1
|
Zhang Z, Hong X, Xiong P, Wang J, Zhou Y, Zhan J. Minimal twister sister-like self-cleaving ribozymes in the human genome revealed by deep mutational scanning. eLife 2024; 12:RP90254. [PMID: 39636683 PMCID: PMC11620745 DOI: 10.7554/elife.90254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Despite their importance in a wide range of living organisms, self-cleaving ribozymes in the human genome are few and poorly studied. Here, we performed deep mutational scanning and covariance analysis of two previously proposed self-cleaving ribozymes (LINE-1 and OR4K15). We found that the regions essential for ribozyme activities are made of two short segments, with a total of 35 and 31 nucleotides only. The discovery makes them the simplest known self-cleaving ribozymes. Moreover, the essential regions are circular permutated with two nearly identical catalytic internal loops, supported by two stems of different lengths. These two self-cleaving ribozymes, which are shaped like lanterns, are similar to the catalytic regions of the twister sister ribozymes in terms of sequence and secondary structure. However, the nucleotides at the cleavage site have shown that mutational effects on two twister sister-like (TS-like) ribozymes are different from the twister sister ribozyme. The discovery of TS-like ribozymes reveals a ribozyme class with the simplest and, perhaps, the most primitive structure needed for self-cleavage.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- University of Science and Technology of ChinaHefeiChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
| | - Xu Hong
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- University of Science and Technology of ChinaHefeiChina
| | - Peng Xiong
- University of Science and Technology of ChinaHefeiChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- Suzhou Institute for Advanced Research, University of Science and Technology of ChinaSuzhouChina
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefeiChina
- Institute of Physical Science and Information Technology, Anhui UniversityHefeiChina
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- School of Information and Communication Technology, Griffith UniversitySouthportAustralia
| | - Jian Zhan
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- Ribopeutic Inc, Guangzhou International Bio IslandGuangzhouChina
| |
Collapse
|
2
|
Qi F, Chen J, Chen Y, Sun J, Lin Y, Chen Z, Kapranov P. Evaluating Performance of Different RNA Secondary Structure Prediction Programs Using Self-cleaving Ribozymes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae043. [PMID: 39317944 PMCID: PMC12016570 DOI: 10.1093/gpbjnl/qzae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 09/26/2024]
Abstract
Accurate identification of the correct, biologically relevant RNA structures is critical to understanding various aspects of RNA biology since proper folding represents the key to the functionality of all types of RNA molecules and plays pivotal roles in many essential biological processes. Thus, a plethora of approaches have been developed to predict, identify, or solve RNA structures based on various computational, molecular, genetic, chemical, or physicochemical strategies. Purely computational approaches hold distinct advantages over all other strategies in terms of the ease of implementation, time, speed, cost, and throughput, but they strongly underperform in terms of accuracy that significantly limits their broader application. Nonetheless, the advantages of these methods led to a steady development of multiple in silico RNA secondary structure prediction approaches including recent deep learning-based programs. Here, we compared the accuracy of predictions of biologically relevant secondary structures of dozens of self-cleaving ribozyme sequences using seven in silico RNA folding prediction tools with tasks of varying complexity. We found that while many programs performed well in relatively simple tasks, their performance varied significantly in more complex RNA folding problems. However, in general, a modern deep learning method outperformed the other programs in the complex tasks in predicting the RNA secondary structures, at least based on the specific class of sequences tested, suggesting that it may represent the future of RNA structure prediction algorithms.
Collapse
Affiliation(s)
- Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Junjie Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Jianfeng Sun
- Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Yiting Lin
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Zipeng Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Zhan X, Wilson TJ, Li Z, Zhang J, Yang Y, Lilley DMJ, Liu Y. The structure and catalytic mechanism of a pseudoknot-containing hammerhead ribozyme. Nat Commun 2024; 15:6628. [PMID: 39103372 DOI: 10.1038/s41467-024-50892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
We have determined the crystal structure of a pseudoknot (PK)-containing hammerhead ribozyme that closely resembles the pistol ribozyme, with essentially identical secondary structure and connectivity. The activity is more sensitive to deletion of the G8 2'OH than to the absence of magnesium ions, indicating that the catalytic mechanism is the same as the extended hammerhead, and distinct from the pistol ribozyme. Here we show that nucleophilic attack is almost perfectly in-line, and the G8 2'OH is well positioned to act as general acid, being directed towards the O5' leaving group, and 2.9 Å away from it. Despite the similarity in overall structure to the pistol ribozyme, the local structure close to the cleavage site differs, and the PK hammerhead retains its unique mechanistic identity and demonstrates enhanced activity over other hammerhead ribozymes under standard conditions.
Collapse
Affiliation(s)
- Xuelin Zhan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, P. R. China
| | - Timothy J Wilson
- Division of Molecular, Cellular and Developmental Biology, The University of Dundee, Dundee, UK
| | - Zhenzhen Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Jingjing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, P. R. China
| | - David M J Lilley
- Division of Molecular, Cellular and Developmental Biology, The University of Dundee, Dundee, UK.
- Visiting Professor, Nankai University, Tianjin, China.
| | - Yijin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
4
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy T, Wood MA, Luptak A. Inhibition of Cpeb3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs and enhances object location memory. eLife 2024; 13:e90116. [PMID: 38319152 PMCID: PMC10919898 DOI: 10.7554/elife.90116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C Chen
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Carlene A Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | | | - Marie Myszka
- Department of Chemistry, University of California, IrvineIrvineUnited States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California, IrvineIrvineUnited States
| | - Luiz FM Passalacqua
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Timothy Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
- Department of Chemistry, University of California, IrvineIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineUnited States
| |
Collapse
|
5
|
Zhang S, Yang C, Qiu Y, Liao R, Xuan Z, Ren F, Dong Y, Xie X, Han Y, Wu D, Ramos-González PL, Freitas-Astúa J, Yang H, Zhou C, Cao M. Conserved untranslated regions of multipartite viruses: Natural markers of novel viral genomic components and tags of viral evolution. Virus Evol 2024; 10:veae004. [PMID: 38361819 PMCID: PMC10868557 DOI: 10.1093/ve/veae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Viruses with split genomes are classified as being either segmented or multipartite based on whether their genomic segments occur within a single virion or across different virions. Despite variations in number and sequence during evolution, the genomic segments of many viruses are conserved within the untranslated regions (UTRs). In this study, we present a methodology that combines RNA sequencing with iterative BLASTn of UTRs (https://github.com/qq371260/Iterative-blast-v.1.0) to identify new viral genomic segments. Some novel multipartite-like viruses related to the phylum Kitrinoviricota were annotated using sequencing data from field plant samples and public databases. We identified potentially plant-infecting jingmen-related viruses (order Amarillovirales) and jivi-related viruses (order Martellivirales) with at least six genomic components. The number of RNA molecules associated with a genome of the novel viruses in the families Closteroviridae, Kitaviridae, and Virgaviridae within the order Martellivirales reached five. Several of these viruses seem to represent new taxa at the subgenus, genus, and family levels. The diversity of novel genomic components and the multiple duplication of proteins or protein domains within single or multiple genomic components emphasize the evolutionary roles of genetic recombination (horizontal gene transfer), reassortment, and deletion. The relatively conserved UTRs at the genome level might explain the relationships between monopartite and multipartite viruses, as well as how subviral agents such as defective RNAs and satellite viruses can coexist with their helper viruses.
