1
|
Dai X, Zheng Y, Cui J, Zeng Y, Yang B, Zhang Z. Nanodrug delivery systems targeting ferroptosis as an innovative therapeutic approach for Rheumatoid Arthritis. Mater Today Bio 2025; 32:101804. [PMID: 40343168 PMCID: PMC12059336 DOI: 10.1016/j.mtbio.2025.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation, progressive cartilage degradation, and bone erosion. Recent research has implicated ferroptosis not only in autoimmune hepatitis but also in the pathogenesis and progression of autoimmune disorders like RA. Consequently, numerous therapeutic strategies have begun to target the ferroptosis pathway, particularly in the design and development of nanodrug delivery systems (NDDSs). While previous reviews have comprehensively discussed the mechanisms of ferroptosis, related signaling pathways, and NDDS materials, recent studies have further elucidated the interplay between ferroptosis and various metabolic pathways, providing a robust theoretical basis for the design of NDDS-based ferroptosis strategies. This review focuses on investigating the role of ferroptosis in the development of RA, aiming to elucidate how targeting ferroptosis can offer novel therapeutic concepts and potential treatments for RA patients. Specifically, it summarizes the design strategies of ferroptosis-based NDDSs via different pathways and highlights the feasibility of RA treatment regimens based on the ferroptosis mechanism. Furthermore, the review critically discusses the current limitations of NDDSs and offers perspectives on future research directions in this field.
Collapse
Affiliation(s)
- Xiaolin Dai
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Yu Zheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, PR China
- Sichuan-Chongqing Joint Key Laboratory of Metabolic Vascular Diseases, Luzhou, 646000, PR China
| | - Jianrong Cui
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Yuqi Zeng
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Bo Yang
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Zhanlin Zhang
- Irradiation Preservation and Effect Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, PR China
| |
Collapse
|
2
|
Wang X, Lu X, Tian D, Qian H, Wang P, Zhu Y, Dang X, Liu R. Transcriptomic integration and ligand-receptor crosstalk reveal the underlying molecular mechanisms between hip cartilage and subchondral bone in osteonecrosis of femoral head. Gene 2024; 939:149179. [PMID: 39708930 DOI: 10.1016/j.gene.2024.149179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Osteonecrosis of femoral head (ONFH) is characterized not only by ischemic bone tissue necrosis but also by cartilage degeneration, which plays an essential role in the pathogenesis of ONFH. The molecular communication between tissues contributes to disease progression, however the communication between cartilage and subchondral bone in the progression of ONFH remains unclear. In this study, we integrated transcriptomic data from ONFH cartilage and subchondral bone, exploring common differentially expressed genes (DEGs), pathway and function enrichment analyses, the protein-protein interaction (PPI) network, and hub genes to comprehensively study molecular integration. Additionally, we explored the molecular crosstalk between and within cartilage and subchondral bone using ligand-receptor pairs and ONFH cartilage proteomic data. Finally, key genes and ligand-receptor pairs were validated by quantitative real-time PCR (qRT-PCR). There were 27 common DEGs and five hub genes in cartilage and subchondral bone. The defined hub genes included COL1A1, COLIA2, CTSK, SPARC, and MXRA5. Notably, pathways related to ossification, extracellular matrix, and collagen formation were significantly altered in ONFH. Ligand-receptor data combined with DEGs revealed 60 differentially expressed ligands and 51 differentially expressed receptors in cartilage and four ligands and three receptors in subchondral bone. In inter-tissue comparisons, ligands from chondrocytes predominantly paired with receptors on osteoblasts in the subchondral bone, such as FN1, MMP2, and FGF1. Conversely, ligands from osteoblasts and osteocytes in the subchondral bone frequently paired with chondrocyte receptors, including FN1, COL1A1, and SEMA7A. At the protein level, we identified thirteen ligands and one receptor, with COL3A1 being the most highly expressed ligand and CD82 the only differentially expressed receptor in ONFH. This study highlights common molecular mechanisms and ligand-receptor crosstalk between and within cartilage and subchondral bone in ONFH, offering new insights into the disease's pathophysiology and potential molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xu Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Xueliang Lu
- Department of Orthopedics, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province 471003, China.
| | - Donghao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Hang Qian
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Pengbo Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Yingkang Zhu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Xiaoqian Dang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| | - Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China.
| |
Collapse
|
3
|
Tang L, Guo D, Jia D, Piao S, Fang C, Zhu Y, Wang Y, Pan Z. Exploring the therapeutic potential of "Tianyu" medicine pair in rheumatoid arthritis: an integrated study combining LC-MS/MS, bioinformatics, network pharmacology, and experimental validation. Front Med (Lausanne) 2024; 11:1475239. [PMID: 39430588 PMCID: PMC11488520 DOI: 10.3389/fmed.2024.1475239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a widespread chronic autoimmune disease that primarily causes joint inflammation and damage. In advanced stages, RA can result in joint deformities and loss of function, severely impacting patients' quality of life. The "Tianyu" pair (TYP) is a traditional Chinese medicine formulation developed from clinical experience and has shown some effectiveness in treating RA. However, its role in the complex biological mechanisms underlying RA remains unclear and warrants further investigation. Methods We obtained gene sequencing data of synovial tissues from both RA patients and healthy individuals using two gene microarrays, GSE77298 and GSE55235, from the GEO database. Through an integrated approach involving bioinformatics, machine learning, and network pharmacology, we identified the core molecular targets of the "Tianyu" medicine pair (TYP) for RA treatment. Liquid chromatography-mass spectrometry was then employed to analyze the chemical components of TYP. To validate our findings, we conducted animal experiments with Wistar rats, comparing histopathological and key gene expression changes before and after TYP treatment. Results Our data analysis suggests that the onset of RA may be associated with inflammation-related immune cells involved in both adaptive and innate immune responses. Potential key targets for TYP treatment in RA include AKR1B10, MMP13, FABP4, NCF1, SPP1, COL1A1, and RASGRP1. Among the components of TYP, Kaempferol, Quercetin, and Salidroside were identified as key, with MMP13 and NCF1 showing the strongest binding affinity to these compounds. Animal experiments confirmed the findings from bioinformatics and network pharmacology, validating the key targets and therapeutic effects of TYP in treating RA. Conclusion Our study reveals that TYP has potential clinical value in the treatment of rheumatoid arthritis. This research enhances our understanding of RA's pathogenesis and provides insight into potential therapeutic mechanisms.
