1
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Yu W, Yuan R, Liu M, Liu K, Ding X, Hou Y. Effects of rpl1001 Gene Deletion on Cell Division of Fission Yeast and Its Molecular Mechanism. Curr Issues Mol Biol 2024; 46:2576-2597. [PMID: 38534780 DOI: 10.3390/cimb46030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
The rpl1001 gene encodes 60S ribosomal protein L10, which is involved in intracellular protein synthesis and cell growth. However, it is not yet known whether it is involved in the regulation of cell mitosis dynamics. This study focuses on the growth, spore production, cell morphology, the dynamics of microtubules, chromosomes, actin, myosin, and mitochondria of fission yeast (Schizosaccharomyces pombe) to investigate the impact of rpl1001 deletion on cell mitosis. RNA-Seq and bioinformatics analyses were also used to reveal key genes, such as hsp16, mfm1 and isp3, and proteasome pathways. The results showed that rpl1001 deletion resulted in slow cell growth, abnormal spore production, altered cell morphology, and abnormal microtubule number and length during interphase. The cell dynamics of the rpl1001Δ strain showed that the formation of a monopolar spindle leads to abnormal chromosome segregation with increased rate of spindle elongation in anaphase of mitosis, decreased total time of division, prolonged formation time of actin and myosin loops, and increased expression of mitochondrial proteins. Analysis of the RNA-Seq sequencing results showed that the proteasome pathway, up-regulation of isp3, and down-regulation of mfm1 and mfm2 in the rpl1001Δ strain were the main factors underpinning the increased number of spore production. Also, in the rpl1001Δ strain, down-regulation of dis1 caused the abnormal microtubule and chromosome dynamics, and down-regulation of hsp16 and pgk1 were the key genes affecting the delay of actin ring and myosin ring formation. This study reveals the effect and molecular mechanism of rpl1001 gene deletion on cell division, which provides the scientific basis for further clarifying the function of the Rpl1001 protein in cell division.
Collapse
Affiliation(s)
- Wen Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Rongmei Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Mengnan Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Ke Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China
| |
Collapse
|
3
|
Zhang T, Zhao SH, He Y. ZmTDM1 encodes a tetratricopeptide repeat domain protein and is required for meiotic exit in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1517-1527. [PMID: 38047628 DOI: 10.1111/tpj.16579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Elaborate cell-cycle control must be adopted to ensure the continuity of the meiotic second division and termination after that. Despite its importance, however, the genetic controls underlying the meiotic cell cycle have not been reported in maize. Here, we characterized a meiotic cell-cycle controller ZmTDM1, which is a homolog of Arabidopsis TDM1 and encodes a canonical tetratricopeptide repeat domain protein in maize. The Zmtdm1 homozygous plants exhibited complete male sterility and severe female abortion. In Zmtdm1 mutants, cell-cycle progression was almost identical to that of wild type from leptotene to anaphase II. However, chromosomes in the tetrad failed meiotic termination at the end of the second division and underwent additional divisions in succession without DNA replication, reducing the ploidy to less than haploid in the product. In addition, two ZmTDM1-like homologs (ZmTDML1 and ZmTDML2) were not functional in meiotic cell-cycle control. Moreover, ZmTDM1 interacted with RING-type E3 ubiquitin ligase, revealing that it acts as a subunit of the APC/C E3 ubiquitin ligase complex. Overall, our results identified a regulator of meiotic cell cycle in maize and demonstrated that ZmTDM1 is essential for meiotic exit after meiosis II.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shuang-Hui Zhao
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Zhu Q, Jiang Z, He X. Pcp1/pericentrin controls the SPB number in fission yeast meiosis and ploidy homeostasis. J Cell Biol 2022; 221:212751. [PMID: 34747981 PMCID: PMC8579193 DOI: 10.1083/jcb.202104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.
