1
|
Boo SH, Shin MK, Hwang HJ, Hwang H, Chang S, Kim T, Baek D, Kim YK. Circular RNAs trigger nonsense-mediated mRNA decay. Mol Cell 2024; 84:4862-4877.e7. [PMID: 39667933 DOI: 10.1016/j.molcel.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs produced predominantly through a back-splicing process. They play regulatory roles in various biological and physiological processes; however, the molecular mechanisms by which circRNAs operate remain unclear. Herein, we demonstrate that circRNAs facilitate rapid mRNA degradation through RNA-RNA interactions between circRNAs and the 3' untranslated regions (3' UTRs) of mRNAs. This interaction positions the exon-junction complexes (EJCs), deposited onto circRNAs by back-splicing, near the 3' UTRs of the mRNAs, thereby leading to EJC-dependent nonsense-mediated mRNA decay (NMD), a process we describe as circRNA-induced NMD (circNMD). Our transcriptomic analysis reveals hundreds of potential circNMD candidates, and the biological importance of circNMD in cellular apoptosis is validated. We also demonstrate that exogenously expressed circRNAs designed to interact with the 3' UTRs of endogenous mRNAs significantly downregulate the mRNA levels. Collectively, our observations provide compelling molecular evidence for circNMD and its potential therapeutic application in selective mRNA downregulation.
Collapse
Affiliation(s)
- Sung Ho Boo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Kyung Shin
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunwoo Chang
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Martin H, Rupkey J, Asthana S, Yoon J, Patel S, Mott J, Pei Z, Mao Y. Diverse Roles of the Exon Junction Complex Factors in the Cell Cycle, Cancer, and Neurodevelopmental Disorders-Potential for Therapeutic Targeting. Int J Mol Sci 2022; 23:ijms231810375. [PMID: 36142288 PMCID: PMC9499366 DOI: 10.3390/ijms231810375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) plays a crucial role in regulating gene expression at the levels of alternative splicing, translation, mRNA localization, and nonsense-mediated decay (NMD). The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (eIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), in addition to other peripheral factors whose structural integration is activity-dependent. The physiological and mechanistic roles of the EJC in contribution to molecular, cellular, and organismal level function continue to be explored for potential insights into genetic or pathological dysfunction. The EJC’s specific role in the cell cycle and its implications in cancer and neurodevelopmental disorders prompt enhanced investigation of the EJC as a potential target for these diseases. In this review, we highlight the current understanding of the EJC’s position in the cell cycle, its relation to cancer and developmental diseases, and potential avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Hannah Martin
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Julian Rupkey
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shray Patel
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence:
| |
Collapse
|
3
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Baird TD, Cheng KCC, Chen YC, Buehler E, Martin SE, Inglese J, Hogg JR. ICE1 promotes the link between splicing and nonsense-mediated mRNA decay. eLife 2018. [PMID: 29528287 PMCID: PMC5896957 DOI: 10.7554/elife.33178] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway detects aberrant transcripts containing premature termination codons (PTCs) and regulates expression of 5–10% of non-aberrant human mRNAs. To date, most proteins involved in NMD have been identified by genetic screens in model organisms; however, the increased complexity of gene expression regulation in human cells suggests that additional proteins may participate in the human NMD pathway. To identify proteins required for NMD, we performed a genome-wide RNAi screen against >21,000 genes. Canonical members of the NMD pathway were highly enriched as top hits in the siRNA screen, along with numerous candidate NMD factors, including the conserved ICE1/KIAA0947 protein. RNAseq studies reveal that depletion of ICE1 globally enhances accumulation and stability of NMD-target mRNAs. Further, our data suggest that ICE1 uses a putative MIF4G domain to interact with exon junction complex (EJC) proteins and promotes