1
|
Mostashari-Rad T, Claes S, Schols D, Shirvani P, Fassihi A. New 2-alkylthio-1-benzylimidazole-5-carboxylic acid derivatives targeting gp41: design, synthesis and in vitro anti-HIV activity evaluation. Curr HIV Res 2022; 20:CHR-EPUB-124859. [PMID: 35770403 DOI: 10.2174/1570162x20666220628154901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
Abstract
Background Although current available medications have increased the quality of life in HIV-infected patients, there are still some shortcomings in HIV treatment arising from viral resistance, drug side effects and high cost of medication. Therefore, there is an urgent need for some suitable HIV inhibitors with different mechanisms of action. Gp41, located on the HIV cell surface, plays an important role in the fusion of viral and host cell membranes. With the same structure in different HIV strains, gp41 seems to be a promising target for developing novel HIV fusion inhibitors. Objective Based on the essential structural elements of gp41 inhibitors, two series of compounds were prepared and their inhibitory effect on HIV cell growth was investigated. Compared to the known small-molecule gp41 inhibitors, 2-Alkylthio-1-benzylimidazole-5-carboxylic acid (series I) and (E)-4-{[5-(((1-benzyl-1H-1,2,3-triazol-4-yl)methoxyimino)methyl)-2-(alkylthio)-1H-imidazol-1-yl]methyl}benzoic acid derivatives (series II) had more flexible skeleton with extra moieties interacting with the gp41 key residues. Method In silico drug design approaches including molecular docking and molecular dynamics simulations were employed to design these novel compounds prior to preparation. The designed compounds exhibited proper chemical interactions and stable complexes with gp41. Then, the selected candidates were efficiently synthesized, and their anti-HIV-1 and anti-HIV-2 activities, as well as their cellular cytotoxicity in MT-4 cells were determined. Results None of the compounds belonging to the series I were active against HIV-1 and HIV-2 replication in cell cultures, and most of the compounds in series II exhibited significant cytotoxicity against MT-4 cells in low micro molar concentrations. Conclusion The smaller molecular structures of the compounds in series I might be responsible for their poor anti-HIV effects. The high toxicity of the series II compounds on the host cell makes it impossible to assess their anti-HIV activities.
Collapse
Affiliation(s)
- Tahereh Mostashari-Rad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sandra Claes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Pouria Shirvani
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Gurung AB, Ali MA, Lee J, El-Zaidy M, Aljowaie RM, Almutairi SM. Potential of antiviral peptide-based SARS-CoV-2 inactivators to combat COVID-19. PLoS One 2022; 17:e0268919. [PMID: 35657783 PMCID: PMC9165783 DOI: 10.1371/journal.pone.0268919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
The appearance of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of effective antiviral therapeutics for coronavirus disease 2019 (COVID-19), a highly infectious disease caused by the virus, demands the search for alternative therapies. Most antiviral drugs known are passive defenders which must enter the cell to execute their function and suffer from concerns such as permeability and effectiveness, therefore in this current study, we aim to identify peptide inactivators that can act without entering the cells. SARS-CoV-2 spike protein is an essential protein that plays a major role in binding to the host receptor angiotensin-converting enzyme 2 and mediates the viral cell membrane fusion process. SARS vaccines and treatments have also been developed with the spike protein as a target. The virtual screening experiment revealed antiviral peptides which were found to be non-allergen, non-toxic and possess good water solubility. U-1, GST-removed-HR2 and HR2-18 exhibit binding energies of -47.8 kcal/mol, -43.01 kcal/mol, and -40.46 kcal/mol, respectively. The complexes between these peptides and spike protein were stabilized through hydrogen bonds as well as hydrophobic interactions. The stability of the top-ranked peptide with the drug-receptor is evidenced by 50-ns molecular dynamics (MD) simulations. The binding of U-1 induces conformational changes in the spike protein with alterations in its geometric properties such as increased flexibility, decreased compactness, the increased surface area exposed to solvent molecules, and an increase in the number of total hydrogen bonds leading to its probable inactivation. Thus, the identified antiviral peptides can be used as anti-SARS-CoV-2 candidates, inactivating the virus’s spike proteins and preventing it from infecting host cells.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, Meghalaya, India
- * E-mail: (ABG); (JL)
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (ABG); (JL)
| | - Mohamed El-Zaidy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeedah M. Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Freick M, Schreiter R, Weber J, Vahlenkamp TW, Heenemann K. Avian leukosis virus (ALV) is highly prevalent in fancy-chicken flocks in Saxony. Arch Virol 2022; 167:1169-1174. [PMID: 35301570 PMCID: PMC8964621 DOI: 10.1007/s00705-022-05404-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
The current prevalence of avian leukosis virus (ALV) in fancy chickens in Germany is unknown. Therefore, 537 cloacal swabs from 50 purebred fancy-chicken flocks in Saxony were tested for the presence of the ALV p27 protein using a commercial antigen-capture ELISA. The detection rate was 28.7% at the individual-animal level and 56.0% at the flock level. Phylogenetic analysis of PCR products obtained from 22 different flocks revealed the highest similarity to ALV subtype K. When classifying breeds by their origin, ALV detection rates differed significantly. Evaluation of questionnaire data revealed no significant differences between ALV-positive and negative flocks regarding mortality.