Collapse
Affiliation(s)
- Lu Tang
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Dingyuan Guo
- Department of Traditional Chinese Internal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongye Jia
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Songlan Piao
- Department of Pathology Teaching and Research, Clinical Medical School, Changchun University of Chinese Medicine, Changchun, China
| | - Chunqiu Fang
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yueya Zhu
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghang Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhi Pan
- Fangzheng Research Laboratory, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Wu Z, Wang Y, Zhu M, Lu M, Liu W, Shi J. Synovial microenvironment in temporomandibular joint osteoarthritis: crosstalk with chondrocytes and potential therapeutic targets. Life Sci 2024; 354:122947. [PMID: 39117138 DOI: 10.1016/j.lfs.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is considered to be a low-grade inflammatory disease involving multiple joint tissues. The crosstalk between synovium and cartilage plays an important role in TMJOA. Synovial cells are a group of heterogeneous cells and synovial microenvironment is mainly composed of synovial fibroblasts (SF) and synovial macrophages. In TMJOA, SF and synovial macrophages release a large number of inflammatory cytokines and extracellular vesicles and promote cartilage destruction. Cartilage wear particles stimulate SF proliferation and macrophages activation and exacerbate synovitis. In TMJOA, chondrocytes and synovial cells exhibit increased glycolytic activity and lactate secretion, leading to impaired chondrocyte matrix synthesis. Additionally, the synovium contains mesenchymal stem cells, which are the seed cells for cartilage repair in TMJOA. Co-culture of chondrocytes and synovial mesenchymal stem cells enhances the chondrogenic differentiation of stem cells. This review discusses the pathological changes of synovium in TMJOA, the means of crosstalk between synovium and cartilage, and their influence on each other. Based on the crosstalk between synovium and cartilage in TMJOA, we illustrate the treatment strategies for improving synovial microenvironment, including reducing cell adhesion, utilizing extracellular vesicles to deliver biomolecules, regulating cellular metabolism and targeting inflammatory cytokines.
Collapse
Affiliation(s)
- Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Mengqi Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Mingcheng Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wei Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
5
|
Petta D, D'Arrigo D, Salehi S, Talò G, Bonetti L, Vanoni M, Deabate L, De Nardo L, Dubini G, Candrian C, Moretti M, Lopa S, Arrigoni C. A personalized osteoarthritic joint-on-a-chip as a screening platform for biological treatments. Mater Today Bio 2024; 26:101072. [PMID: 38757057 PMCID: PMC11097088 DOI: 10.1016/j.mtbio.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Osteoarthritis (OA) is a highly disabling pathology, characterized by synovial inflammation and cartilage degeneration. Orthobiologics have shown promising results in OA treatment thanks to their ability to influence articular cells and modulate the inflammatory OA environment. Considering their complex mechanism of action, the development of reliable and relevant joint models appears as crucial to select the best orthobiologics for each patient. The aim of this study was to establish a microfluidic OA model to test therapies in a personalized human setting. The joint-on-a-chip model included cartilage and synovial compartments, containing hydrogel-embedded chondrocytes and synovial fibroblasts, separated by a channel for synovial fluid. For the cartilage compartment, a Hyaluronic Acid-based matrix was selected to preserve chondrocyte phenotype. Adding OA synovial fluid induced the production of inflammatory cytokines and degradative enzymes, generating an OA microenvironment. Personalized models were generated using patient-matched cells and synovial fluid to test the efficacy of mesenchymal stem cells on OA signatures. The patient-specific models allowed monitoring changes induced by cell injection, highlighting different individual responses to the treatment. Altogether, these results support the use of this joint-on-a-chip model as a prognostic tool to screen the patient-specific efficacy of orthobiologics.
Collapse
Affiliation(s)
- Dalila Petta
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa, 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
| | - Daniele D'Arrigo
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa, 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
- ISBE-SYSBIO Centre of Systems Biology, Milan, Italy at Department of Biotechnology and Biosciences, Università Degli Studi di Milano Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Shima Salehi
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, 20157, Milan, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, 20157, Milan, Italy
| | - Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering G.Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Marco Vanoni
- ISBE-SYSBIO Centre of Systems Biology, Milan, Italy at Department of Biotechnology and Biosciences, Università Degli Studi di Milano Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Luca Deabate
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering G.Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Gabriele Dubini
- Department of Chemistry, Materials and Chemical Engineering G.Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Christian Candrian
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
- Euler Institute, Biomedical Sciences Faculty, Università Della Svizzera Italiana (USI), Via Buffi 13, 6900, Lugano, Switzerland
| | - Matteo Moretti
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa, 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, 20157, Milan, Italy
- Euler Institute, Biomedical Sciences Faculty, Università Della Svizzera Italiana (USI), Via Buffi 13, 6900, Lugano, Switzerland
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via Belgioioso 173, 20157, Milan, Italy
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Via Chiesa, 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland
- Euler Institute, Biomedical Sciences Faculty, Università Della Svizzera Italiana (USI), Via Buffi 13, 6900, Lugano, Switzerland
| |
Collapse
|
6
|
Chen B, Sun Y, Xu G, Jiang J, Zhang W, Wu C, Xue P, Cui Z. Role of crosstalk between synovial cells and chondrocytes in osteoarthritis (Review). Exp Ther Med 2024; 27:201. [PMID: 38590580 PMCID: PMC11000048 DOI: 10.3892/etm.2024.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
Osteoarthritis (OA) is a low-grade, nonspecific inflammatory disease that affects the entire joint. This condition is characterized by synovitis, cartilage erosion, subchondral bone defects, and subpatellar fat pad damage. There is mounting evidence demonstrating the significance of crosstalk between synovitis and cartilage destruction in the development of OA. To comprehensively explore the phenotypic alterations of synovitis and cartilage destruction, it is important to elucidate the crosstalk mechanisms between chondrocytes and synovial cells. Furthermore, the updated iteration of single-cell sequencing technology reveals the interaction between chondrocyte and synovial cells. In the present review, the histological and pathological alterations between cartilage and synovium during OA progression are described, and the mode of interaction and molecular mechanisms between synovial cells and chondrocytes in OA, both of which affect the OA process mainly by altering the inflammatory environment and cellular state, are elucidated. Finally, the current OA therapeutic approaches are summarized and emerging therapeutic targets are reviewed in an attempt to provide potential insights into OA treatment.