the association of the NMD protein UPF3B with the EJC. The DNA in our cells contains the hereditary information that makes each of us unique. Molecules called mRNAs are copies of this information and are used as templates for making proteins. When a strand of incorrectly copied mRNA, or one including errors from the original DNA template, is recognized, our cells destroy the mRNA to prevent it from producing a damaged protein. Organisms from yeast to humans have evolved a mechanism for finding and destroying faulty mRNAs, called mRNA surveillance. Animals are particularly reliant on mRNA surveillance, as their proteins are often made from cutting and pasting together mRNA from different portions of DNA, in a process known as splicing. Despite being a vital process, we still lack a good understanding of how mRNA surveillance works. Now, Baird et al. used human kidney cells that produced an error-containing mRNA that could be tracked. To investigate how efficient RNA surveillance is under different conditions, the levels of individual proteins were reduced one at a time. By tracking the amount of faulty mRNA, it was possible to find out if a single protein plays a role in human mRNA surveillance. If the number of faulty mRNAs is high when a protein is reduced, it suggests that this protein may be involved in mRNA surveillance. Baird et al. screened more than 21,000 proteins, the majority of proteins made in human cells. Many of the proteins that stood out as important in mRNA surveillance were the ones already known to be relevant in yeast and worm cells. But the experiments also identified new proteins that appear to play a role specifically in human RNA surveillance. One of the proteins, ICE1, is essential for the relationship between mRNA splicing and mRNA surveillance. Without ICE1, the mRNA surveillance machinery can no longer find and destroy faulty mRNAs. Nearly one-third of genetic diseases are caused by mutations that result in faulty mRNAs, which can be detected by mRNA surveillance pathways. Depending on the disease, destroying these error-containing mRNAs can either improve or worsen disease symptoms. A better understanding of the factors that control human RNA surveillance could one day help to develop treatments that affect mRNA surveillance to improve disease outcomes.
Collapse
Affiliation(s)
- Thomas D Baird
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ken Chih-Chien Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Yu-Chi Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Eugen Buehler
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Scott E Martin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
5
|
Hoque M, Park JY, Chang YJ, Luchessi AD, Cambiaghi TD, Shamanna R, Hanauske-Abel HM, Holland B, Pe'ery T, Tian B, Mathews MB. Regulation of gene expression by translation factor eIF5A: Hypusine-modified eIF5A enhances nonsense-mediated mRNA decay in human cells. ACTA ACUST UNITED AC 2017; 5:e1366294. [PMID: 29034140 DOI: 10.1080/21690731.2017.1366294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) couples protein synthesis to mRNA turnover. It eliminates defective transcripts and controls the abundance of certain normal mRNAs. Our study establishes a connection between NMD and the translation factor eIF5A (eukaryotic initiation factor 5A) in human cells. eIF5A modulates the synthesis of groups of proteins (the eIF5A regulon), and undergoes a distinctive two-step post-translational modification (hypusination) catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. We show that expression of NMD-susceptible constructs was increased by depletion of the major eIF5A isoform, eIF5A1. NMD was also attenuated when hypusination was inhibited by RNA interference with either of the two eIF5A modifying enzymes, or by treatment with the drugs ciclopirox or deferiprone which inhibit deoxyhypusine hydroxylase. Transcriptome analysis by RNA-Seq identified human genes whose expression is coordinately regulated by eIF5A1, its modifying enzymes, and the pivotal NMD factor, Upf1. Transcripts encoding components of the translation system were highly represented, including some encoding ribosomal proteins controlled by alternative splicing coupled to NMD (AS-NMD). Our findings extend and strengthen the association of eIF5A with NMD, previously inferred in yeast, and show that hypusination is important for this function of human eIF5A. In addition, they advance drug-mediated NMD suppression as a therapeutic opportunity for nonsense-associated diseases. We propose that regulation of mRNA stability contributes to eIF5A's role in selective gene expression.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ji Yeon Park