Collapse
Affiliation(s)
| | - Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, 21 Huanan Street, Shenyang, Liaoning 110044, China
| | - Yuanjian Qiu
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Ruiling Liao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Zhiyou Xuan
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Fang Ren
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Yafeng Dong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Xiaoying Xie
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Di Wu
- College of Horticulture and Landscape Architecture, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Pedro Luis Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, CEP, Cruz das Almas BA, 44380-000, Brazil
| | - Huadong Yang
- Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410125, China
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| |
Collapse
|
6
|
Kläge D, Müller E, Hartig JS. A comparative survey of the influence of small self-cleaving ribozymes on gene expression in human cell culture. RNA Biol 2024; 21:1-11. [PMID: 38146121 PMCID: PMC10761166 DOI: 10.1080/15476286.2023.2296203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Self-cleaving ribozymes are versatile tools for synthetic biologists when it comes to controlling gene expression. Up to date, 12 different classes are known, and over the past decades more and more details about their structure, cleavage mechanisms and natural environments have been uncovered. However, when these motifs are applied to mammalian gene expression constructs, the outcome can often be unexpected. A variety of factors, such as surrounding sequences and positioning of the ribozyme influences the activity and hence performance of catalytic RNAs. While some information about the efficiency of individual ribozymes (each tested in specific contexts) is known, general trends obtained from standardized, comparable experiments are lacking, complicating decisions such as which ribozyme to choose and where to insert it into the target mRNA. In many cases, application-specific optimization is required, which can be very laborious. Here, we systematically compared different classes of ribozymes within the 3'-UTR of a given reporter gene. We then examined position-dependent effects of the best-performing ribozymes. Moreover, we tested additional variants of already widely used hammerhead ribozymes originating from various organisms. We were able to identify functional structures suited for aptazyme design and generated highly efficient hammerhead ribozyme variants originating from the human genome. The present dataset will aide decisions about how to apply ribozymes for affecting gene expression as well as for developing ribozyme-based switches for controlling gene expression in human cells.
Collapse
Affiliation(s)
- Dennis Kläge
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Elisabeth Müller
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy TW, Wood MA, Lupták A. Inhibition of CPEB3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs, and enhances object location memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543953. [PMID: 37333407 PMCID: PMC10274809 DOI: 10.1101/2023.06.07.543953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element binding protein 3 (CPEB3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the CPEB3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C. Chen
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Carlene A. Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Jacob S. Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Mehran Nikan
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Marie Myszka
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California–Irvine, Irvine, California 92697, United States
| | - Luiz F. M. Passalacqua
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Timothy W. Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California–Irvine, Irvine, California 92697, United States
| |
Collapse
|
8
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
9
|
de la Peña M, Gago-Zachert S. A life of research on circular RNAs and ribozymes: towards the origin of viroids, deltaviruses and life. Virus Res 2022; 314:198757. [PMID: 35346751 DOI: 10.1016/j.virusres.2022.198757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022]
Abstract
The first examples of circular RNAs (circRNAs) were reported in the '70s as a family of minimal infectious agents of flowering plants; the viroids and viral satellites of circRNA. In some cases, these small circular genomes encode self-cleaving RNA motifs or ribozymes, including an exceptional circRNA infecting not plants but humans: the Hepatitis Delta Virus. Autocatalytic ribozymes not only allowed to propose a common rolling-circle replication mechanism for all these subviral agents, but also a tentative link with the origin of life as molecular fossils of the so-called RNA world. Despite the weak biologic connection between angiosperm plants and the human liver, diverse scientists, and most notably Ricardo Flores, firmly supported an evolutionary relationship between plant viroids and human deltavirus agents. The tireless and inspiring work done by Ricardo's lab in the field of infectious circRNAs fuelled multiple hypotheses for the origin of these entities, allowing advances in other fields, from eukaryotic circRNAs to small ribozymes in genomes from all life kingdoms. The recent discovery of a plethora of viral-like circRNAs with ribozymes in disparate biological samples may finally allow us to connect plant and animal subviral agents, confirming again that Ricardo's eye for science was always a keen eye.
Collapse
Affiliation(s)
- Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). C/ Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Section Microbial Biotechnology, Halle/Saale D-06120, Germany
| |
Collapse
|
10
|
Wilson TJ, Lilley DMJ. The potential versatility of RNA catalysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1651. [PMID: 33949113 DOI: 10.1002/wrna.1651] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/21/2023]
Abstract
It is commonly thought that in the early development of life on this planet RNA would have acted both as a store of genetic information and as a catalyst. While a number of RNA enzymes are known in contemporary cells, they are largely confined to phosphoryl transfer reactions, whereas an RNA based metabolism would have required a much greater chemical diversity of catalysis. Here we discuss how RNA might catalyze a wider variety of chemistries, and particularly how information gleaned from riboswitches could suggest how ribozymes might recruit coenzymes to expand their chemical range. We ask how we might seek such activities in modern biology. This article is categorized under: RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions Regulatory RNAs/RNAi/Riboswitches > Riboswitches RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Kaddour H, Lucchi H, Hervé G, Vergne J, Maurel MC. Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth. BIOLOGY 2021; 10:720. [PMID: 34439952 PMCID: PMC8389264 DOI: 10.3390/biology10080720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
A high pressure apparatus allowing one to study enzyme kinetics under pressure was used to study the self-cleavage activity of the avocado sunblotch viroid. The kinetics of this reaction were determined under pressure over a range up to 300 MPa (1-3000 bar). It appears that the initial rate of this reaction decreases when pressure increases, revealing a positive ΔV≠ of activation, which correlates with the domain closure accompanying the reaction and the decrease of the surface of the viroid exposed to the solvent. Although, as expected, temperature increases the rate of the reaction whose energy of activation was determined, it appeared that it does not significantly influence the ΔV≠ of activation and that pressure does not influence the energy of activation. These results provide information about the structural aspects or this self-cleavage reaction, which is involved in the process of maturation of this viroid. The behavior of ASBVd results from the involvement of the hammerhead ribozyme present at its catalytic domain, indeed a structural motif is very widespread in the ancient and current RNA world.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Honorine Lucchi
- Société PYMABS, 5 rue Henri Auguste Desbyeres, 91000 Évry-Courcouronnes, France;
| | - Guy Hervé
- Laboratoire BIOSIPE, Institut de biologie Paris-Seine, Sorbonne Université, 7 quai Saint-Bernard, 75005 Paris, France;
| | - Jacques Vergne