Collapse
Affiliation(s)
- Baisen Chen
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Orthopedics, Nantong Third People's Hospital, Nantong, Jiangsu 226003, P.R. China
| | - Guanhua Xu
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiawei Jiang
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenhao Zhang
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunshuai Wu
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Pengfei Xue
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
7
|
Weissmann T, Rückert M, Putz F, Donaubauer AJ, Hecht M, Schnellhardt S, Schubert P, Roesch J, Höfler D, Ott OJ, Haderlein M, Lettmaier S, Fietkau R, Frey B, Gaipl US, Deloch L. Low-dose radiotherapy of osteoarthritis: from biological findings to clinical effects-challenges for future studies. Strahlenther Onkol 2023; 199:1164-1172. [PMID: 36602569 PMCID: PMC10674008 DOI: 10.1007/s00066-022-02038-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/25/2022] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is one of the most common and socioeconomically relevant diseases, with rising incidence and prevalence especially with regard to an ageing population in the Western world. Over the decades, the scientific perception of OA has shifted from a simple degeneration of cartilage and bone to a multifactorial disease involving various cell types and immunomodulatory factors. Despite a wide range of conventional treatment modalities available, a significant proportion of patients remain treatment refractory. Low-dose radiotherapy (LDRT) has been used for decades in the treatment of patients with inflammatory and/or degenerative diseases and has proven a viable option even in cohorts of patients with a rather poor prognosis. While its justification mainly derives from a vast body of empirical evidence, prospective randomized trials have until now failed to prove the effectiveness of LDRT. Nevertheless, over the decades, adaptions of LDRT treatment modalities have evolved using lower dosages with establishment of different treatment schedules for which definitive clinical proof is still pending. Preclinical research has revealed that the immune system is modulated by LDRT and very recently osteoimmunological mechanisms have been described. Future studies and investigations further elucidating the underlying mechanisms are an essential key to clarify the optimal patient stratification and treatment procedure, considering the patients' inflammatory status, age, and sex. The present review aims not only to present clinical and preclinical knowledge about the mechanistic and beneficial effects of LDRT, but also to emphasize topics that will need to be addressed in future studies. Further, a concise overview of the current status of the underlying radiobiological knowledge of LDRT for clinicians is given, while seeking to stimulate further translational research.
Collapse
Affiliation(s)
- Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Anna-Jasmina Donaubauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sören Schnellhardt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Philipp Schubert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Johannes Roesch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Daniel Höfler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Oliver J Ott
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Marlen Haderlein
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
8
|
Macfarlane E, Cavanagh L, Fong-Yee C, Tuckermann J, Chen D, Little CB, Seibel MJ, Zhou H. Deletion of the chondrocyte glucocorticoid receptor attenuates cartilage degradation through suppression of early synovial activation in murine posttraumatic osteoarthritis. Osteoarthritis Cartilage 2023; 31:1189-1201. [PMID: 37105394 DOI: 10.1016/j.joca.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Disruption of endogenous glucocorticoid signalling in bone cells attenuates osteoarthritis (OA) in aged mice, however, the role of endogenous glucocorticoids in chondrocytes is unknown. Here, we investigated whether deletion of the glucocorticoid receptor, specifically in chondrocytes, also alters OA progression. DESIGN Knee OA was induced by surgical destabilisation of the medial meniscus (DMM) in male 22-week-old tamoxifen-inducible glucocorticoid receptor knockout (chGRKO) mice and their wild-type (WT) littermates (n = 7-9/group). Mice were harvested 2, 4, 8 and 16 weeks after surgery to examine the spatiotemporal changes in molecular, cellular, and histological characteristics. RESULTS At all time points following DMM, cartilage damage was significantly attenuated in chGRKO compared to WT mice. Two weeks after DMM, WT mice exhibited increased chondrocyte and synoviocyte hypoxia inducible factor (HIF)-2α expression resulting in extensive synovial activation characterised by synovial thickening and increased interleukin-1 beta expression. At 2 and 4 weeks after DMM, WT mice displayed pronounced chondrocyte senescence and elevated catabolic signalling (reduced Yes-associated protein 1 (YAP1) and increased matrix metalloprotease [MMP]-13 expression). Contrastingly, at 2 weeks after DMM, HIF-2α expression and synovial activation were much less pronounced in chGRKO than in WT mice. Furthermore, chondrocyte YAP1 and MMP-13 expression, as well as chondrocyte senescence were similar in chGRKO-DMM mice and sham-operated controls. CONCLUSION Endogenous glucocorticoid signalling in chondrocytes promotes synovial activation, chondrocyte senescence and cartilage degradation by upregulation of catabolic signalling through HIF-2α in murine posttraumatic OA. These findings indicate that inhibition of glucocorticoid signalling early after injury may present a promising way to slow osteoarthritic cartilage degeneration.
Collapse
Affiliation(s)
- Eugenie Macfarlane
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
| | - Lauryn Cavanagh
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
| | - Colette Fong-Yee
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Baden-Württemberg, Germany.
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Christopher B Little
- Raymond Purves Laboratories, Kolling Institute and Institute of Bone and Joint Research, University of Sydney, and Royal North Shore Hospital, St. Leonards, NSW, Australia.
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia; Department of Endocrinology and Metabolism, Concord Repatriation General Hospital, Sydney, NSW, Australia.
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
10
|
Benucci M, Damiani A, Russo E, Guiducci S, Li Gobbi F, Fusi P, Grossi V, Amedei A, Manfredi M, Infantino M. The Association of uPA, uPAR, and suPAR System with Inflammation and Joint Damage in Rheumatoid Arthritis: suPAR as a Biomarker in the Light of a Personalized Medicine Perspective. J Pers Med 2022; 12:1984. [PMID: 36556207 PMCID: PMC9788564 DOI: 10.3390/jpm12121984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In recent years, the involvement of the soluble urokinase Plasminogen Activator Receptor (suPAR) in the pathophysiological modulation of Rheumatoid Arthritis (RA) has been documented, resulting in the activation of several intracellular inflammatory pathways. METHODS We investigated the correlation of urokinase Plasminogen Activator (uPA)/urokinase Plasminogen Activator Receptor (uPAR) expression and suPAR with inflammation and joint damage in RA, evaluating their potential role in a precision medicine context. RESULTS Currently, suPAR has been shown to be a potential biomarker for the monitoring of Systemic Chronic Inflammation (SCI) and COVID-19. However, the effects due to suPAR interaction in immune cells are also involved in both RA onset and progression. To date, the literature data on suPAR in RA endorse its potential application as a biomarker of inflammation and subsequent joint damage. CONCLUSION Available evidence about suPAR utility in the RA field is promising, and future research should further investigate its use in clinical practice, resulting in a big step forward for precision medicine. As it is elevated in different types of inflammation, suPAR could potentially work as an adjunctive tool for the screening of RA patients. In addition, a suPAR system has been shown to be involved in RA pathogenesis, so new data about the therapeutic response to Jak inhibitors can represent a possible way to develop further studies.