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yun-Juan Chang
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.,Office of Advanced Research Computing, Rutgers University, Newark, NJ, USA
| | - Augusto D Luchessi
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Tavane D Cambiaghi
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Raghavendra Shamanna
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hartmut M Hanauske-Abel
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bart Holland
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tsafi Pe'ery
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bin Tian
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Michael B Mathews
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
6
|
Park J, Ahn S, Jayabalan AK, Ohn T, Koh HC, Hwang J. Insulin Signaling Augments eIF4E-Dependent Nonsense-Mediated mRNA Decay in Mammalian Cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:896-905. [PMID: 26708722 DOI: 10.1016/j.bbagrm.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) modulates the level of mRNA harboring a premature termination codon (PTC) in a translation-dependent manner. Inhibition of translation is known to impair NMD; however, few studies have investigated the correlation between enhanced translation and increased NMD. Here, we demonstrate that insulin signaling events increase translation, leading to an increase in NMD of eIF4E-bound transcripts. We provide evidence that (i) insulin-mediated enhancement of translation augments NMD and rapamycin abrogates this enhancement; (ii) an increase in AKT phosphorylation due to inhibition of PTEN facilitates NMD; (iii) insulin stimulation increases the binding of up-frameshift factor 1 (UPF1), most likely to eIF4E-bound PTC-containing transcripts; and (iv) insulin stimulation induces the colocalization of UPF1 and eIF4E in processing bodies. These results illustrate how extracellular signaling promotes the removal of eIF4E-bound NMD targets.
Collapse
Affiliation(s)
- Jungyun Park
- Graduate School for Biomedical Science & Engineering, FTC1202-8, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seyoung Ahn
- Graduate School for Biomedical Science & Engineering, FTC1202-8, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Aravinth K Jayabalan
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Takbum Ohn
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Jungwook Hwang
- Graduate School for Biomedical Science & Engineering, FTC1202-8, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Department of Medical Genetics, College of Medicine, FTC1202-8, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Zhou MT, Qin Y, Li M, Chen C, Chen X, Shu HB, Guo L. Quantitative Proteomics Reveals the Roles of Peroxisome-associated Proteins in Antiviral Innate Immune Responses. Mol Cell Proteomics 2015; 14:2535-49. [PMID: 26124285 DOI: 10.1074/mcp.m115.048413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
Compared with whole-cell proteomic analysis, subcellular proteomic analysis is advantageous not only for the increased coverage of low abundance proteins but also for generating organelle-specific data containing information regarding dynamic protein movement. In the present study, peroxisome-enriched fractions from Sendai virus (SeV)-infected or uninfected HepG2 cells were obtained and subjected to quantitative proteomics analysis. We identified 311 proteins that were significantly changed by SeV infection. Among these altered proteins, 25 are immune response-related proteins. Further bioinformatic analysis indicated that SeV infection inhibits cell cycle-related proteins and membrane attack complex-related proteins, all of which are beneficial for the survival and replication of SeV within host cells. Using Luciferase reporter assays on several innate immune-related reporters, we performed functional analysis on 11 candidate proteins. We identified LGALS3BP and CALU as potential negative regulators of the virus-induced activation of the type I interferons.