- Institut de Systématique, Evolution, Biodiversité, (ISYEB), Sorbonne Université, Museum National d’Histoire Naturelle, CNRS, EPHE, F 75005 Paris, France;
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité, (ISYEB), Sorbonne Université, Museum National d’Histoire Naturelle, CNRS, EPHE, F 75005 Paris, France;
| |
Collapse
|
12
|
Nakano SI, Yamashita H, Sugimoto N. Enhancement of the Catalytic Activity of Hammerhead Ribozymes by Organic Cations. Chembiochem 2021; 22:2721-2728. [PMID: 34240789 DOI: 10.1002/cbic.202100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Indexed: 11/05/2022]
Abstract
Catalytic turnover is important for the application of ribozymes to biotechnology. However, the turnover is often impaired because of the intrinsic high stability of base pairs with cleaved RNA products. Here, organic cations were used as additives to improve the catalytic performance of hammerhead ribozyme constructs that exhibit different kinetic behaviors. Kinetic analysis of substrate cleavage demonstrated that bulky cations, specifically tetra-substituted ammonium ions containing pentyl groups or a benzyl group, have the ability to greatly increase the turnover rate of the ribozymes. Thermal stability analysis of RNA structures revealed that the bulky cations promote the dissociation of cleaved products and refolding of incorrectly folded structures with small disruption of the catalytic structure. The use of bulky cations is a convenient method for enhancing the catalytic activity of hammerhead ribozymes, and the approach may be useful for advancing ribozyme technologies.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hirofumi Yamashita
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
13
|
Affiliation(s)
- Claire C Chen
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Hovlinc is a recently evolved class of ribozyme found in human lncRNA. Nat Chem Biol 2021; 17:601-607. [PMID: 33753927 DOI: 10.1038/s41589-021-00763-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Although naturally occurring catalytic RNA molecules-ribozymes-have attracted a great deal of research interest, very few have been identified in humans. Here, we developed a genome-wide approach to discovering self-cleaving ribozymes and identified a naturally occurring ribozyme in humans. The secondary structure and biochemical properties of this ribozyme indicate that it belongs to an unidentified class of small, self-cleaving ribozymes. The sequence of the ribozyme exhibits a clear evolutionary path, from its appearance between ~130 and ~65 million years ago (Ma), to acquiring self-cleavage activity very recently, ~13-10 Ma, in the common ancestors of humans, chimpanzees and gorillas. The ribozyme appears to be functional in vivo and is embedded within a long noncoding RNA belonging to a class of very long intergenic noncoding RNAs. The presence of a catalytic RNA enzyme in lncRNA creates the possibility that these transcripts could function by carrying catalytic RNA domains.
Collapse
|
15
|
Aroonsri A, Kongsee J, Gunawan JD, Aubry DA, Shaw PJ. A cell-based ribozyme reporter system employing a chromosomally-integrated 5' exonuclease gene. BMC Mol Cell Biol 2021; 22:20. [PMID: 33726662 PMCID: PMC7967978 DOI: 10.1186/s12860-021-00357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bioinformatic genome surveys indicate that self-cleaving ribonucleic acids (ribozymes) appear to be widespread among all domains of life, although the functions of only a small number have been validated by biochemical methods. Alternatively, cell-based reporter gene assays can be used to validate ribozyme function. However, reporter activity can be confounded by phenomena unrelated to ribozyme-mediated cleavage of RNA. Results We established a ribozyme reporter system in Escherichia coli in which a significant reduction of reporter activity is manifest when an active ribozyme sequence is fused to the reporter gene and the expression of a foreign Bacillus subtilis RNaseJ1 5′ exonuclease is induced from a chromosomally-integrated gene in the same cell. Conclusions The reporter system could be useful for validating ribozyme function in candidate sequences identified from bioinformatics. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00357-7.
Collapse
Affiliation(s)
- Aiyada Aroonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Jindaporn Kongsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Jeremy David Gunawan
- School of Life Science, Indonesia International Institute for Life Sciences (i3L), Jakarta, 13210, Indonesia
| | - Daniel Abidin Aubry
- School of Life Science, Indonesia International Institute for Life Sciences (i3L), Jakarta, 13210, Indonesia
| | - Philip James Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
16
|
Cervera A, de la Peña M. Cloning and Detection of Genomic Retrozymes and Their circRNA Intermediates. Methods Mol Biol 2021; 2167:27-44. [PMID: 32712913 DOI: 10.1007/978-1-0716-0716-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Retrozymes are a novel family of non-autonomous retrotransposable elements that contain hammerhead ribozyme motifs. These retroelements are found widespread in eukaryotic genomes, with active copies present in many species, which rely on other autonomous transposons for mobilization. Contrary to other retrotransposons, transcription of retrozymes in vivo leads to the formation and accumulation of circular RNAs, which can be readily detected by RNA blotting. In this chapter, we describe the procedures needed to carry out the cloning of genomic retrozymes, and to detect by northern blot their circular RNA retrotransposition intermediates.
Collapse
Affiliation(s)
- Amelia Cervera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIS-UPV), Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIS-UPV), Valencia, Spain.
| |
Collapse
|
17
|
Abstract
Self-cleaving ribozymes are RNA molecules that catalyze a site-specific self-scission reaction. Analysis of self-cleavage is a crucial aspect of the biochemical study and understanding of these molecules. Here we describe a co-transcriptional assay that allows the analysis of self-cleaving ribozymes in different reaction conditions and in the presence of desired ligands and/or cofactors. Utilizing a standard T7 RNA polymerase in vitro transcription system under limiting Mg2+ concentration, followed by a 25-fold dilution of the reaction in desired conditions of self-cleavage (buffer, ions, ligands, pH, temperature, etc.) to halt the synthesis of new RNA molecules, allows the study of self-scission of these molecules without the need for purification or additional preparation steps, such as refolding procedures. Furthermore, because the transcripts are not denatured, this assay likely yields RNAs in conformations relevant to co-transcriptionally folded species in vivo.
Collapse
|
18
|
A Singular and Widespread Group of Mobile Genetic Elements: RNA Circles with Autocatalytic Ribozymes. Cells 2020; 9:cells9122555. [PMID: 33260527 PMCID: PMC7761336 DOI: 10.3390/cells9122555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Circular DNAs, such as most prokaryotic and phage genomes, are a frequent form of nucleic acids, whereas circular RNAs had been regarded as unusual macromolecules until very recently. The first reported RNA circles were the family of small infectious genomes of viroids and circular RNA (circRNA) satellites of plant viruses, some of which contain small self-cleaving RNA motifs, such as the hammerhead (HHR) and hairpin ribozymes. A similar infectious circRNA, the unique human hepatitis delta virus (HDV), is another viral satellite that also encodes self-cleaving motifs called HDV ribozymes. Very recently, different animals have been reported to contain HDV-like circRNAs with typical HDV ribozymes, but also conserved HHR motifs, as we describe here. On the other hand, eukaryotic and prokaryotic genomes encode sequences able to self-excise as circRNAs, like the autocatalytic Group I and II introns, which are widespread genomic mobile elements. In the 1990s, the first circRNAs encoded in a mammalian genome were anecdotally reported, but their abundance and importance have not been unveiled until recently. These gene-encoded circRNAs are produced by events of alternative splicing in a process generally known as backsplicing. However, we have found a second natural pathway of circRNA expression conserved in numerous plant and animal genomes, which efficiently promotes the accumulation of small non-coding RNA circles through the participation of HHRs. Most of these genome-encoded circRNAs with HHRs are the transposition intermediates of a novel family of non-autonomous retrotransposons called retrozymes, with intriguing potential as new forms of gene regulation.