Collapse
Affiliation(s)
- Markus Freick
- Faculty Agriculture/Environment/Chemistry, HTW Dresden-University of Applied Sciences, Pillnitzer Platz 2, 01326, Dresden, Germany.
| | - Ruben Schreiter
- ZAFT e.V.-Centre for Applied Research and Technology, Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Jim Weber
- Veterinary Practice Zettlitz, Straße der Jugend 68, 09306, Zettlitz OT Methau, Germany
| | - Thomas W Vahlenkamp
- Veterinary Faculty, Center for Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103, Leipzig, Germany
| | - Kristin Heenemann
- Veterinary Faculty, Center for Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103, Leipzig, Germany
| |
Collapse
|
4
|
The Analogs of Furanyl Methylidene Rhodanine Exhibit Broad-Spectrum Inhibitory and Inactivating Activities against Enveloped Viruses, including SARS-CoV-2 and Its Variants. Viruses 2022; 14:v14030489. [PMID: 35336896 PMCID: PMC8954792 DOI: 10.3390/v14030489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, infectious diseases caused by viral infections have seriously endangered human health, especially COVID-19, caused by SARS-CoV-2, which continues to spread worldwide. The development of broad-spectrum antiviral inhibitors is urgently needed. Here, we report a series of small-molecule compounds that proved effective against human coronaviruses (HCoV), such as SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), SARS-CoV, MERS-CoV, HCoV-OC43, and other viruses with class I viral fusion proteins, such as influenza virus, Ebola virus (EBOV), Nipah virus (NiV), and Lassa fever virus (LASV). They are also effective against class II enveloped viruses represented by ZIKV and class III enveloped viruses represented by vesicular stomatitis virus (VSV). Further studies have shown that these compounds may exert antiviral effects through a variety of mechanisms, including inhibiting the formation of the six-helix bundle, which is a typical feature of enveloped virus fusion with cell membranes, and/or targeting viral membrane to inactivate cell-free virions. These compounds are expected to become drug candidates against SARS-CoV-2 and other enveloped viruses.
Collapse
|
5
|
The Role of MSCs and Cell Fusion in Tissue Regeneration. Int J Mol Sci 2021; 22:ijms222010980. [PMID: 34681639 PMCID: PMC8535885 DOI: 10.3390/ijms222010980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is concerned with the investigation of therapeutic agents that can be used to promote the process of regeneration after injury or in different diseases. Mesenchymal stem/stromal cells (MSCs) and their secretome—including extracellular vesicles (EVs) are of great interest, due to their role in tissue regeneration, immunomodulatory capacity and low immunogenicity. So far, clinical studies are not very conclusive as they show conflicting efficacies regarding the use of MSCs. An additional process possibly involved in regeneration might be cell fusion. This process occurs in both a physiological and a pathophysiological context and can be affected by immune response due to inflammation. In this review the role of MSCs and cell fusion in tissue regeneration is discussed.