Collapse
Affiliation(s)
- Qian Zhu
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Xiangwei He
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Sato M, Kakui Y, Toya M. Tell the Difference Between Mitosis and Meiosis: Interplay Between Chromosomes, Cytoskeleton, and Cell Cycle Regulation. Front Cell Dev Biol 2021; 9:660322. [PMID: 33898463 PMCID: PMC8060462 DOI: 10.3389/fcell.2021.660322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Meiosis is a specialized style of cell division conserved in eukaryotes, particularly designed for the production of gametes. A huge number of studies to date have demonstrated how chromosomes behave and how meiotic events are controlled. Yeast substantially contributed to the understanding of the molecular mechanisms of meiosis in the past decades. Recently, evidence began to accumulate to draw a perspective landscape showing that chromosomes and microtubules are mutually influenced: microtubules regulate chromosomes, whereas chromosomes also regulate microtubule behaviors. Here we focus on lessons from recent advancement in genetical and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how chromosomes, cytoskeleton, and cell cycle progression are organized and particularly how these are differentiated in mitosis and meiosis. These studies illuminate that meiosis is strategically designed to fulfill two missions: faithful segregation of genetic materials and production of genetic diversity in descendants through elaboration by meiosis-specific factors in collaboration with general factors.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
6
|
Modeling the Control of Meiotic Cell Divisions: Entry, Progression, and Exit. Biophys J 2020; 119:1015-1024. [PMID: 32783879 DOI: 10.1016/j.bpj.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Upon nitrogen starvation, Schizosaccharomyces pombe exit the mitotic cell cycle and become irreversibly committed to the completion of meiosis program. Meiotic cell divisions are coordinated with sporulation events to produce haploid spores. In the last few decades, experiments on fission yeast have revealed different molecular players involved in two meiotic cell divisions, meiosis I (MI) and meiosis II (MII). How the MI entry, MI-to-MII transition, and MII exit occur because of the dynamics of the regulatory network is not well understood. In this work, we developed a comprehensive mathematical model of the network that describes the temporal dynamics of meiotic progression. The model accounts for the phenotypes of several experimental data (single and multiple mutations). We demonstrate the control strategy involving multiple feedback loops to yield two successive division cycles. The differential regulation of anaphase-promoting complex/cyclosome (APC/C) coactivators and its inhibitors is crucial for the dynamics of both MI-to-MII transition and MII exit. This model generates mechanistic insights that help in further experiments and modeling.
Collapse
|
7
|
CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes (Basel) 2020; 11:genes11070723. [PMID: 32610611 PMCID: PMC7397238 DOI: 10.3390/genes11070723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic progression requires precise orchestration, such that one round of DNA replication is followed by two meiotic divisions. The order and timing of meiotic events is controlled through the modulation of the phosphorylation state of proteins. Key components of this phospho-regulatory system include cyclin-dependent kinase (CDK) and its cyclin regulatory subunits. Over the past two decades, studies in budding and fission yeast have greatly informed our understanding of the role of CDK in meiotic regulation. In this review, we provide an overview of how CDK controls meiotic events in both budding and fission yeast. We discuss mechanisms of CDK regulation through post-translational modifications and changes in the levels of cyclins. Finally, we highlight the similarities and differences in CDK regulation between the two yeast species. Since CDK and many meiotic regulators are highly conserved, the findings in budding and fission yeasts have revealed conserved mechanisms of meiotic regulation among eukaryotes.
Collapse
|
8
|
Kiriya K, Tsuyuzaki H, Sato M. Module-based systematic construction of plasmids for episomal gene expression in fission yeast. Gene 2017; 637:14-24. [PMID: 28935259 DOI: 10.1016/j.gene.2017.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is a powerful model organism for cell biology and molecular biology, as genetic manipulation is easily achieved. Introduction of exogenous genes cloned in episomal plasmids into yeast cells can be done through well-established transformation methods. For expression of genes in S. pombe cells, the multi-copy plasmid pREP1 and its derivatives, including pREP41 and pREP81, have been widely used as vectors. Although recent advancement of technology brought a number of useful genetic elements such as new promoters, selection marker genes and fluorescent protein tags, introduction of those elements into conventional pREP1 requires a large commitment of both time and effort because cloning procedures need to be repeated until the final products are constructed. Here, we introduce materials and methods to construct many pREP1-type plasmids easily and systematically using the Golden Gate shuffling method, which enables one-step ligation of many DNA fragments into a plasmid. These materials and methods support creation of expression plasmids employing a variety of novel genetic elements, which will further facilitate genetic studies using S. pombe.