Collapse
Affiliation(s)
- Mao-Tian Zhou
- From the ‡State Key Laboratory of Virology, College of Life Sciences
| | - Yue Qin
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University
| | - Mi Li
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University
| | - Chen Chen
- From the ‡State Key Laboratory of Virology, College of Life Sciences
| | - Xi Chen
- ¶Wuhan Institute of Biotechnology, Wuhan, China
| | - Hong-Bing Shu
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University;
| | - Lin Guo
- From the ‡State Key Laboratory of Virology, College of Life Sciences;
| |
Collapse
|
8
|
Kurosaki T, Li W, Hoque M, Popp MWL, Ermolenko DN, Tian B, Maquat LE. A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Genes Dev 2014; 28:1900-16. [PMID: 25184677 PMCID: PMC4197951 DOI: 10.1101/gad.245506.114] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) controls the quality of eukaryotic gene expression and also degrades physiologic mRNAs. Here, Kurosaki et al. mapped phosphorylated UPF1-binding sites and found them to be enriched on NMD target 3′ UTRs along with SMG5 and SMG7. ATPase/helicase-deficient UPF1 manifests high levels of RNA binding and disregulated hyperphosphorylation. 3′ UTR-associated UPF1 undergoes regulated phosphorylation, providing a binding platform for mRNA-degradative activities. Nonsense-mediated mRNA decay (NMD) controls the quality of eukaryotic gene expression and also degrades physiologic mRNAs. How NMD targets are identified is incompletely understood. A central NMD factor is the ATP-dependent RNA helicase upframeshift 1 (UPF1). Neither the distance in space between the termination codon and the poly(A) tail nor the binding of steady-state, largely hypophosphorylated UPF1 is a discriminating marker of cellular NMD targets, unlike for premature termination codon (PTC)-containing reporter mRNAs when compared with their PTC-free counterparts. Here, we map phosphorylated UPF1 (p-UPF1)-binding sites using transcriptome-wide footprinting or DNA oligonucleotide-directed mRNA cleavage to report that p-UPF1 provides the first reliable cellular NMD target marker. p-UPF1 is enriched on NMD target 3′ untranslated regions (UTRs) along with suppressor with morphogenic effect on genitalia 5 (SMG5) and SMG7 but not SMG1 or SMG6. Immunoprecipitations of UPF1 variants deficient in various aspects of the NMD process in parallel with Förster resonance energy transfer (FRET) experiments reveal that ATPase/helicase-deficient UPF1 manifests high levels of RNA binding and disregulated hyperphosphorylation, whereas wild-type UPF1 releases from nonspecific RNA interactions in an ATP hydrolysis-dependent mechanism until an NMD target is identified. 3′ UTR-associated UPF1 undergoes regulated phosphorylation on NMD targets, providing a binding platform for mRNA degradative activities. p-UPF1 binding to NMD target 3′ UTRs is stabilized by SMG5 and SMG7. Our results help to explain why steady-state UPF1 binding is not a marker for cellular NMD substrates and how this binding is transformed to induce mRNA decay.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA; Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Wencheng Li
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Maximilian W-L Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA; Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA; Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA; Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA;
| |
Collapse
|
9
|
Fang Y, Bateman JF, Mercer JF, Lamandé SR. Nonsense-mediated mRNA decay of collagen -emerging complexity in RNA surveillance mechanisms. J Cell Sci 2013; 126:2551-60. [PMID: 23729740 DOI: 10.1242/jcs.120220] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved mRNA surveillance system that degrades mRNA transcripts that harbour a premature translation-termination codon (PTC), thus reducing the synthesis of truncated proteins that would otherwise have deleterious effects. Although extensive research has identified a conserved repertoire of NMD factors, these studies have been performed with a restricted set of genes and gene constructs with relatively few exons. As a consequence, NMD mechanisms are poorly understood for genes with large 3' terminal exons, and the applicability of the current models to large multi-exon genes is not clear. In this Commentary, we present an overview of the current understanding of NMD and discuss how analysis of nonsense mutations in the collagen gene family has provided new mechanistic insights into this process. Although NMD of the collagen genes with numerous small exons is consistent with the widely accepted exon-junction complex (EJC)-dependent model, the degradation of Col10a1 transcripts with nonsense mutations cannot be explained by any of the current NMD models. Col10a1 NMD might represent a fail-safe mechanism for genes that have large 3' terminal exons. Defining the mechanistic complexity of NMD is important to allow us to understand the pathophysiology of the numerous genetic disorders caused by PTC mutations.