Collapse
|
6
|
Wang Q, Su S, Xue J, Yu F, Pu J, Bi W, Xia S, Meng Y, Wang C, Yang W, Xu W, Zhu Y, Zheng Q, Qin C, Jiang S, Lu L. An amphipathic peptide targeting the gp41 cytoplasmic tail kills HIV-1 virions and infected cells. Sci Transl Med 2021; 12:12/546/eaaz2254. [PMID: 32493792 DOI: 10.1126/scitranslmed.aaz2254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/28/2020] [Indexed: 12/26/2022]
Abstract
HIV-associated morbidity and mortality have markedly declined because of combinational antiretroviral therapy, but HIV readily mutates to develop drug resistance. Developing antivirals against previously undefined targets is essential to treat existing drug-resistant HIV strains. Some peptides derived from HIV-1 envelope glycoprotein (Env, gp120-gp41) have been shown to be effective in inhibiting HIV-1 infection. Therefore, we screened a peptide library from HIV-1 Env and identified a peptide from the cytoplasmic region, designated F9170, able to effectively inactivate HIV-1 virions and induce necrosis of HIV-1-infected cells, and reactivated latently infected cells. F9170 specifically targeted the conserved cytoplasmic tail of HIV-1 Env and effectively disrupted the integrity of the viral membrane. Short-term monoadministration of F9170 controlled viral loads to below the limit of detection in chronically SHIV-infected macaques. F9170 can enter the brain and lymph nodes, anatomic reservoirs for HIV latency. Therefore, F9170 shows promise as a drug candidate for HIV treatment.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenwen Bi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yu Meng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenqian Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinwen Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China. .,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| |
Collapse
|
7
|
Synergistic Effect by Combining a gp120-Binding Protein and a gp41-Binding Antibody to Inactivate HIV-1 Virions and Inhibit HIV-1 Infection. Molecules 2021; 26:molecules26071964. [PMID: 33807292 PMCID: PMC8036483 DOI: 10.3390/molecules26071964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) has prevailed over the last 30 years. Although highly active antiretroviral therapy (HAART) has decreased mortality and efficiently controlled the progression of disease, no vaccine or curative drugs have been approved until now. A viral inactivator is expected to inactivate cell-free virions in the absence of target cells. Previously, we identified a gp120-binding protein, mD1.22, which can inactivate laboratory-adapted HIV-1. In this study, we have found that the gp41 N-terminal heptad repeat (NHR)-binding antibody D5 single-chain variable fragment (scFv) alone cannot inactivate HIV-1 at the high concentration tested. However, D5 scFv in the combination could enhance inactivation activity of mD1.22 against divergent HIV-1 strains, including HIV-1 laboratory-adapted strains, primary HIV-1 isolates, T20- and AZT-resistant strains, and LRA-reactivated virions. Combining mD1.22 and D5 scFv exhibited synergistic effect on inhibition of infection by divergent HIV-1 strains. These results suggest good potential to develop the strategy of combining a gp120-binding protein and a gp41-binding antibody for the treatment of HIV-1 infection.
Collapse
|
8
|
Tamiz N, Mostashari-Rad T, Najafipour A, Claes S, Schols D, Fassihi A. Synthesis, Molecular Docking and Molecular Dynamics Simulation of 2- Thioxothiazolidin-4-One Derivatives against Gp41. Curr HIV Res 2021; 19:47-60. [PMID: 32885756 DOI: 10.2174/1570162x18666200903172127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Gp41 and its conserved hydrophobic groove on the N-terminal heptad repeat region are attractive targets in the design of HIV-1 entry inhibitors. Linearly extended molecules have shown potent anti-HIV-1 activity for their effective interactions with the gp41 binding pocket. Rhodanine ring attached to substituted pyrrole or furan rings has been proved a preferred moiety to be inserted inside the molecular structure of the gp41 inhibitors. OBJECTIVES Based on the previous findings we are going to describe some rhodanine derivatives in which a substituted imidazole ring is introduced in place of the pyrrole or furan rings. The compounds' flexibility is increased by inserting methylene groups inside the main scaffold. METHODS Molecular docking and molecular dynamics simulations approaches were exploited to investigate the chemical interactions and the stability of the designed ligands-gp41 complex. All compounds were synthesized and their chemical structures were elucidated by 1HNMR, 13CNMR, FTIR and Mass spectroscopy. Biological activities of the compounds against HIV-1 and HIV-2 and their cellular toxicities against the T-lymphocyte (MT-4) cell line were determined. RESULTS All the designed compounds showed proper and stable chemical interactions with gp41 according to the in silico studies. The results of the biological tests proved none of the compounds active against HIV-1 replication in cell cultures. CONCLUSION Since all the studied compounds were potently toxic for the host cell; it was therefore not possible to assess their anti-HIV activities.