Collapse
|
19
|
Cervera A, de la Peña M. Small circRNAs with self-cleaving ribozymes are highly expressed in diverse metazoan transcriptomes. Nucleic Acids Res 2020; 48:5054-5064. [PMID: 32198887 PMCID: PMC7229834 DOI: 10.1093/nar/gkaa187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ribozymes are catalytic RNAs present in modern genomes but regarded as remnants of a prebiotic RNA world. The paradigmatic hammerhead ribozyme (HHR) is a small self-cleaving motif widespread from bacterial to human genomes. Here, we report that most of the classical type I HHRs frequently found in the genomes of animals are contained within a novel family of non-autonomous non-LTR retrotransposons of the retrozyme class. These retroelements are expressed as abundant linear and circular RNAs of ∼170-400 nt in different animal tissues. Bioinformatic and in vitro analyses indicate an efficient self-cleavage of the HHRs harboured in most invertebrate retrozymes, whereas HHRs in retrozymes of vertebrates, such as the axolotl and other amphibians, require to act as dimeric motifs to reach higher self-cleavage rates. Ligation assays of retrozyme RNAs with a protein ligase versus HHR self-ligation indicate that, most likely, tRNA ligases and not the ribozymes are involved in the step of RNA circularization. Altogether, these results confirm the existence of a new and conserved pathway in animals and, likely, eukaryotes in general, for the efficient biosynthesis of RNA circles through small ribozymes, which opens the door for the development of new tools in the emerging field of study of circRNAs.
Collapse
Affiliation(s)
- Amelia Cervera
- IBMCP (CSIC-UPV). C/ Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Marcos de la Peña
- IBMCP (CSIC-UPV). C/ Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- To whom correspondence should be addressed. Tel: +34 963 877 915; Fax: +34 963 877 859;
| |
Collapse
|
20
|
Zhang Z, Xiong P, Zhang T, Wang J, Zhan J, Zhou Y. Accurate inference of the full base-pairing structure of RNA by deep mutational scanning and covariation-induced deviation of activity. Nucleic Acids Res 2020; 48:1451-1465. [PMID: 31872260 PMCID: PMC7026644 DOI: 10.1093/nar/gkz1192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/12/2022] Open
Abstract
Despite the large number of noncoding RNAs in human genome and their roles in many diseases include cancer, we know very little about them due to lack of structural clues. The centerpiece of the structural clues is the full RNA base-pairing structure of secondary and tertiary contacts that can be precisely obtained only from costly and time-consuming 3D structure determination. Here, we performed deep mutational scanning of self-cleaving CPEB3 ribozyme by error-prone PCR and showed that a library of <5 × 104 single-to-triple mutants is sufficient to infer 25 of 26 base pairs including non-nested, nonhelical, and noncanonical base pairs with both sensitivity and precision at 96%. Such accurate inference was further confirmed by a twister ribozyme at 100% precision with only noncanonical base pairs as false negatives. The performance was resulted from analyzing covariation-induced deviation of activity by utilizing both functional and nonfunctional variants for unsupervised classification, followed by Monte Carlo (MC) simulated annealing with mutation-derived scores. Highly accurate inference can also be obtained by combining MC with evolution/direct coupling analysis, R-scape or epistasis analysis. The results highlight the usefulness of deep mutational scanning for high-accuracy structural inference of self-cleaving ribozymes with implications for other structured RNAs that permit high-throughput functional selections.
Collapse
Affiliation(s)
- Zhe Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Peng Xiong
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Tongchuan Zhang
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230031, Anhui, P. R. China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
- School of Information and Communication Technology, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
21
|
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res 2019; 47:9480-9494. [PMID: 31504786 PMCID: PMC6765202 DOI: 10.1093/nar/gkz737] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Small endonucleolytic ribozymes promote the self-cleavage of their own phosphodiester backbone at a specific linkage. The structures of and the reactions catalysed by members of individual families have been studied in great detail in the past decades. In recent years, bioinformatics studies have uncovered a considerable number of new examples of known catalytic RNA motifs. Importantly, entirely novel ribozyme classes were also discovered, for most of which both structural and biochemical information became rapidly available. However, for the majority of the new ribozymes, which are found in the genomes of a variety of species, a biological function remains elusive. Here, we concentrate on the different approaches to find catalytic RNA motifs in sequence databases. We summarize the emerging principles of RNA catalysis as observed for small endonucleolytic ribozymes. Finally, we address the biological functions of those ribozymes, where relevant information is available and common themes on their cellular activities are emerging. We conclude by speculating on the possibility that the identification and characterization of proteins that we hypothesize to be endogenously associated with catalytic RNA might help in answering the ever-present question of the biological function of the growing number of genomically encoded, small endonucleolytic ribozymes.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Hammann
- Ribogenetics & Biochemistry, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
22
|
Maurel MC, Leclerc F, Vergne J, Zaccai G. RNA Back and Forth: Looking through Ribozyme and Viroid Motifs. Viruses 2019; 11:E283. [PMID: 30901893 PMCID: PMC6466107 DOI: 10.3390/v11030283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022] Open
Abstract
Current cellular facts allow us to follow the link from chemical to biochemical metabolites, from the ancient to the modern world. In this context, the "RNA world" hypothesis proposes that early in the evolution of life, the ribozyme was responsible for the storage and transfer of genetic information and for the catalysis of biochemical reactions. Accordingly, the hammerhead ribozyme (HHR) and the hairpin ribozyme belong to a family of endonucleolytic RNAs performing self-cleavage that might occur during replication. Furthermore, regarding the widespread occurrence of HHRs in several genomes of modern organisms (from mammals to small parasites and elsewhere), these small ribozymes have been regarded as living fossils of a primitive RNA world. They fold into 3D structures that generally require long-range intramolecular interactions to adopt the catalytically active conformation under specific physicochemical conditions. By studying viroids as plausible remains of ancient RNA, we recently demonstrated that they replicate in non-specific hosts, emphasizing their adaptability to different environments, which enhanced their survival probability over the ages. All these results exemplify ubiquitous features of life. Those are the structural and functional versatility of small RNAs, ribozymes, and viroids, as well as their diversity and adaptability to various extreme conditions. All these traits must have originated in early life to generate novel RNA populations.
