1
|
Kögel J, Cook PS, Brown N, Clare A, Glick MH, Hansson K, Idvall M, Lundin S, Michael M, Á Rogvi S, Sharp LA. Engineering organs, hopes and hybridity: considerations on the social potentialities of xenotransplantation. MEDICAL HUMANITIES 2025; 51:180-184. [PMID: 39993842 PMCID: PMC11877069 DOI: 10.1136/medhum-2024-013061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/07/2024] [Indexed: 02/26/2025]
Abstract
The development of replacing human organs with those from genetically modified pigs holds immense potential for alleviating the shortage of organs necessary for patients in need of transplants. This medical advancement is also accompanied by significant social changes, including the emergence of a bioeconomy, new modes of biotechnology governance, altered human-animal relations and increased public engagement. Some aspects, such as the impact on the transplant allocation system, effects on clinical practice and healthcare provision, global trajectories and most importantly the consequences for patients and their families remain unpredictable. Given that xenotransplantation occurs within a societal context and its success or failure will not be confined to technical feasibility alone, it is essential to engage a social sciences perspective to highlight the social implications and emphasise the importance of social research in accompanying future developments.
Collapse
Affiliation(s)
| | - Peta S Cook
- School of Social Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Nik Brown
- Department of Sociology, University of York, York, UK
| | - Amy Clare
- Department of Science, Technology and Society (STS), School of Social Sciences and Technology, Technical University of Munich, Munich, Germany
| | - Megan H Glick
- Department of American Studies, Wesleyan University, Middletown, CT, USA
| | - Kristofer Hansson
- Department of Social Work, Malmo University, Faculty of Health and Society, Malmo, Sweden
| | - Markus Idvall
- Department of Ethnology, History of Religions and Gender Studies, Stockholm University, Stockholm, Sweden
| | - Susanne Lundin
- Department of Arts and Cultural Sciences, Lund University, Lund, Sweden
| | | | - Sofie Á Rogvi
- Section for Health Services Research, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lesley A Sharp
- Departments of Anthropology, Barnard College and Sociomedical Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Clerici M, Citro V, Byrne AL, Dale TP, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Endotenon-Derived Type II Tendon Stem Cells Have Enhanced Proliferative and Tenogenic Potential. Int J Mol Sci 2023; 24:15107. [PMID: 37894787 PMCID: PMC10606148 DOI: 10.3390/ijms242015107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon injuries caused by overuse or age-related deterioration are frequent. Incomplete knowledge of somatic tendon cell biology and their progenitors has hindered interventions for the effective repair of injured tendons. Here, we sought to compare and contrast distinct tendon-derived cell populations: type I and II tendon stem cells (TSCs) and tenocytes (TNCs). Porcine type I and II TSCs were isolated via the enzymatic digestion of distinct membranes (paratenon and endotenon, respectively), while tenocytes were isolated through an explant method. Resultant cell populations were characterized by morphology, differentiation, molecular, flow cytometry, and immunofluorescence analysis. Cells were isolated, cultured, and evaluated in two alternate oxygen concentrations (physiological (2%) and air (21%)) to determine the role of oxygen in cell biology determination within this relatively avascular tissue. The different cell populations demonstrated distinct proliferative potential, morphology, and transcript levels (both for tenogenic and stem cell markers). In contrast, all tendon-derived cell populations displayed multipotent differentiation potential and immunophenotypes (positive for CD90 and CD44). Type II TSCs emerged as the most promising tendon-derived cell population for expansion, given their enhanced proliferative potential, multipotency, and maintenance of a tenogenic profile at early and late passage. Moreover, in all cases, physoxia promoted the enhanced proliferation and maintenance of a tenogenic profile. These observations help shed light on the biological mechanisms of tendon cells, with the potential to aid in the development of novel therapeutic approaches for tendon disorders.