Collapse
Affiliation(s)
- Maurizio Benucci
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Arianna Damiani
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Serena Guiducci
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Francesca Li Gobbi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Paola Fusi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Valentina Grossi
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Maria Infantino
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| |
Collapse
|
11
|
Huang H, Xing D, Zhang Q, Li H, Lin J, He Z, Lin J. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif 2021; 54:e13113. [PMID: 34498342 PMCID: PMC8488571 DOI: 10.1111/cpr.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES In recent years, long non-coding RNAs (lncRNAs) have been found to play a role in the occurrence, progression and prognosis of chronic musculoskeletal disorders. DESIGN AND METHODS Literature exploring on PubMed was conducted using the combination of keywords 'LncRNA' and each of the following: 'osteoarthritis', 'rheumatoid arthritis', 'osteoporosis', 'osteogenesis', 'osteoclastogenesis', 'gout arthritis', 'Kashin-Beck disease', 'ankylosing spondylitis', 'cervical spondylotic myelopathy', 'intervertebral disc degeneration', 'human muscle disease' and 'muscle hypertrophy and atrophy'. For each disorder, we focused on the publications in the last five years (5/1/2016-2021/5/1, except for Kashin-Beck disease). Finally, we excluded publications that had been reported in reviews of various musculoskeletal disorders during the last three years. Here, we summarized the progress of research on the role of lncRNA in multiple pathological processes during musculoskeletal disorders. RESULTS LncRNAs play a crucial role in regulating downstream gene expression and maintaining function and homeostasis of cells, especially in chondrocytes, synovial cells, osteoblasts, osteoclasts and skeletal muscle cells. CONCLUSIONS Understanding the mechanisms of lncRNAs in musculoskeletal disorders may provide promising strategies for clinical practice.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Dan Xing
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Qingxi Zhang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Hui Li
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianjing Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Zihao He
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| |
Collapse
|
12
|
Shevchenko NS, Krutenko NV, Zimnytska TV, Voloshyn KV. The role of hypoxia-inducible factors in the development of chronic pathology. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review highlights the current understanding of hypoxia-inducible factors (HIFs) role as regulators of oxygen-dependent reactions and inducers of genes expression in human organism. The focus is on the most significant relationships between the activation or inhibition of the HIFs intracellular system and development of the inflammatory process in various organs, chronic diseases of gastrointestinal tract, osteoarticular system, kidneys as well as hematological, endocrine and metabolic disorders.
Collapse
|
13
|
Marker Genes Change of Synovial Fibroblasts in Rheumatoid Arthritis Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5544264. [PMID: 34195267 PMCID: PMC8203351 DOI: 10.1155/2021/5544264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023]
Abstract
Background Rheumatoid arthritis (RA) is a chronic condition that manifests as inflammation of synovial joints, leading to joint destruction and deformity. Methods We identified single-cell RNA-seq data of synovial fibroblasts from RA and osteoarthritis (OA) patients in GSE109449 dataset. RA- and OA-specific cellular subpopulations were identified, and enrichment analysis was performed. Further, key genes for RA and OA were obtained by combined analysis with differentially expressed genes (DEGs) between RA and OA in GSE56409 dataset. The diagnostic role of key genes for RA was predicted using receiver operating characteristic (ROC) curve. Finally, we identified differences in immune cell infiltration between RA and OA patients, and utilized flow cytometry, qRT-PCR, and Western blot were used to examine the immune cell and key genes in RA patients. Results The cluster 0 matched OA and cluster 3 matched RA and significantly enriched for neutrophil-mediated immunity and ECM receptor interaction, respectively. We identified 478 DEGs. In the top 20 degrees of connection in the PPI network, the key genes for RA were obtained by comparing with the gene markers of cluster 0 and cluster 3, respectively. ROC curve showed that CCL2 and MMP13 might be diagnostic markers for RA. We found aberrant levels of CD8+T, neutrophil, and B cells in RA fibroblasts, which were validated in clinical samples. Importantly, we also validated the differential expression of key genes between RA and OA. Conclusion High expression of CCL2 and MMP13 in RA may be a diagnostic and therapeutic target.
Collapse
|
14
|
Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 2021; 66:101249. [PMID: 33383189 DOI: 10.1016/j.arr.2020.101249] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by low-grade inflammation and high levels of clinical heterogeneity. Aberrant chondrocyte metabolism is a response to changes in the inflammatory microenvironment and may play a key role in cartilage degeneration and OA progression. Under conditions of environmental stress, chondrocytes tend to adapt their metabolism to microenvironmental changes by shifting from one metabolic pathway to another, for example from oxidative phosphorylation to glycolysis. Similar changes occur in other joint cells, including synoviocytes. Switching between these pathways is implicated in metabolic alterations that involve mitochondrial dysfunction, enhanced anaerobic glycolysis, and altered lipid and amino acid metabolism. The shift between oxidative phosphorylation and glycolysis is mainly regulated by the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways. Chondrocyte metabolic changes are likely to be a feature of different OA phenotypes. Determining the role of chondrocyte metabolism in OA has revealed key features of disease pathogenesis. Future research should place greater emphasis on immunometabolism and altered metabolic pathways as a means to understand the pathophysiology of age-related OA. This knowledge will advance the development of new drugs against therapeutic targets of metabolic significance.