Collapse
Affiliation(s)
- Marie-Christine Maurel
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France.
| | - Jacques Vergne
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Giuseppe Zaccai
- Institut de Biologie Structurale CNRS-CEA-UGA, F-380447 Grenoble, France, and Institut Laue Langevin, 71 Avenue des Martyrs, F-38042 Grenoble, France.
| |
Collapse
|
23
|
Nakano SI, Yamashita H, Tanabe K, Sugimoto N. Bulky cations greatly increase the turnover of a native hammerhead ribozyme. RSC Adv 2019; 9:35820-35824. [PMID: 35528091 PMCID: PMC9074697 DOI: 10.1039/c9ra06797c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Methods to facilitate the catalytic turnover of ribozymes are required for advancing oligonucleotide-based technologies. This study examined tetraalkylammonium ions for their ability to increase the efficiency of catalytic turnover of a native hammerhead ribozyme. Kinetic analysis showed that large tetraalkylammonium ions significantly increased the turnover rate of the ribozyme and was much more effective than poly(ethylene glycol) (PEG) and urea. The magnitude of the rate increase depended on the concentrations of Mg2+ and tetrapentylammonium ions, and the rate was enhanced by more than 180-fold at the optimal concentrations of these salts. The results provide physical insights into interactions of ribozymes with large cationic molecules through electrostatic forces and steric hindrance. Large tetraalkylammonium ions increase the turnover rate of the ribozyme derived from an intronic ribozyme in the human genome. The rate can be enhanced by more than a hundred-fold at the optimal concentrations of Mg2+ and TPeA ions.![]()
Collapse
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe
- Japan
| | - Hirofumi Yamashita
- Department of Nanobiochemistry
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe
- Japan
| | - Kazuya Tanabe
- Department of Nanobiochemistry
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST)
- Konan University
- Kobe
- Japan
| |
Collapse
|
24
|
Webb CHT, Lupták A. Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs. Biochemistry 2018; 57:1440-1450. [PMID: 29388767 DOI: 10.1021/acs.biochem.7b00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV)-like ribozymes are self-cleaving catalytic RNAs with a widespread distribution in nature and biological roles ranging from self-scission during rolling-circle replication in viroids to co-transcriptional processing of eukaryotic retrotransposons, among others. The ribozymes fold into a double pseudoknot with a common catalytic core motif and highly variable peripheral domains. Like other self-cleaving ribozymes, HDV-like ribozymes can be converted into trans-acting catalytic RNAs by bisecting the self-cleaving variants at non-essential loops. Here we explore the trans-cleaving activity of ribozymes derived from the largest examples of the ribozymes (drz-Agam-2 family), which contain an extended domain between the substrate strand and the rest of the RNA. When this peripheral domain is bisected at its distal end, the substrate strand is recognized through two helices, rather than just one 7 bp helix common among the HDV ribozymes, resulting in stronger binding and increased sequence specificity. Kinetic characterization of the extended trans-cleaving ribozyme revealed an efficient trans-cleaving system with a surprisingly high KM', supporting a model that includes a recently proposed activation barrier related to the assembly of the catalytically competent ribozyme. The ribozymes also exhibit a very long koff for the products (∼2 weeks), resulting in a trade-off between sequence specificity and turnover. Finally, structure-based searches for the catalytic cores of these ribozymes in the genome of the mosquito Anopheles gambiae, combined with sequence searches for their putative substrates, revealed two potential ribozyme-substrate pairs that may represent examples of natural trans-cleaving ribozymes.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States.,Department of Pharmaceutical Sciences , University of California-Irvine , Irvine , California 92697 , United States.,Department of Chemistry , University of California-Irvine , Irvine , California 92697 , United States
| |
Collapse
|
25
|
Circular RNAs Biogenesis in Eukaryotes Through Self-Cleaving Hammerhead Ribozymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:53-63. [PMID: 30259357 DOI: 10.1007/978-981-13-1426-1_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Circular DNAs are frequent genomic molecules, especially among the simplest life beings, whereas circular RNAs have been regarded as weird nucleic acids in biology. Now we know that eukaryotes are able to express circRNAs, mostly derived from backsplicing mechanisms, and playing different biological roles such as regulation of RNA splicing and transcription, among others. However, a second natural and highly efficient pathway for the expression in vivo of circRNAs has been recently reported, which allows the accumulation of abundant small (100-1000 nt) non-coding RNA circles through the participation of small self-cleaving RNAs or ribozymes called hammerhead ribozymes. These genome-encoded circRNAs with ribozymes seem to be a new family of small and nonautonomous retrotransposable elements of plants and animals (so-called retrozymes), which will offer functional clues to the biology and evolution of circular RNA molecules as well as new biotechnological tools in this emerging field.
Collapse
|
26
|
Studying Parasite Gene Function and Interaction Through Ribozymes and Riboswitches Design Mechanism. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
27
|
Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol 2017; 8:2483. [PMID: 29312192 PMCID: PMC5744636 DOI: 10.3389/fmicb.2017.02483] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs) and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
28
|
Wurmthaler LA, Klauser B, Hartig JS. Highly motif- and organism-dependent effects of naturally occurring hammerhead ribozyme sequences on gene expression. RNA Biol 2017; 15:231-241. [PMID: 29106331 DOI: 10.1080/15476286.2017.1397870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent bioinformatics studies have demonstrated a wide-spread occurrence of the hammerhead ribozyme (HHR) and similar small endonucleolytic RNA motifs in all domains of life. It is becoming increasingly evident that such ribozyme motifs participate in important genetic processes in diverse organisms. Although the HHR motif has been studied for more than three decades, only little is known about the consequences of ribozyme activity on gene expression. In the present study we analysed eight different naturally occurring HHR sequences in diverse genetic and organismal contexts. We investigated the influence of active ribozymes incorporated into mRNAs in mammalian, yeast and bacterial expression systems. The experiments show an unexpectedly high degree of organism-specific variability of ribozyme-mediated effects on gene expression. The presented findings demonstrate that ribozyme cleavage profoundly affect gene expression. However, the extent of this effect varies and depends strongly on the respective genetic context. The fast-cleaving type 3 HHRs [CChMVd(-) and sLTSV(-)] generally tended to cause the strongest effects on intracellular gene expression. The presented results are important in order to address potential functions of naturally occurring ribozymes in RNA processing and post-transcriptional regulation of gene expression. Additionally, our results are of interest for biotechnology and synthetic biology approaches that aim at the utilisation of self-cleaving ribozymes as widely applicable tools for controlling genetic processes.
Collapse
Affiliation(s)
- Lena A Wurmthaler
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| | - Benedikt Klauser
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| | - Jörg S Hartig
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| |
Collapse
|
29
|
de la Peña M, Cervera A. Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: The enemy at home. RNA Biol 2017; 14:985-991. [PMID: 28448743 PMCID: PMC5680766 DOI: 10.1080/15476286.2017.1321730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A new family of non-autonomous retrotransposons with self-cleaving hammerhead ribozymes, the so called retrozymes, has recently been found encoded in diverse plant genomes. These retroelements can be actively transcribed, and their RNAs accumulate in the cells as abundant non-coding circular RNAs (circRNAs) of small size (600–1000 nt). Related circRNAs with self-cleaving ribozymes had already been described in plants, and belong to a group of infectious RNA agents with an uncertain origin: the viroids and viroid-like satellites of plant RNA viruses. These pathogenic circRNAs show many structural similarities with retrozyme circRNAs, and both have been found to occur in flowering plants as heterogeneous RNA molecules of positive and negative polarities. Taking all these data together, we hypothesize that circRNAs encoded by genomic retrozymes could have given origin to infectious circRNAs with self-cleaving ribozymes. Moreover, we propose that retrozymes in time could have evolved from the ancient family of Penelope-like retroelements, which also harbour hammerhead ribozymes. Putative retrozyme sequences with hammerhead ribozymes have been detected as well in metazoan genomes, opening the door to a common occurrence of circRNAs with self-cleaving motifs among eukaryotes.