Collapse
Affiliation(s)
- Keita Kiriya
- Laboratory for Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Japan
| | - Hayato Tsuyuzaki
- Laboratory for Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Main Building, 2-3-26 Aomi, Tokyo 135-0064, Japan
| | - Masamitsu Sato
- Laboratory for Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Japan; Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
9
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017; 2017:pdb.top079855. [PMID: 28733417 DOI: 10.1101/pdb.top079855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
10
|
Chikashige Y, Yamane M, Okamasa K, Osakada H, Tsutsumi C, Nagahama Y, Fukuta N, Haraguchi T, Hiraoka Y. Fission yeast APC/C activators Slp1 and Fzr1 sequentially trigger two consecutive nuclear divisions during meiosis. FEBS Lett 2017; 591:1029-1040. [PMID: 28245054 DOI: 10.1002/1873-3468.12612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/05/2023]
Abstract
In meiosis, two rounds of nuclear division occur consecutively without DNA replication between the divisions. We isolated a fission yeast mutant in which the nucleus divides only once to generate two spores, as opposed to four, in meiosis. In this mutant, we found that the initiation codon of the slp1+ gene is converted to ATA, producing a reduced amount of Slp1. As a member of the Fizzy family of anaphase-promoting complex/cyclosome (APC/C) activators, Slp1 is essential for vegetative growth; however, the mutant allele shows a phenotype only in meiosis. Slp1 insufficiency delays degradation of maturation-promoting factor at the first meiotic division, and another APC/C activator, Fzr1, which acts late in meiosis, terminates meiosis immediately after the delayed first division to produce two viable spores.
Collapse
Affiliation(s)
- Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Miho Yamane
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kasumi Okamasa
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutsumi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yuki Nagahama
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Noriko Fukuta
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Ioannoni R, Brault A, Labbé S. Cuf2 Is a Transcriptional Co-Regulator that Interacts with Mei4 for Timely Expression of Middle-Phase Meiotic Genes. PLoS One 2016; 11:e0151914. [PMID: 26986212 PMCID: PMC4795683 DOI: 10.1371/journal.pone.0151914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
The Schizosaccharomyces pombe cuf2+ gene encodes a nuclear regulator that is required for timely activation and repression of several middle-phase genes during meiotic differentiation. In this study, we sought to gain insight into the mechanism by which Cuf2 regulates meiotic gene expression. Using a chromatin immunoprecipitation approach, we demonstrate that Cuf2 is specifically associated with promoters of both activated and repressed target genes, in a time-dependent manner. In case of the fzr1+ gene whose transcription is positively affected by Cuf2, promoter occupancy by Cuf2 results in a concomitant increased association of RNA polymerase II along its coding region. In marked contrast, association of RNA polymerase II with chromatin decreases when Cuf2 negatively regulates target gene expression such as wtf13+. Although Cuf2 operates through a transcriptional mechanism, it is unable to perform its function in the absence of the Mei4 transcription factor, which is a member of the conserved forkhead protein family. Using coimmunoprecipitation experiments, results showed that Cuf2 is a binding partner of Mei4. Bimolecular fluorescence complementation experiments brought further evidence that an association between Cuf2 and Mei4 occurs in the nucleus. Analysis of fzr1+ promoter regions revealed that two FLEX-like elements, which are bound by the transcription factor Mei4, are required for chromatin occupancy by Cuf2. Together, results reported here revealed that Cuf2 and Mei4 co-regulate the timely expression of middle-phase genes during meiosis.