Collapse
Affiliation(s)
- Nahid Tamiz
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahereh Mostashari-Rad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aylar Najafipour
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sandra Claes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Pu J, Dai Y, Wang Q, Lu L, Zhang J, Xu W, Xie L, Wang S, Yu F, He X, Jiang S. Rational Design of A Novel Small-Molecule HIV-1 Inactivator Targeting Both gp120 and gp41 of HIV-1. Front Pharmacol 2021; 11:613361. [PMID: 33569006 PMCID: PMC7868322 DOI: 10.3389/fphar.2020.613361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Virus inactivator can inactivate cell-free virions without relying on their replication cycle, potentially reducing the impact of viral infection on cells. Previously, we successfully constructed a HIV-1 protein inactivator, 2DLT, by conjugating the D1D2 region of CD4 to the fusion inhibitor T1144 via a 35-amino acid linker. Therefore, it targets both the CD4 binding site in gp120 and NHR region in gp41. Considering that small-molecule agents have the advantages of fast production, low cost, good stability, and oral availability, we herein report the design of a new small-molecule HIV-1 inactivator, FD028, by conjugating FD016 (an analog of NBD-556, a gp120-CD4 binding inhibitor) with FD017 (an analog of 11d, an HIV-1 fusion inhibitor). The results showed that FD028 inactivated cell-free virions at a moderate nanomolar concentration by targeting both HIV-1 gp120 and gp41. Moreover, FD028 has broad-spectrum inhibition and inactivation activity against HIV-1 resistant strains and primary isolates of different subtypes without significant cytotoxicity. Therefore, FD028 has potential for further development as an HIV-1 inactivator-based therapeutic.
Collapse
Affiliation(s)
- Jing Pu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Yu Dai
- Beijing Institute of Radiation Medicine, Beijing, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junqi Zhang
- Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lan Xie
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaoyang He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
10
|
Jin H, Chong H, Zhu Y, Zhang M, Li X, Bazybek N, Wei Y, Gong F, He Y, Ma G. Preparation and evaluation of amphipathic lipopeptide-loaded PLGA microspheres as sustained-release system for AIDS prevention. Eng Life Sci 2020; 20:476-484. [PMID: 33204234 PMCID: PMC7645643 DOI: 10.1002/elsc.202000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
At present, AIDS drugs are typical inhibitors that cannot achieve permanent effects. Therefore, the research of blocking HIV infection is essential. Especially for people in the high-risk environment, long-term prevention is important, because HIV can easily infect cells once the drug is interrupted. However, there is still no long-acting AIDS prevention drug approved. Hence, the purpose of this study is to prepare a fusion inhibitor loaded poly(d, l-lactic-co-glycolic acid) (PLGA) microspheres as a sustained-release system for long-term AIDS prevention. As the HIV membrane fusion inhibitor (LP-98) used in this research is amphiphilic lipopeptide, W1/O/W2 double-emulsion method was chosen, and premix membrane emulsification technique was used for controlling the uniformity of particle size. Several process parameters that can impact drug loading efficiency were summarized: the concentration of LP-98 and PLGA, and the preparation condition of primary emulsion. Finally, the microspheres with high loading efficiency (>8%) and encapsulation efficiency (>90%) were successfully prepared under optimum conditions. Pharmacokinetic studies showed that LP-98-loaded microspheres were capable to continuously release for 24 days in rats. This research can promote the application of sustained-release microspheres in AIDS prevention, and the embedding technique used in this study can also provide references for the loading of other amphipathic drugs.
Collapse
Affiliation(s)
- Huijuan Jin
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yuanmei Zhu
- MOH Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Mengqiu Zhang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- Wuhan Institute of TechnologyWuhanP. R. China
| | - Xun Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Nardana Bazybek
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Fangling Gong
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
11
|
Anthony-Gonda K, Bardhi A, Ray A, Flerin N, Li M, Chen W, Ochsenbauer C, Kappes JC, Krueger W, Worden A, Schneider D, Zhu Z, Orentas R, Dimitrov DS, Goldstein H, Dropulić B. Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Sci Transl Med 2020; 11:11/504/eaav5685. [PMID: 31391322 DOI: 10.1126/scitranslmed.aav5685] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Adoptive immunotherapy using chimeric antigen receptor-modified T cells (CAR-T) has made substantial contributions to the treatment of certain B cell malignancies. Such treatment modalities could potentially obviate the need for long-term antiretroviral drug therapy in HIV/AIDS. Here, we report the development of HIV-1-based lentiviral vectors that encode CARs targeting multiple highly conserved sites on the HIV-1 envelope glycoprotein using a two-molecule CAR architecture, termed duoCAR. We show that transduction with lentiviral vectors encoding multispecific anti-HIV duoCARs confer primary T cells with the capacity to potently reduce cellular HIV infection by up to 99% in vitro and >97% in vivo. T cells are the targets of HIV infection, but the transduced T cells are protected from genetically diverse HIV-1 strains. The CAR-T cells also potently eliminated PBMCs infected with broadly neutralizing antibody-resistant HIV strains, including VRC01/3BNC117-resistant HIV-1. Furthermore, multispecific anti-HIV duoCAR-T cells demonstrated long-term control of HIV infection in vivo and prevented the loss of CD4+ T cells during HIV infection using a humanized NSG mouse model of intrasplenic HIV infection. These data suggest that multispecific anti-HIV duoCAR-T cells could be an effective approach for the treatment of patients with HIV-1 infection.