Collapse
Affiliation(s)
- Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| | - Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Amy L. Byrne
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
| | - Tina P. Dale
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
| | - Aldo R. Boccaccini
- Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
- Interdepartmental Centre BIONAM, University of Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
- Department of Trauma and Orthopaedic Surgery, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen AB24 3FX, UK
| |
Collapse
|
3
|
Bryja A, Latosiński G, Jankowski M, Angelova Volponi A, Mozdziak P, Shibli JA, Bryl R, Spaczyńska J, Piotrowska-Kempisty H, Krawiec K, Kempisty B, Dyszkiewicz-Konwińska M. Transcriptomic and Morphological Analysis of Cells Derived from Porcine Buccal Mucosa-Studies on an In Vitro Model. Animals (Basel) 2020; 11:ani11010015. [PMID: 33374146 PMCID: PMC7824432 DOI: 10.3390/ani11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Domestic pigs express high phylogenetic similarity to humans and are often used as a compatible model in biomedical research. Porcine tissues are used as an accessible biomaterial in human skin transplants and tissue architecture reconstruction. We used transcriptional analysis to investigate the dynamics of complex biological system of the mucosa. Additionally, we performed computer analysis of microscopic images of cultured cells in vitro. Computer analysis of images identified epithelial cells and connective tissue cells in in vitro culture. Abstract Transcriptional analysis and live-cell imaging are a powerful tool to investigate the dynamics of complex biological systems. In vitro expanded porcine oral mucosal cells, consisting of populations of epithelial and connective lineages, are interesting and complex systems for study via microarray transcriptomic assays to analyze gene expression profile. The transcriptomic analysis included 56 ontological groups with particular focus on 7 gene ontology groups that are related to the processes of differentiation and development. Most analyzed genes were upregulated after 7 days and downregulated after 15 and 30 days of in vitro culture. The performed transcriptomic analysis was then extended to include automated analysis of differential interference contrast microscopy (DIC) images obtained during in vitro culture. The analysis of DIC imaging allowed to identify the different populations of keratinocytes and fibroblasts during seven days of in vitro culture, and it was possible to evaluate the proportion of these two populations of cells. Porcine mucosa may be a suitable model for reference research on human tissues. In addition, it can provide a reference point for research on the use of cells, scaffolds, or tissues derived from transgenic animals for applications in human tissues reconstruction.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Grzegorz Latosiński
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07030-010, SP, Brazil;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Julia Spaczyńska
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Krzysztof Krawiec
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
4
|
Guzman E, Montoya M. Contributions of Farm Animals to Immunology. Front Vet Sci 2018; 5:307. [PMID: 30574508 PMCID: PMC6292178 DOI: 10.3389/fvets.2018.00307] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
By their very nature, great advances in immunology are usually underpinned by experiments carried out in animal models and inbred lines of mice. Also, their corresponding knock-out or knock-in derivatives have been the most commonly used animal systems in immunological studies. With much credit to their usefulness, laboratory mice will never provide all the answers to fully understand immunological processes. Large animal models offer unique biological and experimental advantages that have been and continue to be of great value to the understanding of biological and immunological processes. From the identification of B cells to the realization that γδ T cells can function as professional antigen presenting cells, farm animals have contributed significantly to a better understanding of immunity.
Collapse
Affiliation(s)
| | - Maria Montoya
- The Pirbright Institute, Woking, United Kingdom
- Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| |
Collapse
|
5
|
Bottino R, Trucco M. Use of genetically-engineered pig donors in islet transplantation. World J Transplant 2015; 5:243-250. [PMID: 26722651 PMCID: PMC4689934 DOI: 10.5500/wjt.v5.i4.243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease wherein the pancreas does not produce enough insulin due to islet beta cell destruction. Despite improvements in delivering exogenous insulin to T1D patients, pancreas or islet transplantation remains the best way to regulate their glycaemia. Results from experimental islet transplantation have improved dramatically in the last 15 years, to the point where it can be comparable to pancreas transplantation, but without the accompanying morbidity associated with this procedure. As with other transplants, the limiting factor in islet allotransplantation is the relatively small number of organs made available by deceased human donors throughout the world. A strong case can be made for islet xenotransplantation to fill the gap between supply and demand; however, transplantation across species presents challenges that are unique to that setting. In the search for the most suitable animal for human xenotransplantation, the pig has many advantages that make it the likely animal of choice. Potentially one of the most beneficial advantages is the ability to genetically engineer porcine donors to be more compatible with human recipients. Several genetic manipulations have already proven useful in relation to hyperacute rejection and inflammation (instant blood mediated inflammatory reaction), with the potential of even further advancement in the near future.
