosebrock AP, Andrews B, Winston F, Perrimon N. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal 2013; 6:ra70. [PMID: 23962978 PMCID: PMC3964804 DOI: 10.1126/scisignal.2004145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I-mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I-mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry-based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.
Collapse
Affiliation(s)
- Ralph A Neumüller
- 1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang L, Lin J, Ye K. Structural and functional analysis of the U3 snoRNA binding protein Rrp9. RNA (NEW YORK, N.Y.) 2013; 19:701-711. [PMID: 23509373 PMCID: PMC3677284 DOI: 10.1261/rna.037580.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
The U3 snoRNA is required for 18S rRNA processing and small subunit ribosome formation in eukaryotes. Different from other box C/D snoRNAs, U3 contains an extra 5' domain that pairs with pre-rRNA and a unique B/C motif essential for recruitment of the U3-specific Rrp9 protein. Here, we analyze the structure and function of Rrp9 with crystallographic, biochemical, and cellular approaches. Rrp9 is composed of a WD repeat domain and an N-terminal region. The crystal structures of the WD domain of yeast Rrp9 and its human ortholog U3-55K were determined, revealing a typical seven-bladed propeller fold. Several conserved surface patches on the WD domain were identified, and their function in RNP assembly and yeast growth were analyzed by mutagenesis. Prior association of Snu13 with the B/C motif was found to enhance the specific binding of the WD domain. We show that a conserved 7bc loop is crucial for specific recognition of U3, nucleolar localization of Rrp9, and yeast growth. In addition, we show that the N-terminal region of Rrp9 contains a bipartite nuclear localization signal that is dispensable for nucleolar localization. Our results provide insight into the functional sites of Rrp9.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Binding Sites
- Crystallography, X-Ray
- Humans
- Nucleic Acid Conformation
- Protein Folding
- Protein Structure, Tertiary
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Liman Zhang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Jinzhong Lin
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Keqiong Ye
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| |
Collapse
|
46
|
Schneider C, Kudla G, Wlotzka W, Tuck A, Tollervey D. Transcriptome-wide analysis of exosome targets. Mol Cell 2012; 48:422-33. [PMID: 23000172 PMCID: PMC3526797 DOI: 10.1016/j.molcel.2012.08.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/11/2012] [Accepted: 08/15/2012] [Indexed: 11/23/2022]
Abstract
The exosome plays major roles in RNA processing and surveillance but the in vivo target range and substrate acquisition mechanisms remain unclear. Here we apply in vivo RNA crosslinking (CRAC) to the nucleases (Rrp44, Rrp6), two structural subunits (Rrp41, Csl4) and a cofactor (Trf4) of the yeast exosome. Analysis of wild-type Rrp44 and catalytic mutants showed that both the CUT and SUT classes of non-coding RNA, snoRNAs and, most prominently, pre-tRNAs and other Pol III transcripts are targeted for oligoadenylation and exosome degradation. Unspliced pre-mRNAs were also identified as targets for Rrp44 and Rrp6. CRAC performed using cleavable proteins (split-CRAC) revealed that Rrp44 endonuclease and exonuclease activities cooperate on most substrates. Mapping oligoadenylated reads suggests that the endonuclease activity may release stalled exosome substrates. Rrp6 was preferentially associated with structured targets, which frequently did not associate with the core exosome indicating that substrates follow multiple pathways to the nucleases.
Collapse
Affiliation(s)
- Claudia Schneider
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh UK
- Corresponding author
| | - Grzegorz Kudla
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh UK
| | - Wiebke Wlotzka
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh UK
| | - Alex Tuck
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh UK
- Corresponding author
| |
Collapse
|
47
|
Martin R, Straub AU, Doebele C, Bohnsack MT. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 2012; 10:4-18. [PMID: 22922795 DOI: 10.4161/rna.21879] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis.
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Göttingen University, Göttingen, Germany
| | | | | | | |
Collapse
|
48
|
Bower-Phipps KR, Taylor DW, Wang HW, Baserga SJ. The box C/D sRNP dimeric architecture is conserved across domain Archaea. RNA (NEW YORK, N.Y.) 2012; 18:1527-1540. [PMID: 22753779 PMCID: PMC3404373 DOI: 10.1261/rna.033134.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.
Collapse
Affiliation(s)
| | | | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry
- Department of Genetics
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
49
|
Lebaron S, Schneider C, van Nues RW, Swiatkowska A, Walsh D, Böttcher B, Granneman S, Watkins NJ, Tollervey D. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 2012; 19:744-53. [PMID: 22751017 PMCID: PMC3654374 DOI: 10.1038/nsmb.2308] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/06/2012] [Indexed: 01/02/2023]
Abstract
In the final steps of yeast ribosome synthesis, immature translation-incompetent pre-40S particles that contain 20S pre-rRNA are converted to the mature translation-competent subunits containing the 18S rRNA. An assay for 20S pre-rRNA cleavage in purified pre-40S particles showed that cleavage by the PIN domain endonuclease Nob1 was strongly stimulated by the GTPase activity of Fun12, the yeast homolog of cytoplasmic translation initiation factor eIF5b. Cleavage of the 20S pre-rRNA was also inhibited in vivo and in vitro by blocking binding of Fun12 to the 25S rRNA through specific methylation of its binding site. Cleavage competent pre-40S particles stably associated with Fun12 and formed 80S complexes with 60S ribosomal subunits. We propose that recruitment of 60S subunits promotes GTP hydrolysis by Fun12, leading to structural rearrangements within the pre-40S particle that bring Nob1 and the pre-rRNA cleavage site together.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Base Sequence
- Binding Sites
- Eukaryotic Initiation Factor-2/chemistry
- Eukaryotic Initiation Factor-2/metabolism
- Guanosine Triphosphate/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Protein Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Simon Lebaron
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W. van Nues
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Agata Swiatkowska
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Dietrich Walsh
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Bettina Böttcher
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
- Institute of Structural and Molecular Biology, The University of Edinburgh, Scotland
| | | | - Nicholas J. Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| |
Collapse
|
50
|
Milek M, Wyler E, Landthaler M. Transcriptome-wide analysis of protein–RNA interactions using high-throughput sequencing. Semin Cell Dev Biol 2012; 23:206-12. [DOI: 10.1016/j.semcdb.2011.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/22/2011] [Accepted: 12/04/2011] [Indexed: 12/14/2022]
|