Collapse
Affiliation(s)
- Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China.
| | - Ali Mobasheri
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, FI-90014 Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Ren G, Al-Jezani N, Railton P, Powell JN, Krawetz RJ. CCL22 induces pro-inflammatory changes in fibroblast-like synoviocytes. iScience 2021; 24:101943. [PMID: 33490888 PMCID: PMC7809191 DOI: 10.1016/j.isci.2020.101943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Synovitis is common in patients with osteoarthritis (OA) and is associated with pain and disease progression. We have previously demonstrated that the chemokine C-C motif chemokine 22 (CCL22) induces chondrocyte apoptosis in vitro; however, the effects of CCL22 on the synovium remain unknown. Therefore, our goal was to investigate the effect of CCL22 on fibroblast-like synoviocytes (FLS). CCL22 treatment suppressed expression of IL-4 and IL-10 and promoted expression of S100A12 in FLS. The response of FLS to CCL22 was not dependent on the disease state of the joint (e.g., normal versus OA), but was instead correlated with the individuals' synovial fluid level of CCL22. CCL22 induction of S100A12 in FLS was attenuated after knockdown of CCR3, yet ligands of CCR3 (CCL7, CCL11) did not induce S100A12 expression. In the presence of CCL22, CCR3-positive FLS upregulate CCL22 and S100A12 driving a potential feedforward pro-inflammatory mechanism distinct from canonical CCL22 and CCR3 pathways.
Collapse
Affiliation(s)
- Guomin Ren
- McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, AB T2N 4N1, Canada
| | - Nedaa Al-Jezani
- McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Pamela Railton
- Charles Sturt University, School of Biomedical Science, Wagga Wagga, NSW 2650, Australia
| | - James N. Powell
- McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- University of Calgary, Department of Surgery, Calgary, AB T2N 4N1, Canada
| | - Roman J. Krawetz
- McCaig Institute for Bone & Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, AB T2N 4N1, Canada
- University of Calgary, Department of Surgery, Calgary, AB T2N 4N1, Canada
- University of Calgary, Department of Anatomy and Cell Biology, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
16
|
Wu JW, Hu H, Li D, Ma LK. Hypoxia-inducible factor 2-alpha-dependent induction of IL-6 protects the heart from ischemia/reperfusion injury. Aging (Albany NY) 2021; 13:3443-3458. [PMID: 33428604 PMCID: PMC7906200 DOI: 10.18632/aging.202276] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) results in increased myocardial infarct size and leads to poor clinical outcomes. Hypoxia-inducible factor 2-alpha (HIF2α) exerts myocardial protective effects during MIRI through as yet unclear mechanisms. Here, we show that knockdown of HIF2α with cardiotropic recombinant adeno-associated virus serotype 9 (rAAV9) in mouse hearts significantly increased the infarct sizes during myocardial ischemia/reperfusion (MI/R). In addition, HIF2α transcriptionally regulated the expression of interleukin 6 (IL-6) in cardiomyocytes to elicit cardioprotection. Likewise, IL-6 deficiency aggravated MIRI, while treatment with recombinant IL-6 had cardioprotective effects and rescued the mice with HIF2α knockdown. Furthermore, IL-6 treatment significantly activated the PI3K/Akt and STAT3 signaling pathways in the myocardium during MI/R, and the specific inhibitors wortmannin (specific phosphoinositide 3-kinase inhibitor) and Stattic (specific STAT3 inhibitor) substantially abolished HIF2α/IL-6-induced cardioprotection. These studies suggest that HIF2α transcription regulates the expression of IL-6 in cardiomyocytes and plays a protective role during MI/R.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Dan Li
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Li-Kun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
17
|
CypB-CD147 Signaling Is Involved in Crosstalk between Cartilage and FLS in Collagen-Induced Arthritis. Mediators Inflamm 2020; 2020:6473858. [PMID: 32908452 PMCID: PMC7475760 DOI: 10.1155/2020/6473858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/29/2022] Open
Abstract
To investigate the crosstalk between cartilage and fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA), we adopted an in vitro coculture system model of collagen-induced arthritis (CIA) cartilage and CIA FLS monolayer. CIA rat samples of the synovium and femur head were collected for isolation of FLS and coculture system. Cartilages were treated with vehicle (Ctrl group), 10 ng/mL interleukin- (IL-) 1α (IL-1α group), and 10 ng/mL IL-1α plus 10 μM dexamethasone (Dex group) for 3 days before coculture with FLS for further 2 days. After the coculture, FLS were collected to determine the influences of articular cartilage on synoviocytes. Whether the CypB-CD147 signaling pathway is involved in the interactions between cartilage and FLS is assayed. Results showed that IL-1α-stimulated CIA cartilage promoted the proliferation and reduced the apoptosis of FLS. Increased inflammatory cytokines and decreased p57 expression were found in cocultured FLS stimulated by IL-1α-challenged CIA cartilage. Upregulation of NF-κB and I-κB kinase β (IKK-β) and downregulation of the inhibitor of NF-κBα (I-κBα) protein were observed in cocultured FLS. After coculture, significant increases in the expression of cyclophilin B (CypB) and CD147 were observed in CIA cartilage and FLS, respectively. Furthermore, results of immunofluorescence staining showed that the anti-CD147 antibody significantly suppressed p65 nuclear translocation in cocultured FLS stimulated by IL-1α-challenged CIA cartilage. In conclusion, inflammatory effects in the cartilage-FLS coculture system are associated with the CypB-CD147 mediating NF-κB pathway which may further enhance the inflammation in RA.
Collapse
|
18
|
Guo H, Li H, Feng Y, Ke J, Fang W, Li C, Long X. Cross-talk between synovial fibroblasts and chondrocytes in condylar hyperplasia: an in vitro pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 131:558-564. [PMID: 33187941 DOI: 10.1016/j.oooo.2020.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Increasing evidence indicates an interaction between the synovium and the cartilage in the temporomandibular joint (TMJ) and other joints. We recently demonstrated that the expression of proangiogenic factors was enhanced and that of factors promoting matrix degradation was decreased in synovial fibroblasts in condylar hyperplasia (CH). The aim of this study was to explore whether CH chondrocytes can affect the expression of these factors of synovial fibroblasts in a co-culture system. STUDY DESIGN The expressions of vascular endothelial growth factor (VEGF), cluster of differentiation 34 (CD34), fibroblast growth factor 2 (FGF-2), and tissue inhibitor of metalloproteinase 1 (TIMP1) from CH condylar tissues were observed by using immunohistochemical methods. Synovial fibroblasts of control tissues were co-cultured with the chondrocytes of CH, and protein expressions of VEGF, FGF-2, thrombospondin 1 (TSP1), matrix metalloproteinase 3 (MMP3), and TIMP1 were examined by using Western blotting. RESULTS Positive staining for VEGF, CD34, FGF-2, and TIMP1 was found in the hypertrophic cartilage layer of CH condylar tissues. Protein expressions of VEGF, FGF-2, and TIMP1 were significantly increased in co-cultured synovial fibroblasts, but TSP1 and MMP3 expressions were decreased. CONCLUSIONS The angiogenic factors and matrix degradation-related factors in synovial fibroblasts co-cultured with CH chondrocytes showed the same trends as those in synovial fibroblasts from CH tissue, suggesting potential cross-talk between synovial fibroblasts and chondrocytes during CH progression.