Collapse
|
6
|
Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal 2014; 20:2465-77. [PMID: 23472672 DOI: 10.1089/ars.2013.5257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE High levels of reactive oxygen species can facilitate DNA and protein damage beyond the control of endogenous antioxidants, resulting in oxidative stress. Oxidative stress then triggers inflammation, which can lead to pathological conditions. In genetically susceptible individuals, the conglomeration of oxidative stress and inflammation can enhance autoreactive immune cell activation, causing beta-cell destruction in autoimmune type 1 diabetes. As a means of shielding pancreatic islets, manganese porphyrin (MnP) oxidoreductant treatment has been tested in a number of reported studies. RECENT ADVANCES MnP affects both innate and adaptive immune cell responses, blocking nuclear factor kappa-B activation, proinflammatory cytokine secretion, and T helper 1 T-cell responses. As a result, MnP treatment protects against type 1 diabetes onset in nonobese diabetic mice and stabilizes islets for cellular transplantation. CRITICAL ISSUES MnP displays global immunosuppressive properties, exemplified by decreased cytokine production from all T-helper cell subsets. This quality may impact infection control in the setting of autoimmunity. Nonetheless, because of their cytoprotective and immunomodulatory function, MnPs should be considered as a safer alternative to other clinical immunosuppressive agents (i.e., rapamycin) for transplantation. FUTURE DIRECTIONS Although MnP likely affects only redox-sensitive targets, the mechanism behind global T-cell immunosuppression and the outcome on infection clearance will have to be elucidated. Based on the increased primary engraftment seen with MnP use, protection against primary nonfunction in porcine to human xenotransplants would likely be enhanced. Further, a better understanding of MnP oxidoreductase function may allow for its use in other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Meghan M Delmastro-Greenwood
- 1 Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Diabetes Institute , Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
7
|
Ryu JM, Yoon W, Park JH, Yun SP, Jang MW, Han HJ. Multidetector computed tomographic angiography evaluation of micropig major systemic vessels for xenotransplantation. J Vet Sci 2011; 12:209-14. [PMID: 21897092 PMCID: PMC3165148 DOI: 10.4142/jvs.2011.12.3.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Due primarily to the increasing shortage of allogeneic donor organs, xenotransplantation has become the focus of a growing field of research. Currently, micropigs are the most suitable donor animal for humans. However, no standard method has been developed to evaluate the systemic vascular anatomy of micropigs and standard reference values to aid in the selection of normal healthy animals as potential organ donors are lacking. Using 64-channel multidetector row computed tomographic angiography (MDCTA), we evaluated morphological features of the major systemic vessels in micropigs and compared our results to published human data. The main vasculature of the animals was similar to that of humans, except for the iliac arterial system. However, diameters of the major systemic vessels were significantly different between micropigs and humans. Specifically, the diameter of the aortic arch, abdominal aorta, external iliac artery, and femoral artery, were measured as 1.50 ± 0.07 cm, 0.85 ± 0.06 cm, 0.52 ± 0.05 cm, and 0.48 ± 0.05 cm, respectively, in the micropigs. This MDCTA data for micropig major systemic vessels can be used as standard reference values for xenotransplantation studies. The use of 64-channel MDCTA enables accurate evaluation of the major systemic vasculature in micropigs.
Collapse
Affiliation(s)
- Jung Min Ryu
- College of Veterinary Medicine, Biotherapy Human Resources Center, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
8
|
Misler S. The isolated pancreatic islet as a micro-organ and its transplantation to cure diabetes: celebrating the legacy of Paul Lacy. Islets 2010; 2:210-24. [PMID: 21099316 PMCID: PMC3322537 DOI: 10.4161/isl.2.4.12156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 02/07/2023] Open
Abstract
Over the past three decades the pancreatic islet of Langerhans has taken center stage as an endocrine micro-organ whose glucoregulatory function is highly explicable on the basis of the increasingly well understood activities of three highly interactive secretory cells. Islet dysfunction underlies both type 1 and type 2 diabetes mellitus (DM); its protection from immune attack and gluco-and lipo-toxicity may prevent the development of DM; and its replacement by non-surgical transplantation may be curative of DM. During a career marked by vision, focus and tenacity, Paul Lacy contributed substantially to the development of each of these concepts. In this review we focus on Lacy's contribution to the development of the concept of the islet as a micro-organ, how this foreshadowed our current detailed understanding of single cell function and cell-cell interactions and how this led to a reduced model of islet function encouraging islet transplantation. Next, we examine how clinical allotransplantation, first undertaken by Lacy, has contributed to a more complex view of the interaction of islet endocrine cells with its circulation and neighboring tissues, both "in situ" and after transplantation. Lastly, we consider recent developments in some alternative approaches to treatment of DM that Lacy could glimpse on the horizon but did not have the chance to participate in.
Collapse
Affiliation(s)
- Stanley Misler
- Departments of Internal Medicine (Renal Division) and Cell Biology/Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
9
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update: May-October, 2009. Xenotransplantation 2010; 16:555-62. [PMID: 20042055 DOI: 10.1111/j.1399-3089.2009.00561.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Comment on "Xeno's paradox". EMBO Rep 2009; 10:800. [PMID: 19648953 DOI: 10.1038/embor.2009.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|