Collapse
Affiliation(s)
- Marcos de la Peña
- a Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València) C/ Ingeniero Fausto Elio s/n , Valencia , Spain
| | - Amelia Cervera
- a Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València) C/ Ingeniero Fausto Elio s/n , Valencia , Spain
| |
Collapse
|
30
|
de la Peña M, García-Robles I, Cervera A. The Hammerhead Ribozyme: A Long History for a Short RNA. Molecules 2017; 22:molecules22010078. [PMID: 28054987 PMCID: PMC6155905 DOI: 10.3390/molecules22010078] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 01/22/2023] Open
Abstract
Small nucleolytic ribozymes are a family of naturally occurring RNA motifs that catalyse a self-transesterification reaction in a highly sequence-specific manner. The hammerhead ribozyme was the first reported and the most extensively studied member of this family. However, and despite intense biochemical and structural research for three decades since its discovery, the history of this model ribozyme seems to be far from finished. The hammerhead ribozyme has been regarded as a biological oddity typical of small circular RNA pathogens of plants. More recently, numerous and new variations of this ribozyme have been found to inhabit the genomes of organisms from all life kingdoms, although their precise biological functions are not yet well understood.
Collapse
Affiliation(s)
- Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| | - Inmaculada García-Robles
- Department of Genetics, University of Valencia, C/Dr. Moliner 50, Burjassot, 46100 Valencia, Spain.
| | - Amelia Cervera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
31
|
Müller S, Appel B, Balke D, Hieronymus R, Nübel C. Thirty-five years of research into ribozymes and nucleic acid catalysis: where do we stand today? F1000Res 2016; 5. [PMID: 27408700 PMCID: PMC4926735 DOI: 10.12688/f1000research.8601.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/28/2022] Open
Abstract
Since the discovery of the first catalytic RNA in 1981, the field of ribozyme research has developed from the discovery of catalytic RNA motifs in nature and the elucidation of their structures and catalytic mechanisms, into a field of engineering and design towards application in diagnostics, molecular biology and medicine. Owing to the development of powerful protocols for selection of nucleic acid catalysts with a desired functionality from random libraries, the spectrum of nucleic acid supported reactions has greatly enlarged, and importantly, ribozymes have been accompanied by DNAzymes. Current areas of research are the engineering of allosteric ribozymes for artificial regulation of gene expression, the design of ribozymes and DNAzymes for medicinal and environmental diagnostics, and the demonstration of RNA world relevant ribozyme activities. In addition, new catalytic motifs or novel genomic locations of known motifs continue to be discovered in all branches of life by the help of high-throughput bioinformatic approaches. Understanding the biological role of the catalytic RNA motifs widely distributed in diverse genetic contexts belongs to the big challenges of future RNA research.
Collapse
Affiliation(s)
- Sabine Müller
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Bettina Appel
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Darko Balke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Robert Hieronymus
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Claudia Nübel
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Cervera A, Urbina D, de la Peña M. Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs. Genome Biol 2016; 17:135. [PMID: 27339130 PMCID: PMC4918200 DOI: 10.1186/s13059-016-1002-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
Background Catalytic RNAs, or ribozymes, are regarded as fossils of a prebiotic RNA world that have remained in the genomes of modern organisms. The simplest ribozymes are the small self-cleaving RNAs, like the hammerhead ribozyme, which have been historically considered biological oddities restricted to some RNA pathogens. Recent data, however, indicate that small self-cleaving ribozymes are widespread in genomes, although their functions are still unknown. Results We reveal that hammerhead ribozyme sequences in plant genomes form part of a new family of small non-autonomous retrotransposons with hammerhead ribozymes, referred to as retrozymes. These elements contain two long terminal repeats of approximately 350 bp, each harbouring a hammerhead ribozyme that delimitates a variable region of 600–1000 bp with no coding capacity. Retrozymes are actively transcribed, which gives rise to heterogeneous linear and circular RNAs that accumulate differentially depending on the tissue or developmental stage of the plant. Genomic and transcriptomic retrozyme sequences are highly heterogeneous and share almost no sequence homology among species except the hammerhead ribozyme motif and two small conserved domains typical of Ty3-gypsy long terminal repeat retrotransposons. Moreover, we detected the presence of RNAs of both retrozyme polarities, which suggests events of independent RNA-RNA rolling-circle replication and evolution, similarly to that of infectious circular RNAs like viroids and viral satellite RNAs. Conclusions Our work reveals that circular RNAs with hammerhead ribozymes are frequently occurring molecules in plant and, most likely, metazoan transcriptomes, which explains the ubiquity of these genomic ribozymes and suggests a feasible source for the emergence of circular RNA plant pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1002-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amelia Cervera
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Denisse Urbina
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Marcos de la Peña
- IBMCP (CSIC-UPV). C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| |
Collapse
|
33
|
Skilandat M, Rowinska-Zyrek M, Sigel RKO. Secondary structure confirmation and localization of Mg2+ ions in the mammalian CPEB3 ribozyme. RNA (NEW YORK, N.Y.) 2016; 22:750-763. [PMID: 26966151 PMCID: PMC4836649 DOI: 10.1261/rna.053843.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Most of today's knowledge of the CPEB3 ribozyme, one of the few small self-cleaving ribozymes known to occur in humans, is based on comparative studies with the hepatitis delta virus (HDV) ribozyme, which is highly similar in cleavage mechanism and probably also in structure. Here we present detailed NMR studies of the CPEB3 ribozyme in order to verify the formation of the predicted nested double pseudoknot in solution. In particular, the influence of Mg(2+), the ribozyme's crucial cofactor, on the CPEB3 structure is investigated. NMR titrations, Tb(3+)-induced cleavage, as well as stoichiometry determination by hydroxyquinoline sulfonic acid fluorescence and equilibrium dialysis, are used to evaluate the number, location, and binding mode of Mg(2+)ions. Up to eight Mg(2+)ions interact site-specifically with the ribozyme, four of which are bound with high affinity. The global fold of the CPEB3 ribozyme, encompassing 80%-90% of the predicted base pairs, is formed in the presence of monovalent ions alone. Low millimolar concentrations of Mg(2+)promote a more compact fold and lead to the formation of additional structures in the core of the ribozyme, which contains the inner small pseudoknot and the active site. Several Mg(2+)binding sites, which are important for the functional fold, appear to be located in corresponding locations in the HDV and CPEB3 ribozyme, demonstrating the particular relevance of Mg(2+)for the nested double pseudoknot structure.