Collapse
Affiliation(s)
- Huilin Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huimin Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cheng Li
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Han DF, Li Y, Xu HY, Li RH, Zhao D. An Update on the Emerging Role of Visfatin in the Pathogenesis of Osteoarthritis and Pharmacological Intervention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8303570. [PMID: 32831881 PMCID: PMC7429770 DOI: 10.1155/2020/8303570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases that affects millions of people worldwide, mainly the aging population. Despite numerous published reports, little is known about the pathology of this disease, and no feasible treatment plan exists to stop OA progression. Recently, extensive basic and clinical studies have shown that adipokines play a key role in OA development. Moreover, some drugs associated with adipokines have shown chondroprotective and anti-inflammatory effects on OA. Visfatin has been shown to play a detrimental role in the progression of OA. It increases the production of matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), induces the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, affects the differentiation of mesenchymal stem cells to adipocytes, and induces osteophyte formation by inhibiting osteoclastogenesis. Although some side effects of chemical visfatin inhibitors have been reported, they were shown to be successful in the treatment of diabetes, cancer, and other diseases that can utilize Chinese herbs, further suggesting that similar therapeutic strategies could be used in OA prevention and treatment. Here, we describe the pathophysiological mechanism of visfatin in OA and discuss some potential pharmacological interventions using Chinese herbs.
Collapse
Affiliation(s)
- Dong-Feng Han
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hui-Ying Xu
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Rong-Hang Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ding Zhao
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
20
|
Tan F, Wang D, Yuan Z. The Fibroblast-Like Synoviocyte Derived Exosomal Long Non-coding RNA H19 Alleviates Osteoarthritis Progression Through the miR-106b-5p/TIMP2 Axis. Inflammation 2020; 43:1498-1509. [PMID: 32248331 DOI: 10.1007/s10753-020-01227-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that affects people worldwide. The interaction between fibroblast-like synoviocytes (FLSs) and chondrocytes may play a vital role in OA disease pathology. However, the underlying mechanisms by which FLSs exert regulatory effects on chondrocytes still need to be elucidated. Exosomes, small membrane vesicles secreted from living cells, are known to play a variety of roles in mediating cell-to-cell communication through the transferring of biological components such as non-coding RNAs and proteins. Here, we investigate the cellular processes of chondrocytes regulated by FLS-derived exosomes and the mechanisms of action underlying the functions of exosomes in OA pathogenesis. We observed that exosome-mediated cartilage repair was characterized by increased cell viability and migration as well as alleviated matrix degradation. Using chondrocyte cultures, the enhanced cellular proliferation and migration during exosome-mediated cartilage repair was linked to the exosomal lncRNA H19-mediated regulation of the miR-106b-5p/TIMP2 axis. Transfection of miR-106-5p mimics in chondrocytes significantly decreased cell proliferation and migration, promoted matrix degradation characterized by elevated MMP13 and ADAMTS5 expression, and reduced the expression of COL2A1 and ACAN in chondrocytes. Furthermore, we found that TIMP2 was directly regulated by miR-106-5p. Co-transfections of miR-106-5p mimics and TIMP2 resulted in higher levels of COL2A1 and ACAN, but lower levels of MMP13 and ADAMTS5. Together, these observations demonstrated that the lncRNA H19 may promote chondrocyte proliferation and migration and inhibit matrix degradation in OA possibly by targeting the miR-106b-5p/TIMP2 axis. In the future, H19 may serve as a potential therapeutic target for the treatment of OA.
Collapse
Affiliation(s)
- Fengjin Tan
- Orthopedics and Traumatology, Yantai Hospital of Traditional Chinese Medicine, 39, Happy Road, Yantai City, 264000, China.
| | - Dongbo Wang
- Orthopedics and Traumatology, Yantai Hospital of Traditional Chinese Medicine, 39, Happy Road, Yantai City, 264000, China
| | - Zhongkai Yuan
- Medical imaging Department, Yantai Hospital of Traditional Chinese Medicine, 39, Happy Road, Yantai City, 264000, China
| |
Collapse
|
21
|
Alahdal M, Duan L, Ouyang H, Wang D. The role of indoleamine 2,3 dioxygenase 1 in the osteoarthritis. Am J Transl Res 2020; 12:2322-2343. [PMID: 32655775 PMCID: PMC7344072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability. It involves articular cartilage destruction and a whole joint inflammation. In spite of OA pathogenesis is still unclear, new studies on the OA pathophysiological aetiology and immunomodulation therapy continuously achieve significant advances with new concepts. Here, we focus on the indoleamine-2,3-dioxygenase1 (IDO1) activity in the osteoarthritis (OA), which is one of the noticeable enzymes in the synovial fluid of arthritis patients. It was recognized as an essential mediator of autoreactive B and T cell responses in rheumatoid arthritis (RA) and an interesting therapeutic target against RA. However, the role IDO1 plays in the OA pathogenesis hasn't been discussed. The new OA experimental analysis evidenced IDO1 overexpression in the synovial fluid of OA patients, and recent studies reported that IDO1 metabolites were found higher in the OA synovial fluid than RA and spondyloarthropathies (SpA) patients. Moreover, the positive relation of IDO1 metabolites with OA pain and joint stiffness has been confirmed. Thus, the IDO1 plays a pivotal role in the pathogenesis of OA. In this review, the role IDO1 plays in the OA pathogenesis has been deeply discussed. It could be a promising target in the immunotherapy of OA disease.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| |
Collapse
|
22
|
Cui SJ, Zhang T, Fu Y, Liu Y, Gan YH, Zhou YH, Yang RL, Wang XD. DPSCs Attenuate Experimental Progressive TMJ Arthritis by Inhibiting the STAT1 Pathway. J Dent Res 2020; 99:446-455. [PMID: 31977264 DOI: 10.1177/0022034520901710] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Severe inflammation, progressive cartilage, and bone destruction are typical pathologic changes in temporomandibular joint (TMJ) arthritis and lead to great difficulty for treatment. However, current therapy is inefficient to improve degenerative changes in progressive TMJ arthritis. This study investigated the therapeutic effects of human dental pulp stem cells (DPSCs) on severe inflammatory TMJ diseases. Progressive TMJ arthritis in rats was induced by intra-articular injection of complete Freund's adjuvant and monosodium iodoacetate. DPSCs were injected into the articular cavity to treat rat TMJ arthritis, with normal saline injection as control. Measurement of head withdrawal threshold, micro-computed tomography scanning, and histologic staining were applied to evaluate the severity of TMJ arthritis. Results showed that local injection of DPSCs in rats with TMJ arthritis relieved hyperalgesia and synovial inflammation, attenuated cartilage matrix degradation, and induced bone regeneration. Inflammatory factors TNF-α and IFN-γ were elevated in progressive TMJ arthritis and partially decreased by local injection of DPSCs. MMP3 and MMP13 were elevated in the arthritis + normal saline group and decreased in the arthritis + DPSCs group, which indicated amelioration of matrix degradation. The isolated primary synoviocytes were cocultured with DPSCs after inflammatory factors stimulated to explore the possible biological mechanisms. The expression of MMP3 and MMP13 in synoviocytes was elevated after TNF-α and IFN-γ stimulation and partially reversed by DPSC treatment in the in vitro study. The signal transducer and activator of transcription 1 (STAT1) was activated by inflammatory stimulation and suppressed by DPSC coculture. The upregulation of MMP3 and MMP13 triggered by inflammation was blocked by STAT1-specific inhibitor, suggesting that STAT1 regulated the expression of MMP3 and MMP13. In conclusion, this study demonstrated the possible therapeutic effects of local injection of DPSCs on progressive TMJ arthritis by inhibiting the expression of MMP3 and MMP13 through the STAT1 pathway.