Collapse
Affiliation(s)
- Raphaël Ioannoni
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Ariane Brault
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
12
|
Cifuentes M, Jolivet S, Cromer L, Harashima H, Bulankova P, Renne C, Crismani W, Nomura Y, Nakagami H, Sugimoto K, Schnittger A, Riha K, Mercier R. TDM1 Regulation Determines the Number of Meiotic Divisions. PLoS Genet 2016; 12:e1005856. [PMID: 26871453 PMCID: PMC4752240 DOI: 10.1371/journal.pgen.1005856] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively. Meiosis is a fundamental process for sexually reproducing organisms that creates genetic diversity within populations. A key feature of meiosis is the reduction of the number of chromosomes, from two sets to one set, prior to fertilization. This reduction in chromosome number is due to two cell divisions following a single round of DNA replication. In this study, we analysed the mechanism which controls the number of cell divisions, ensuring that meiotic termination occurs after the second meiotic division, and not at the end of the first division. We used the model plant Arabidopsis thaliana to show that the gene TDM1 has a central role in regulating meiotic cell divisions. The integrity of the gene affects whether one, two or three meiotic divisions will occur. We further explain the relationship between TDM1 and its regulator the cyclin TAM, and how they work together to produce reproductive cells with a reduced number of chromosomes. This tightly controlled mechanism ensures the transmission of the correct number of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Marta Cifuentes
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Sylvie Jolivet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Petra Bulankova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Charlotte Renne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Wayne Crismani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Arp Schnittger
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Hamburg, Germany
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice, Brno, Czech Republic
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- * E-mail:
| |
Collapse
|
13
|
Matsuhara H, Yamamoto A. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Genes Cells 2015; 21:65-87. [DOI: 10.1111/gtc.12320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Hirotada Matsuhara
- Graduate School of Science and Technology; Shizuoka University; 836 Ohya Suruga-ku Shizuoka 422-8529 Japan
| | - Ayumu Yamamoto
- Graduate School of Science and Technology; Shizuoka University; 836 Ohya Suruga-ku Shizuoka 422-8529 Japan
- Faculty of Science; Shizuoka University; 836 Ohya Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|
14
|
Gutiérrez-Escribano P, Nurse P. A single cyclin-CDK complex is sufficient for both mitotic and meiotic progression in fission yeast. Nat Commun 2015; 6:6871. [PMID: 25891897 PMCID: PMC4411289 DOI: 10.1038/ncomms7871] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
The dominant model for eukaryotic cell cycle control proposes that cell cycle progression is driven by a succession of CDK complexes with different substrate specificities. However, in fission yeast it has been shown that a single CDK complex generated by the fusion of the Cdc13 cyclin with the CDK protein Cdc2 can drive the mitotic cell cycle. Meiosis is a modified cell cycle programme in which a single S-phase is followed by two consecutive rounds of chromosome segregation. Here we systematically analyse the requirements of the different fission yeast cyclins for meiotic cell cycle progression. We also show that a single Cdc13-Cdc2 complex, in the absence of the other cyclins, can drive the meiotic cell cycle. We propose that qualitatively different CDK complexes are not absolutely required for cell cycle progression either during mitosis or meiosis, and that a single CDK complex can drive both cell cycle programmes.
Collapse
Affiliation(s)
| | - Paul Nurse
- Cell Cycle Laboratory Cancer Research UK London Research Institute, London WC2A 3LY, UK
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, New York 10065, USA
- The Francis Crick Institute, London NW1 2BE, UK
| |
Collapse
|
15
|
Aoi Y, Kawashima SA, Simanis V, Yamamoto M, Sato M. Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis. Open Biol 2015; 4:rsob.140063. [PMID: 24990387 PMCID: PMC4118601 DOI: 10.1098/rsob.140063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast.
Collapse
Affiliation(s)
- Yuki Aoi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM SV2.1830, Station 19, Lausanne 1015, Switzerland
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Laboratory of Cell Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan PRESTO, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
16
|
Krapp A, Simanis V. Dma1-dependent degradation of Septation Initiation Network proteins during meiosis in Schizosaccharomyces pombe. J Cell Sci 2014; 127:3149-61. [DOI: 10.1242/jcs.148585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) is required for cytokinesis during vegetative growth and spore formation during meiosis. Regulation of the SIN during mitosis has been studied extensively, but less is known about its meiotic regulation. Here, we show that several aspects of the SIN regulation differ between mitosis and meiosis. First, the presence of GTP-bound spg1p is not the main determinant of the timing of cdc7p and sid1p association with the SPB during meiosis. Second, the localisation dependencies of SIN proteins differ from those in mitotic cells, suggesting a modified functional organisation of the SIN during meiosis. Third, there is stage-specific degradation of SIN components in meiosis; byr4p is degraded after meiosis I, while the degradation of cdc7p, cdc11p and sid4p occurs after the second meiotic division and depends upon the ubiquitin ligase dma1p. Finally, dma1p-dependent degradation is not restricted to the SIN, for we show that dma1p is needed for the degradation of mcp6p/hrs1p in meiosis I. Together, these data suggest that stage-specific targetted proteolysis will play an important role in regulating meiotic progression.
Collapse
|