Collapse
Affiliation(s)
| | - Ariola Bardhi
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Ray
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nina Flerin
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mengyan Li
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35294, USA
| | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Andrew Worden
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Zhongyu Zhu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Rimas Orentas
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Harris Goldstein
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Boro Dropulić
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| |
Collapse
|
12
|
Su X, Wang Q, Wen Y, Jiang S, Lu L. Protein- and Peptide-Based Virus Inactivators: Inactivating Viruses Before Their Entry Into Cells. Front Microbiol 2020; 11:1063. [PMID: 32523582 PMCID: PMC7261908 DOI: 10.3389/fmicb.2020.01063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Infectious diseases caused by human immunodeficiency virus (HIV) and other highly pathogenic enveloped viruses, have threatened the global public health. Most antiviral drugs act as passive defenders to inhibit viral replication inside the cell, while a few of them function as gate keepers to combat viruses outside the cell, including fusion inhibitors, e.g., enfuvirtide, and receptor antagonists, e.g., maraviroc, as well as virus inactivators (including attachment inhibitors). Different from fusion inhibitors and receptor antagonists that must act in the presence of target cells, virus inactivators can actively inactivate cell-free virions in the blood, through interaction with one or more sites in the envelope glycoproteins (Envs) on virions. Notably, a number of protein- and peptide-based virus inactivators (PPVIs) under development are expected to have a better utilization rate than the current antiviral drugs and be safer for in vivo human application than the chemical-based virus inactivators. Here we have highlighted recent progress in developing PPVIs against several important enveloped viruses, including HIV, influenza virus, Zika virus (ZIKV), dengue virus (DENV), and herpes simplex virus (HSV), and the potential use of PPVIs for urgent treatment of infection by newly emerging or re-emerging viruses.
Collapse
Affiliation(s)
- Xiaojie Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Alam MM, Kuwata T, Tanaka K, Alam M, Takahama S, Shimura K, Matsuoka M, Fukuda N, Morioka H, Tamamura H, Matsushita S. Synergistic inhibition of cell-to-cell HIV-1 infection by combinations of single chain variable fragments and fusion inhibitors. Biochem Biophys Rep 2019; 20:100687. [PMID: 31650039 PMCID: PMC6804516 DOI: 10.1016/j.bbrep.2019.100687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/16/2019] [Indexed: 11/26/2022] Open
Abstract
Cell-to-cell spread of HIV permits ongoing viral replication in the presence of antiretroviral therapy and is suggested to be a major contributor to sexual transmission by mucosal routes. Fusion inhibitors that prevent viral entry have been developed, but their clinical applications have been limited by weak antiviral activity, short half-life, and the low genetic barrier to development of resistance. We examined the inhibitory activities of a series of single-chain variable fragments (scFvs) targeting the V3 and CD4i epitopes against both cell-free and cell-to-cell HIV infection. We found that all anti-V3 scFvs, including two newly constructed scFvs, showed broad neutralization activity against a panel of subtype B viruses compared with the corresponding IgGs. All scFvs neutralized cell-free infection by HIV-1JR-FL WT and fusion inhibitor-resistant mutants. In addition, all anti-V3 scFvs and some CD4i scFvs significantly inhibited cell fusion, while their IgG counterparts did not. Furthermore, scFvs-fusion inhibitors combinations, such as C34 and SC34, showed synergistic inhibition of cell fusion by both HIV-1JR-FL WT and fusion inhibitor-resistant mutants. The most prominent combinational effect was observed for 916B2 CD4i scFv with SC34. The delayed fusion kinetics of fusion inhibitor-resistant mutants partly explain their synergistic inhibition by such combinations. Our data demonstrate the advantages of using scFvs over their parent IgGs for inhibiting both cell-free and cell-to-cell infection. High synergistic inhibition of cell fusion by using scFvs-fusion inhibitors combinations suggests the possibility of intensification therapy adding this combination to current anti-HIV treatment regimens. Newly constructed anti-V3 scFvs showed broader HIV-1 neutralization activity. HIV-1 cell fusion was inhibited by scFvs better than the corresponding IgGs. Combinations of scFvs with fusion inhibitors synergistically inhibit cell fusion. Combination therapy with scFvs and fusion inhibitors may be effective.