Collapse
Affiliation(s)
- S J Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - T Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y Fu
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y H Gan
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y H Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - R L Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - X D Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
23
|
Tseng CC, Chen YJ, Chang WA, Tsai WC, Ou TT, Wu CC, Sung WY, Yen JH, Kuo PL. Dual Role of Chondrocytes in Rheumatoid Arthritis: The Chicken and the Egg. Int J Mol Sci 2020; 21:E1071. [PMID: 32041125 PMCID: PMC7038065 DOI: 10.3390/ijms21031071] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases that display features of articular cartilage destruction. The underlying disturbance results from immune dysregulation that directly and indirectly influence chondrocyte physiology. In the last years, significant evidence inferred from studies in vitro and in the animal model offered a more holistic vision of chondrocytes in RA. Chondrocytes, despite being one of injured cells in RA, also undergo molecular alterations to actively participate in inflammation and matrix destruction in the human rheumatoid joint. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the chondrocyte signatures of RA and its potential applications for diagnosis and prognosis in RA.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
24
|
Kaeley GS, Bakewell C, Deodhar A. The importance of ultrasound in identifying and differentiating patients with early inflammatory arthritis: a narrative review. Arthritis Res Ther 2020; 22:1. [PMID: 31898524 PMCID: PMC6939339 DOI: 10.1186/s13075-019-2050-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
Early differentiation between different types of inflammatory arthritis and subsequent initiation of modern treatments can improve patient outcomes by reducing disease activity and preventing joint damage. Routine clinical evaluation, laboratory testing, and radiographs are typically sufficient for differentiating between inflammatory and predominantly degenerative arthritis (e.g., osteoarthritis). However, in some patients with inflammatory arthritis, these techniques fail to accurately identify the type of early-stage disease. Further evaluation by ultrasound imaging can delineate the inflammatory arthritis phenotype present. Ultrasound is a noninvasive, cost-effective method that enables the evaluation of several joints at the same time, including functional assessments. Further, ultrasound can visualize pathophysiological changes such as synovitis, tenosynovitis, enthesitis, bone erosions, and crystal deposits at a subclinical level, which makes it an effective technique to identify and differentiate most common types of inflammatory arthritis. Limitations associated with ultrasound imaging should be considered for its use in the differentiation and diagnosis of inflammatory arthritides.
Collapse
Affiliation(s)
- Gurjit S Kaeley
- Division of Rheumatology and Clinical Immunology, University of Florida College of Medicine, 653-1 West 8th St., LRC 2nd Floor L-14, Jacksonville, FL, 32209, USA.
| | | | - Atul Deodhar
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
25
|
Apostu D, Lucaciu O, Mester A, Oltean-Dan D, Baciut M, Baciut G, Bran S, Onisor F, Piciu A, Pasca RD, Maxim A, Benea H. Systemic drugs with impact on osteoarthritis. Drug Metab Rev 2019; 51:498-523. [DOI: 10.1080/03602532.2019.1687511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dragos Apostu
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Mester
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Oltean-Dan
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Onisor
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andra Piciu
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana D. Pasca
- Department of Biomolecular Physics, Faculty of Physics, Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Andrei Maxim
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Benea
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic Analysis of Differential Expression Profile in Rheumatoid Arthritis Chondrocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2018; 15:1129-1142. [PMID: 30123050 PMCID: PMC6097257 DOI: 10.7150/ijms.27056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cartilage destruction in rheumatoid arthritis (RA) occurs primarily in the pannus-cartilage interface. The close contact of the synovium-cartilage interface implicates crosstalk between synovial fibroblasts and chondrocytes. The aim of this study is to explore the differentially expressed genes and novel microRNA regulations potentially implicated in the dysregulated cartilage homeostasis in joint destruction of RA. Total RNAs were extracted from human primary cultured normal and RA chondrocytes for RNA and small RNA expression profiling using next-generation sequencing. Using systematic bioinformatics analyses, we identified 463 differentially expressed genes in RA chondrocytes were enriched in biological functions related to altered cell cycle process, inflammatory response and hypoxic stimulation. Moreover, fibroblast growth factor 9 (FGF9), kynureninase (KYNU), and regulator of cell cycle (RGCC) were among the top dysregulated genes identified to be potentially affected in the RA joint microenvironment, having similar expression patterns observed in arrays of clinical RA synovial tissues from the Gene Expression Omnibus database. Additionally, among the 31 differentially expressed microRNAs and 10 candidate genes with potential microRNA-mRNA interactions in RA chondrocytes, the novel miR-140-3p-FGF9 interaction was validated in different microRNA prediction databases, and proposed to participate in the pathogenesis of joint destruction through dysregulated cell growth in RA. The findings provide new perspectives for target genes in the management of cartilage destruction in RA.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
27
|