Collapse
Affiliation(s)
- Yiwen Fang
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | | | | | | |
Collapse
|
10
|
Nonsense-mediated mRNA decay occurs during eIF4F-dependent translation in human cells. Nat Struct Mol Biol 2013; 20:702-9. [PMID: 23665580 DOI: 10.1038/nsmb.2575] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/03/2013] [Indexed: 11/08/2022]
|
11
|
Isken O, Maquat LE. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet 2011; 9:699-712. [PMID: 18679436 DOI: 10.1038/nrg2402] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) largely functions to ensure the quality of gene expression. However, NMD is also crucial to regulating appropriate expression levels for certain genes and for maintaining genome stability. Furthermore, just as NMD serves cells in multiple ways, so do its constituent proteins. Recent studies have clarified that UPF and SMG proteins, which were originally discovered to function in NMD, also have roles in other pathways, including specialized pathways of mRNA decay, DNA synthesis and cell-cycle progression, and the maintenance of telomeres. These findings suggest a delicate balance of metabolic events - some not obviously related to NMD - that can be influenced by the cellular abundance, location and activity of NMD factors and their binding partners.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | | |
Collapse
|
12
|
Ivanov P, Anderson P. CBP80 choreographs the NMD two-step. Mol Cell 2010; 39:317-8. [PMID: 20705234 DOI: 10.1016/j.molcel.2010.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Molecular Cell, Hwang et al. (2010) show that the cap-binding protein CBP80 promotes nonsense-mediated decay (NMD) at two steps. In this dual capacity, CBP80 may facilitate essential communication between the premature termination codon (PTC) and the exon-junction complex (EJC) to trigger NMD.
Collapse
Affiliation(s)
- Pavel Ivanov
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
13
|
Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE. UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol Cell 2010; 39:396-409. [PMID: 20691628 DOI: 10.1016/j.molcel.2010.07.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/26/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance mechanism that in mammals generally occurs upon recognition of a premature termination codon (PTC) during a pioneer round of translation. This round involves newly synthesized mRNA that is bound at its 5' end by the cap-binding protein (CBP) heterodimer CBP80-CBP20. Here we show that precluding the binding of the NMD factor UPF1 to CBP80 inhibits NMD at two steps: the association of SMG1 and UPF1 with the two eukaryotic release factors (eRFs) during SURF complex formation at a PTC, and the subsequent association of SMG1 and UPF1 with an exon-junction complex. We also demonstrate that UPF1 binds PTC-containing mRNA more efficiently than the corresponding PTC-free mRNA in a way that is promoted by the UPF1-CBP80 interaction. A unifying model proposes a choreographed series of protein-protein interactions occurring on an NMD target.
Collapse
Affiliation(s)
- Jungwook Hwang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
14
|
Gardner LB. Nonsense-mediated RNA decay regulation by cellular stress: implications for tumorigenesis. Mol Cancer Res 2010; 8:295-308. [PMID: 20179151 DOI: 10.1158/1541-7786.mcr-09-0502] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nonsense-mediated RNA decay (NMD) has long been viewed as an important constitutive mechanism to rapidly eliminate mutated mRNAs. More recently, it has been appreciated that NMD also degrades multiple nonmutated transcripts and that NMD can be regulated by wide variety of cellular stresses. Many of the stresses that inhibit NMD, including cellular hypoxia and amino acid deprivation, are experienced in cells exposed to hostile microenvironments, and several NMD-targeted transcripts promote cellular adaptation in response to these environmental stresses. Because adaptation to the microenvironment is crucial in tumorigenesis, and because NMD targets many mutated tumor suppressor gene transcripts, the regulation of NMD may have particularly important implications in cancer. This review briefly outlines the mechanisms by which transcripts are identified and targeted by NMD and reviews the evidence showing that NMD is a regulated process that can dynamically alter gene expression. Although much of the focus in NMD research has been in identifying the proteins that play a role in NMD and identifying NMD-targeted transcripts, recent data about the potential functional significance of NMD regulation, including the stabilization of alternatively spliced mRNA isoforms, the validation of mRNAs as bona fide NMD targets, and the role of NMD in tumorigenesis, are explored.