Collapse
Affiliation(s)
- Mohammad Mamun Alam
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Takeo Kuwata
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Kazuki Tanaka
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Muntasir Alam
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Shokichi Takahama
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Kazuya Shimura
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuzo Matsushita
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Rapid Elimination of Broadly Neutralizing Antibodies Correlates with Treatment Failure in the Acute Phase of Simian-Human Immunodeficiency Virus Infection. J Virol 2019; 93:JVI.01077-19. [PMID: 31375583 DOI: 10.1128/jvi.01077-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
Early human immunodeficiency virus type 1 (HIV-1) treatment during the acute period of infection can significantly limit the seeding of viral reservoirs and modify the course of disease. However, while a number of HIV-1 broadly neutralizing antibodies (bnAbs) have demonstrated remarkable efficacy as prophylaxis in macaques chronically infected with simian-human immunodeficiency virus (SHIV), intriguingly, their inhibitory effects were largely attenuated in the acute period of SHIV infection. To investigate the mechanism for the disparate performance of bnAbs in different periods of SHIV infection, we used LSEVh-LS-F, a bispecific bnAb targeting the CD4 binding site and CD4-induced epitopes, as a representative bnAb and assessed its potential therapeutic benefit in controlling virus replication in acutely or chronically SHIV-infected macaques. We found that a single infusion of LSEVh-LS-F resulted in rapid decline of plasma viral loads to undetectable levels without emergence of viral resistance in the chronically infected macaques. In contrast, the inhibitory effect was robust but transient in the acutely infected macaques, despite the fact that all macaques had comparable plasma viral loads initially. Infusing multiple doses of LSEVh-LS-F did not extend its inhibitory duration. Furthermore, the pharmacokinetics of the infused LSEVh-LS-F in the acutely SHIV-infected macaques significantly differed from that in the uninfected or chronically infected macaques. Host SHIV-specific immune responses may play a role in the viremia-dependent pharmacokinetics. Our results highlight the correlation between the fast clearance of infused bnAbs and the treatment failure in the acute period of SHIV infection and may have important implications for the therapeutic use of bnAbs to treat acute HIV infections.IMPORTANCE Currently, there is no bnAb-based monotherapy that has been reported to clear the virus in the acute SHIV infection period. Since early HIV treatment is considered critical to restricting the establishment of viral reservoirs, investigation into the mechanism for treatment failure in acutely infected macaques would be important for the therapeutic use of bnAbs and eventually towards the functional cure of HIV/AIDS. Here we report the comparative study of the therapeutic efficacy of a bnAb in acutely and chronically SHIV-infected macaques. This study revealed the correlation between the fast clearance of infused bnAbs and treatment failure during the acute period of infection.
Collapse
|
15
|
Trimeric heptad repeat synthetic peptides HR1 and HR2 efficiently inhibit HIV-1 entry. Biosci Rep 2019; 39:BSR20192196. [PMID: 31477581 PMCID: PMC6757187 DOI: 10.1042/bsr20192196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
The trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions. At the virological level, while trimeric-C34 conserves the same high anti-fusion activity as monomeric-C34, trimerization of N36-peptide induced a significant increase, reaching 500-times higher in anti-fusion activity, against R5-tropic virus-mediated fusion. This result was associated with increased stability of the N36 trimer peptide with respect to the monomeric form, as demonstrated by the comparative kinetics of their antiviral activities during 6-day incubation in a physiological medium. Collectively, our findings demonstrate that while the trimerization of C34 peptide had no beneficial effect on its stability and antiviral activity, the trimerization of N36 peptide strengthened both stability and antiviral activity. This approach, promotes trimers as new promising HIV-1 inhibitors and point to future development aimed toward innovative peptide fusion inhibitors, microbicides or as immunogens.