Collapse
Affiliation(s)
- Miriam Skilandat
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
34
|
The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophys Rev 2016; 8:11-23. [PMID: 28510143 DOI: 10.1007/s12551-015-0188-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Organic solvents and apolar media are used in the studies of nucleic acids to modify the conformation and function of nucleic acids, to improve solubility of hydrophobic ligands, to construct molecular scaffolds for organic synthesis, and to study molecular crowding effects. Understanding how organic solvents affect nucleic acid interactions and identifying the factors that dominate solvent effects are important for the creation of oligonucleotide-based technologies. This review describes the structural and catalytic properties of DNA and RNA oligonucleotides in organic solutions and in aqueous solutions with organic cosolvents. There are several possible mechanisms underlying the effects of organic solvents on nucleic acid interactions. The reported results emphasize the significance of the osmotic pressure effect and the dielectric constant effect in addition to specific interactions with nucleic acid strands. This review will serve as a guide for the selection of solvent systems based on the purpose of the nucleic acid-based experiments.
Collapse
|
35
|
Jimenez RM, Polanco JA, Lupták A. Chemistry and Biology of Self-Cleaving Ribozymes. Trends Biochem Sci 2015; 40:648-661. [PMID: 26481500 DOI: 10.1016/j.tibs.2015.09.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/26/2022]
Abstract
Self-cleaving ribozymes were discovered 30 years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure, with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be used as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered.
Collapse
Affiliation(s)
- Randi M Jimenez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Julio A Polanco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
36
|
Nakano SI, Kitagawa Y, Yamashita H, Miyoshi D, Sugimoto N. Effects of Cosolvents on the Folding and Catalytic Activities of the Hammerhead Ribozyme. Chembiochem 2015; 16:1803-10. [DOI: 10.1002/cbic.201500139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/09/2022]
|
37
|
Abstract
Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes.
Collapse
Affiliation(s)
- Amelia Cervera
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | - Marcos De la Peña
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| |
Collapse
|
38
|
Crystal structure and mechanistic investigation of the twister ribozyme. Nat Chem Biol 2014; 10:739-44. [DOI: 10.1038/nchembio.1587] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
|
39
|
Abstract
Discoveries over the past decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also involved in the regulation of genome organization and gene expression, which is increasingly elaborate in complex organisms. Regulatory RNA seems to operate at many levels; in particular, it plays an important part in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here, we review the emergence of the previously unsuspected world of regulatory RNA from a historical perspective.
Collapse
Affiliation(s)
- Kevin V Morris
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John S Mattick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; the School of Biotechnology and Biomedical Sciences, and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
41
|
Pitchiaya S, Heinicke LA, Custer TC, Walter NG. Single molecule fluorescence approaches shed light on intracellular RNAs. Chem Rev 2014; 114:3224-65. [PMID: 24417544 PMCID: PMC3968247 DOI: 10.1021/cr400496q] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Laurie A. Heinicke
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thomas C. Custer
- Program in Chemical Biology, University of Michigan,
Ann Arbor, MI 48109-1055, USA
| | - Nils G. Walter
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
42
|
Solution structure and metal ion binding sites of the human CPEB3 ribozyme's P4 domain. J Biol Inorg Chem 2014; 19:903-12. [PMID: 24652468 DOI: 10.1007/s00775-014-1125-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/05/2014] [Indexed: 01/18/2023]
Abstract
Three ribozymes are known to occur in humans, the CPEB3 ribozyme, the CoTC ribozyme, and the hammerhead ribozyme. Here, we present the NMR solution structure of a well-conserved motif within the CPEB3 ribozyme, the P4 domain. In addition, we discuss the binding sites and impact of Mg(2+) and [Co(NH3)6](3+), a spectroscopic probe for [Mg(H2O)6](2+), on the structure. The well-defined P4 region is a hairpin closed with a UGGU tetraloop that shows a distinct electrostatic surface potential and a characteristic, strongly curved backbone trajectory. The P4 hairpin contains two specific Mg(2+) binding sites: one outer-sphere binding site close to the proposed CPEB3 ribozyme active site with potential relevance for maintaining a compact fold of the ribozyme core, and one inner-sphere binding site, probably stabilizing the tetraloop structure. The structure of the tetraloop resembles an RNase III recognition structure, as previously described for an AGUU tetraloop. The detailed knowledge of the P4 domain and its metal ion binding preferences thus brings us closer to understanding the importance of Mg(2+) binding for the CPEB3 ribozyme's fold and function in the cell.
Collapse
|
43
|
El Korbi A, Ouellet J, Naghdi MR, Perreault J. Finding instances of riboswitches and ribozymes by homology search of structured RNA with Infernal. Methods Mol Biol 2014; 1103:113-126. [PMID: 24318890 DOI: 10.1007/978-1-62703-730-3_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the genomics era, computational tools are essential to extract information from sequences and annotate them to allow easy access to genes. Fortunately, many of these tools are now part of standard pipelines. As a consequence, a cornucopia of genomic features is available in multiple databases. Nevertheless, as novel genomes are sequenced and new structured RNAs are discovered, homology searches and additional analyses need to be performed. In this chapter, we propose simple ways of finding instances of riboswitches and ribozymes in databases or in unannotated genomes, as well as ways of finding variants that deviate from the typical consensus.
Collapse
|
44
|
Ma W, Yu C, Zhang W. Circularity and self-cleavage as a strategy for the emergence of a chromosome in the RNA-based protocell. Biol Direct 2013; 8:21. [PMID: 23971788 PMCID: PMC3765326 DOI: 10.1186/1745-6150-8-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/21/2013] [Indexed: 12/23/2022] Open
Abstract
Background It is now popularly accepted that an “RNA world” existed in early evolution. During division of RNA-based protocells, random distribution of individual genes (simultaneously as ribozymes) between offspring might have resulted in gene loss, especially when the number of gene types increased. Therefore, the emergence of a chromosome carrying linked genes was critical for the prosperity of the RNA world. However, there were quite a few immediate difficulties for this event to occur. For example, a chromosome would be much longer than individual genes, and thus more likely to degrade and less likely to replicate completely; the copying of the chromosome might start at middle sites and be only partial; and, without a complex transcription mechanism, the synthesis of distinct ribozymes would become problematic. Results Inspired by features of viroids, which have been suggested as “living fossils” of the RNA world, we supposed that these difficulties could have been overcome if the chromosome adopted a circular form and small, self-cleaving ribozymes (e.g. the hammer head ribozymes) resided at the sites between genes. Computer simulation using a Monte-Carlo method was conducted to investigate this hypothesis. The simulation shows that an RNA chromosome can spread (increase in quantity and be sustained) in the system if it is a circular one and its linear “transcripts” are readily broken at the sites between genes; the chromosome works as genetic material and ribozymes “coded” by it serve as functional molecules; and both circularity and self-cleavage are important for the spread of the chromosome. Conclusions In the RNA world, circularity and self-cleavage may have been adopted as a strategy to overcome the immediate difficulties for the emergence of a chromosome (with linked genes). The strategy suggested here is very simple and likely to have been used in this early stage of evolution. By demonstrating the possibility of the emergence of an RNA chromosome, this study opens on the prospect of a prosperous RNA world, populated by RNA-based protocells with a number of genes, showing complicated functions. Reviewers This article was reviewed by Sergei Kazakov (nominated by Laura Landweber), Nobuto Takeuchi (nominated by Anthony Poole), and Eugene Koonin.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, P,R, China.