Collapse
Affiliation(s)
- Lawrence B Gardner
- Division of Hematology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
15
|
Gene expression networks: competing mRNA decay pathways in mammalian cells. Biochem Soc Trans 2010; 37:1287-92. [PMID: 19909264 DOI: 10.1042/bst0371287] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nonsense-mediated mRNA decay and Staufen1-mediated mRNA decay are mechanistically related pathways that serve distinct purposes. In the present article, we give an overview of each pathway. We describe how a factor that is common to both pathways results in their competition. We also explain how competition between the two pathways contributes to the differentiation of C2C12 myoblasts to multinucleated myotubes.
Collapse
|
16
|
Sato H, Maquat LE. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin beta. Genes Dev 2009; 23:2537-50. [PMID: 19884259 DOI: 10.1101/gad.1817109] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian mRNAs lose and acquire proteins throughout their life span while undergoing processing, transport, translation, and decay. How translation affects messenger RNA (mRNA)-protein interactions is largely unknown. The pioneer round of translation uses newly synthesized mRNA that is bound by cap-binding protein 80 (CBP80)-CBP20 (also known as the cap-binding complex [CBC]) at the cap, poly(A)-binding protein N1 (PABPN1) and PABPC1 at the poly(A) tail, and, provided biogenesis involves pre-mRNA splicing, exon junction complexes (EJCs) at exon-exon junctions. Subsequent rounds of translation engage mRNA that is bound by eukaryotic translation initiation factor 4E (eIF4E) at the cap and PABPC1 at the poly(A) tail, but that lacks detectable EJCs and PABPN1. Using the level of intracellular iron to regulate the translation of specific mRNAs, we show that translation promotes not only removal of EJC constituents, including the eIF4AIII anchor, but also replacement of PABPN1 by PABPC1. Remarkably, translation does not affect replacement of CBC by eIF4E. Instead, replacement of CBC by eIF4E is promoted by importin beta (IMPbeta): Inhibiting the binding of IMPbeta to the complex of CBC-IMPalpha at an mRNA cap using the IMPalpha IBB (IMPbeta-binding) domain or a RAN variant increases the amount of CBC-bound mRNA and decreases the amount of eIF4E-bound mRNA. Our studies uncover a previously unappreciated role for IMPbeta and a novel paradigm for how newly synthesized messenger ribonucleoproteins (mRNPs) are matured.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
17
|
Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr Opin Cell Biol 2009; 21:394-402. [PMID: 19359157 DOI: 10.1016/j.ceb.2009.02.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 11/23/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway targets mRNAs with premature termination codons as well as a subset of normal mRNAs for rapid decay. Emerging evidence suggests that mRNAs become NMD substrates based on the composition of the mRNP downstream of the translation termination event, which either stimulates or antagonizes recruitment of the NMD machinery. The NMD mRNP subsequently undergoes several remodeling events, which involve hydrolysis of ATP by the NMD factor Upf1 and in metazoans, a phosphorylation/dephosphorylation cycle of Upf1 mediated by Smg proteins. This leads to mRNA decay following translational repression. Recent evidence suggests that in Drosophila and human cells, decay is initiated by the endonuclease Smg6.