Collapse
|
16
|
Zhang X, Wang C, Chen B, Wang Q, Xu W, Ye S, Jiang S, Zhu Y, Zhang R. Crystal Structure of Refolding Fusion Core of Lassa Virus GP2 and Design of Lassa Virus Fusion Inhibitors. Front Microbiol 2019; 10:1829. [PMID: 31456769 PMCID: PMC6700223 DOI: 10.3389/fmicb.2019.01829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023] Open
Abstract
The envelope glycoproteins GP1 and GP2 of Lassa virus (LASV) bind to the host cell receptors to mediate viral infection. So far, no approved vaccines and specific treatment options against LASV exist. To develop specific fusion inhibitors against LASV, we solved the crystal structure of the post-fusion 6 helix bundle (6-HB) formed by two heptad repeat domains (HR1 and HR2) of GP2. This fusion core contains a parallel trimeric coiled-coil of three HR1 helices, around which three HR2 helices are entwined in an antiparallel manner. Various hydrophobic and charged interactions form between HR1 and HR2 domains to stabilize the overall conformation of GP2 fusion core. Based on the structure, we designed several peptides spanning the HR2 domain and tested their antiviral activities. We found that the longer HR2 peptides were effective in inhibiting LASV GPC protein-mediated cell–cell fusion under low pH condition. These results not only suggest that LASV infects the target cell mainly through endocytosis, including micropinocytosis, and membrane fusion at low pH, but also provide an important basis for rational design of LASV fusion inhibitors.
Collapse
Affiliation(s)
- Xuejiao Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, China
| | - Baohua Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, China
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Wang C, Zhao L, Xia S, Zhang T, Cao R, Liang G, Li Y, Meng G, Wang W, Shi W, Zhong W, Jiang S, Liu K. De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery. J Med Chem 2018; 61:8734-8745. [PMID: 30192544 PMCID: PMC7075651 DOI: 10.1021/acs.jmedchem.8b00890] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Class I enveloped viruses share similarities in their apparent use of a hexameric coiled-coil assembly to drive the merging of virus and host cell membranes. Inhibition of coiled coil-mediated interactions using bioactive peptides that replicate an α-helical chain from the viral fusion machinery has significant antiviral potential. Here, we present the construction of a series of lipopeptides composed of a de novo heptad repeat sequence-based α-helical peptide plus a hydrocarbon tail. Promisingly, the constructs adopted stable α-helical conformations and exhibited relatively broad-spectrum antiviral activities against Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A viruses (IAVs). Together, these findings reveal a new strategy for relatively broad-spectrum antiviral drug discovery by relying on the tunability of the α-helical coiled-coil domains present in all class I fusion proteins and the amphiphilic nature of the individual helices from this multihelix motif.
Collapse
Affiliation(s)
- Chao Wang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lei Zhao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Tianhong Zhang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ruiyuan Cao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Guodong Liang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Yue Li
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangpeng Meng
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weicong Wang
- Department
of Clinical Trial Center, China National Clinical Research Center
for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weiguo Shi
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wu Zhong
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
- Lindsley
F. Kimball Research Institute, New York
Blood Center, New York, New York 10065, United
States
| | - Keliang Liu
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| |
Collapse
|
18
|
Reduced Susceptibility to VIRIP-Based HIV-1 Entry Inhibitors Has a High Genetic Barrier and Severe Fitness Costs. J Virol 2018; 92:JVI.00733-18. [PMID: 29925662 DOI: 10.1128/jvi.00733-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023] Open
Abstract