| | | | | |
Collapse
|
45
|
Hammann C, Luptak A, Perreault J, de la Peña M. The ubiquitous hammerhead ribozyme. RNA (NEW YORK, N.Y.) 2012; 18:871-85. [PMID: 22454536 PMCID: PMC3334697 DOI: 10.1261/rna.031401.111] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The hammerhead ribozyme is a small catalytic RNA motif capable of endonucleolytic (self-) cleavage. It is composed of a catalytic core of conserved nucleotides flanked by three helices, two of which form essential tertiary interactions for fast self-scission under physiological conditions. Originally discovered in subviral plant pathogens, its presence in several eukaryotic genomes has been reported since. More recently, this catalytic RNA motif has been shown to reside in a large number of genomes. We review the different approaches in discovering these new hammerhead ribozyme sequences and discuss possible biological functions of the genomic motifs.
Collapse
Affiliation(s)
- Christian Hammann
- Heisenberg Research Group Ribogenetics, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Corresponding authors.E-mail .E-mail .E-mail .E-mail .
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, USA
- Corresponding authors.E-mail .E-mail .E-mail .E-mail .
| | - Jonathan Perreault
- Centre INRS – Institut Armand-Frappier, Laval, Québec, H7V 1B7, Canada
- Corresponding authors.E-mail .E-mail .E-mail .E-mail .
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), 46022 Valencia, Spain
- Corresponding authors.E-mail .E-mail .E-mail .E-mail .
| |
Collapse
|
46
|
Abstract
The function of RNA depends on its ability to adopt complex and dynamic structures, and the incorporation of site-specific cross-linking probes is a powerful method for providing distance constraints that are valuable in RNA structural biology. Here we describe a new RNA-RNA cross-linking strategy based on Pt(II) targeting of specific phosphorothioate substitutions. In this strategy cis-diammine Pt(II) complexes are kinetically recruited and anchored to a phosphorothioate substitution embedded within a structured RNA. Substitution of the remaining exchangeable Pt(II) ligand with a nucleophile supplied by a nearby RNA nucleobase results in metal-mediated cross-links that are stable during isolation. This type of cross-linking strategy was explored within the catalytic core of the Hammerhead ribozyme (HHRz). When a phosphorothioate substitution is installed at the scissile bond normally cleaved by the HHRz, Pt(II) cross-linking takes place to nucleotides G8 and G10 in the ribozyme active site. Both of these positions are predicted to be within ~8 Å of a phosphorothioate-bound Pt(II) metal center. Cross-linking depends on Mg(2+) ion concentration, reaching yields as high as 30%, with rates that indicate cation competition within the RNA three-helix junction. Cross-linking efficiency depends on accurate formation of the HHRz tertiary structure, and cross-links are not observed for RNA helices. Combined, these results show promise for using kinetically inert Pt(II) complexes as new site-specific cross-linking tools for exploring RNA structure and dynamics.
Collapse
Affiliation(s)
- Erich G. Chapman
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Victoria J. DeRose
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
47
|
Frías-Lasserre D. Non coding RNAs and viruses in the framework of the phylogeny of the genes, epigenesis and heredity. Int J Mol Sci 2012; 13:477-490. [PMID: 22312265 PMCID: PMC3269699 DOI: 10.3390/ijms13010477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/21/2023] Open
Abstract
The origin of genes is one of the most enigmatic events in the origin of life. It has been suggested that noncoding (nc) RNA was probably a precursor in the formation of the first polypeptide, and also at the origin of the first manifestation of life and genes. ncRNAs are also becoming central for understanding gene expression and silencing. Indeed, before the discovery of ncRNAs, proteins were viewed as the major molecules in the regulation of gene expression and gene silencing; however, recent findings suggest that ncRNA also plays an important role in gene expression. Reverse transcription of RNA viruses and their integration into the genome of eukaryotes and also their relationship with the ncRNA suggest that their origin is basal in genome evolution, and also probably constitute the first mechanism of gene regulation. I am to review the different roles of ncRNAs in the framework of gene evolution, as well as the importance of ncRNAs and viruses in the epigenesis and in the non-Mendelian model of heredity and evolution.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Institute of Entomology, Metropolitan University of Educational Sciences, Avenue J.P. Alessandri 774 Ñuñoa, Código Postal 7760197, Santiago, Chile; E-Mail: ; Tel.: +56-2-2412457; Fax: +56-2-2412699
| |
Collapse
|
48
|
Abstract
Detecting functional RNAs is increasingly accomplished through structure-based searches for patterns of conserved secondary structure. With large amounts of new sequencing data becoming available, there is a greater demand for efficient methods of identifying new RNAs. Here we present a method of identifying self-cleaving ribozymes and characterizing the in vitro activity.
Collapse
|
49
|
Abstract
Hammerhead ribozymes are small catalytic RNA motifs ubiquitously present in a large variety of genomes. The reactions catalyzed by these motifs are both their self-scission and the reverse ligation reaction. Here, we describe methods for the generation of DNA templates for the subsequent in vitro transcription of hammerhead ribozymes. This is followed by a description of the preparation of suitable RNA molecules for both reaction types, and their kinetic analysis.
Collapse
|
50
|
Ruminski DJ, Webb CHT, Riccitelli NJ, Lupták A. Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J Biol Chem 2011; 286:41286-41295. [PMID: 21994949 DOI: 10.1074/jbc.m111.297283] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many non-long terminal repeat (non-LTR) retrotransposons lack internal promoters and are co-transcribed with their host genes. These transcripts need to be liberated before inserting into new loci. Using structure-based bioinformatics, we show that several classes of retrotransposons in phyla-spanning arthropods, nematodes, and chordates utilize self-cleaving ribozymes of the hepatitis delta virus (HDV) family for processing their 5' termini. Ribozyme-terminated retrotransposons include rDNA-specific R2, R4, and R6, telomere-specific SART, and Baggins and RTE. The self-scission of the R2 ribozyme is strongly modulated by the insertion site sequence in the rDNA, with the most common insertion sequences promoting faster processing. The ribozymes also promote translation initiation of downstream open reading frames in vitro and in vivo. In some organisms HDV-like and hammerhead ribozymes appear to be dedicated to processing long and short interspersed elements, respectively. HDV-like ribozymes serve several distinct functions in non-LTR retrotransposition, including 5' processing, translation initiation, and potentially trans-templating.
Collapse
Affiliation(s)
- Dana J Ruminski
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Chiu-Ho T Webb
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | | | - Andrej Lupták
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697; Department of Chemistry, University of California, Irvine, California 92697; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697.
| |
Collapse
|