Collapse
|
18
|
Gong C, Kim YK, Woeller CF, Tang Y, Maquat LE. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev 2008; 23:54-66. [PMID: 19095803 DOI: 10.1101/gad.1717309] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UPF1 functions in both Staufen 1 (STAU1)-mediated mRNA decay (SMD) and nonsense-mediated mRNA decay (NMD), which we show here are competitive pathways. STAU1- and UPF2-binding sites within UPF1 overlap so that STAU1 and UPF2 binding to UPF1 appear to be mutually exclusive. Furthermore, down-regulating the cellular abundance of STAU1, which inhibits SMD, increases the efficiency of NMD, whereas down-regulating the cellular abundance of UPF2, which inhibits NMD, increases the efficiency of SMD. Competition under physiological conditions is exemplified during the differentiation of C2C12 myoblasts to myotubes: The efficiency of SMD increases and the efficiency of NMD decreases, consistent with our finding that more STAU1 but less UPF2 bind UPF1 in myotubes compared with myoblasts. Moreover, an increase in the cellular level of UPF3X during myogenesis results in an increase in the efficiency of an alternative NMD pathway that, unlike classical NMD, is largely insensitive to UPF2 down-regulation. We discuss the remarkable balance between SMD and the two types of NMD in view of data indicating that PAX3 mRNA is an SMD target whose decay promotes myogenesis whereas myogenin mRNA is a classical NMD target encoding a protein required for myogenesis.
Collapse
Affiliation(s)
- Chenguang Gong
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
19
|
Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JWB, Maquat LE. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 2008; 133:314-27. [PMID: 18423202 DOI: 10.1016/j.cell.2008.02.030] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 11/18/2007] [Accepted: 02/04/2008] [Indexed: 11/18/2022]
Abstract
In mammalian cells, nonsense-mediated mRNA decay (NMD) generally requires that translation terminates sufficiently upstream of a post-splicing exon junction complex (EJC) during a pioneer round of translation. The subsequent binding of Upf1 to the EJC triggers Upf1 phosphorylation. We provide evidence that phospho-Upf1 functions after nonsense codon recognition during steps that involve the translation initiation factor eIF3 and mRNA decay factors. Phospho-Upf1 interacts directly with eIF3 and inhibits the eIF3-dependent conversion of 40S/Met-tRNA(i)(Met)/mRNA to translationally competent 80S/Met-tRNA(i)(Met)/mRNA initiation complexes to repress continued translation initiation. Consistent with phospho-Upf1 impairing eIF3 function, NMD fails to detectably target nonsense-containing transcripts that initiate translation independently of eIF3 from the CrPV IRES. There is growing evidence that translational repression is a key transition that precedes mRNA delivery to the degradation machinery. Our results uncover a critical step during NMD that converts a pioneer translation initiation complex to a translationally compromised mRNP.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
20
|
Matsuda D, Sato H, Maquat LE. Chapter 9. Studying nonsense-mediated mRNA decay in mammalian cells. Methods Enzymol 2008; 449:177-201. [PMID: 19215759 DOI: 10.1016/s0076-6879(08)02409-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nonsense-mediated decay (NMD) in eukaryotic cells largely functions as a quality control mechanism by degrading faulty mRNAs that terminate translation prematurely. In recent years it has become evident that NMD also eliminates a subset of naturally occurring mRNA during proper gene expression. The mechanism of NMD in mammalian cells can be distinguished from the mechanism in, for example, Saccharomyces cerevisiae or Caenorhabditis elegans, by its apparent restriction to newly synthesized mRNA during a pioneer round of translation. This dependence can be explained by the need for at least one exon-exon junction complex (EJC) that is deposited on newly synthesized mRNA during the process of pre-mRNA splicing. Additionally, mammalian-cell NMD is promoted by the cap-binding protein heterodimer CBP80/20 that also typifies newly synthesized mRNA. When translation terminates sufficiently upstream of an EJC, the NMD factor Up-frameshift (Upf)1 is thought to join the stable EJC constituent NMD factors Upf2 and Upf3 or Upf3X (also called Upf3a or Upf3b, respectively), and undergo phosphorylation. Phosphorylation appears to trigger translational repression and mRNA decay. Although there are established rules for what generally defines an NMD target in mammalian cells, as with any rule there are exceptions and, thus, the need to experimentally verify individual mRNAs as bona fide targets of NMD. This chapter provides guidelines and protocols for how to define NMD targets using cultured mammalian cells.
Collapse
Affiliation(s)
- Daiki Matsuda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | | | | |
Collapse
|