VIRIP has been identified as natural HIV-1 inhibitor targeting the gp41 fusion peptide. An optimized analogue (VIR-576) was effective in a phase I/II clinical trial and initial studies showed that HIV-1 resistance to VIRIP-based inhibitors has a high genetic barrier. Partially resistant CXCR4 (X4)-tropic HIV-1 NL4-3 variants could be obtained, however, after more than 15 months of passaging in MT-4 cells in the presence of another derivative (VIR-353). Sequence analyses identified the accumulation of seven mutations across the HIV-1 envelope glycoprotein but outside the gp41 fusion peptide. The authors suggested that the three initial alterations conferred resistance, while subsequent changes restored viral fitness. Here, we introduced these mutations individually and in combination into X4- and CCR5 (R5)-tropic HIV-1 constructs and determined their impact on VIR-353 and VIR-576 susceptibility, viral infectivity, replication fitness, and fusogenicity. We found that essentially all seven mutations contribute to reduced susceptibility to VIRIP-based inhibitors. HIV-1 constructs containing ≥4 changes were substantially more resistant to both VIRIP-based inhibitors and the VRC34.01 antibody targeting the fusion peptide. However, they were also much less infectious and fusogenic than those harboring only the three initial alterations. Furthermore, the additional changes attenuated rather than rescued HIV-1 replication in primary human cells. Thus, the genetic barrier to HIV-1 resistance against VIRIP-based inhibitors is higher than previously suggested, and mutations reducing viral susceptibility come at a severe fitness cost that was not rescued during long-term cell culture passage.IMPORTANCE Many viral pathogens are critically dependent on fusion peptides (FPs) that are inserted into the cellular membrane for infection. Initially, it was thought that FPs cannot be targeted for therapy because they are hardly accessible. However, an optimized derivative (VIR-576) of an endogenous fragment of α1-antitrypsin, named VIRIP, targeting the gp41 FP reduced viral loads in HIV-1-infected individuals. Characterization of HIV-1 variants selected during long-term cell-culture passage in the presence of a VIRIP derivative suggested that just three mutations in the HIV-1 Env protein might be sufficient for VIRIP resistance and that four subsequent changes restored viral fitness. Here, we show that all seven mutations contribute to reduced viral susceptibility to VIRIP-based inhibitors and demonstrate that the additional changes strongly impair rather than rescue HIV-1 infectivity, fusogenicity, and replication fitness. High genetic barrier to resistance and severe fitness cost support further clinical development of this class of antiviral agents.
Collapse
|
19
|
Combining New Non-Nucleoside Reverse Transcriptase Inhibitors (RTIs) with AZT Results in Strong Synergism against Multi-RTI-Resistant HIV-1 Strains. Molecules 2018; 23:molecules23071599. [PMID: 30004408 PMCID: PMC6099689 DOI: 10.3390/molecules23071599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Reverse transcriptase inhibitors (RTIs), including nucleoside RTIs (NRTIs) and non-nucleoside RTIs (NNRTIs), are critical antiretroviral drugs for the treatment of human immunodeficiency virus (HIV) infection. Emergence of multi-RTI resistance calls for the development of more potent therapeutics or regimens against RTI-resistant strains. Here, we demonstrated that combining azidothymidine (AZT) with a new NNRTIs under development, diarylpyridine (DAPA)-2e, diarylanilin (DAAN)-14h, or DAAN-15h, resulted in strong synergism against infection by divergent HIV-1 strains, including those resistant to NRTIs and NNRTIs, suggesting the potential for developing these novel NNRTIs as salvage therapy for HIV/acquired immune deficiency syndrome (AIDS) patients.
Collapse
|
20
|
Su S, Ma Z, Hua C, Li W, Lu L, Jiang S. Adding an Artificial Tail-Anchor to a Peptide-Based HIV-1 Fusion Inhibitor for Improvement of Its Potency and Resistance Profile. Molecules 2017; 22:molecules22111996. [PMID: 29156603 PMCID: PMC6150406 DOI: 10.3390/molecules22111996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat (CHR) of human immunodeficiency virus type 1 (HIV-1) envelope protein transmembrane subunit gp41, such as T20 (enfuvirtide), can bind to the N-terminal heptad repeat (NHR) of gp41 and block six-helix bundle (6-HB) formation, thus inhibiting HIV-1 fusion with the target cell. However, clinical application of T20 is limited because of its low potency and genetic barrier to resistance. HP23, the shortest CHR peptide, exhibits better anti-HIV-1 activity than T20, but the HIV-1 strains with E49K mutations in gp41 will become resistant to it. Here, we modified HP23 by extending its C-terminal sequence using six amino acid residues (E6) and adding IDL (Ile-Asp-Leu) to the C-terminus of E6, which is expected to bind to the shallow pocket in the gp41 NHR N-terminal region. The newly designed peptide, designated HP23-E6-IDL, was about 2- to 16-fold more potent than HP23 against a broad spectrum of HIV-1 strains and more than 12-fold more effective against HIV-1 mutants resistant to HP23. These findings suggest that addition of an anchor-tail to the C-terminus of a CHR peptide will allow binding with the pocket in the gp41 NHR that may increase the peptide's antiviral efficacy and its genetic barrier to resistance.
Collapse
Affiliation(s)
- Shan Su
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Zhenxuan Ma
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|