Dinesh P, Rasool M. uPA/uPAR signaling in rheumatoid arthritis: Shedding light on its mechanism of action. Pharmacol Res 2018; 134:31-39. [PMID: 29859810 DOI: 10.1016/j.phrs.2018.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic autoimmune inflammatory disorder affecting multiple joints. Various cytokines, chemokines and growth factors synergistically modulate the joint physiology leading to bone erosion and cartilage degradation. Other than these conventional mediators that are well established in the past, the newly identified plasminogen activator (PA) family of proteins have been witnessed to possess a multifactorial approach in mediating RA pathogenesis. One such family of proteins comprises of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR)/soluble-type plasminogen activator receptor (suPAR). PA family of proteins are classified into two types namely: uPA and tissue type plasminogen activator (tPA). Both these subtypes have been implicated to play a key role in RA disease progression. However during RA pathogenesis, uPA secreted by neutrophils, chondrocytes, and monocytes are designated to interact with uPAR expressed on macrophages, fibroblast-like synoviocytes (FLS), chondrocytes and endothelial cells. Interaction of uPA/uPAR promotes the disease progression of RA through secretion of several cytokines, chemokines, growth factors and matrix metalloproteinases (MMPs). Moreover, uPA/uPAR initiates inflammatory responses in macrophages and FLS through activation of PI3K/Akt signaling pathways. Furthermore, uPAR plays a dual role in osteoclastogenesis under the presence/absence of growth factors like monocyte-colony stimulating factor (M-CSF). Overall, this review emphasizes the role of uPA/uPAR on various immune cells, signaling pathways and osteoclastogenesis involved in RA pathogenesis.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
28
|
You S, Koh JH, Leng L, Kim WU, Bucala R. The Tumor-Like Phenotype of Rheumatoid Synovium: Molecular Profiling and Prospects for Precision Medicine. Arthritis Rheumatol 2018; 70:637-652. [PMID: 29287304 PMCID: PMC5920713 DOI: 10.1002/art.40406] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by destructive hyperplasia of the synovium. Fibroblast-like synoviocytes (FLS) are a major component of synovial pannus and actively participate in the pathologic progression of RA. How rheumatoid FLS acquire and sustain such a uniquely aggressive phenotype remains poorly understood. We describe the current state of knowledge of the molecular alterations in rheumatoid FLS at the genomic, epigenomic, transcriptomic, proteomic, and metabolomic levels, which offers a means to reconstruct the pathways leading to rheumatoid pannus. Such data provide new pathologic insight and suggest means to more sensitively assess disease activity and response to therapy, as well as support new avenues for therapeutic development.
Collapse
Affiliation(s)
- Sungyong You
- Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jung Hee Koh
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Lin Leng
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Richard Bucala
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
29
|
Anti-Inflammatory Effects of p-Coumaric Acid, a Natural Compound of Oldenlandia diffusa, on Arthritis Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5198594. [PMID: 29681976 PMCID: PMC5842688 DOI: 10.1155/2018/5198594] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
Objectives In China, Oldenlandia diffusa (OD) is a natural herb that is widely used and has been proven to be effective in the treatment of rheumatoid arthritis (RA). This study aimed to preliminarily reveal the mechanism by which OD exerts its beneficial effect. Methods Ultra-performance liquid chromatography photodiode array was applied to identify the absorbable compounds in the plasma of collagen-induced arthritis (CIA) model rats. After 2 weeks, an OD decoction or the identified absorbable compound was administered to CIA rats. Morphology, X-ray images of the joints, pathological images, arthritis index, and cytokine (TNF-α and IL-6) levels were evaluated. Results p-Coumaric acid (p-CA) was identified as the absorbed compound in plasma. After administration of p-CA solution or the OD decoction, symptoms in the treated rats were alleviated as compared to the untreated model rats, and inflammatory cell infiltration was suppressed. The arthritis index and serum levels of TNF-α and IL-6 were decreased as compared to the control group. Conclusions OD may exert its anti-inflammatory effect on RA via its active ingredient, p-CA. This information sheds light on the mechanism by which OD exerts its anti-inflammatory effort in RA and forms the basis for further development of therapeutic agents for RA.
Collapse
|
30
|
Riegger J, Zimmermann M, Joos H, Kappe T, Brenner RE. Hypothermia Promotes Cell-Protective and Chondroprotective Effects After Blunt Cartilage Trauma. Am J Sports Med 2018; 46:420-430. [PMID: 29116863 DOI: 10.1177/0363546517736051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cryotherapy is routinely administered after sports injuries of synovial joints. Although positive clinical effects on periarticular swelling and pain have been described, the effects on the cell biological activities of cartilage and synovial cells remain largely unknown so far. HYPOTHESIS Local hypothermia alleviates synovial reactions and prevents chondrocyte death as well as cartilage destructive processes after blunt cartilage trauma. STUDY DESIGN Controlled laboratory study. METHODS Human cartilage explants were impacted by a drop-tower apparatus (0.59 J) and cultured at 24 hours or 7 days in different temperature conditions (2 hours [short term], 16 hours [medium term], or throughout [long term] at 27°C; afterwards or throughout at 37°C). Besides, isolated human fibroblast-like synoviocytes (FLS) were stimulated with traumatized cartilage conditioned medium and cultured as mentioned above up to 4 days. The effects of hypothermia were evaluated by cell viability, gene expression, type II collagen synthesis and cleavage, as well as the release of matrix metalloproteinase (MMP)-2, MMP-13, and interleukin 6 (IL-6). RESULTS Seven days after trauma, hypothermic treatment throughout improved cell viability (short term: 10.1% [ P = .016]; medium term: 6% [ P = .0362]; long term: 12.5% [ P = .0039]). Short-term hypothermia attenuated the expression of catabolic MMP-13 (mRNA: -2.2-fold [ P = .0119]; protein: -2-fold [ P = .0238]). Whereas type II collagen synthesis (1.7-fold [ P = .0227]) was increased after medium-term hypothermia, MMP-13 expression (mRNA: -30.8-fold [ P = .0025]; protein: -10.3-fold [ P < .0001]) and subsequent cleavage of type II collagen (-1.1-fold [ P = .0489]) were inhibited. Long-term hypothermia further suppressed MMP release (pro-MMP-2: -3-fold [ P = .0222]; active MMP-2: -5.2-fold [ P = .0183]; MMP-13: -56-fold [ P < .0001]) and type II collagen breakdown (-1.6-fold [ P = .0036]). Four days after FLS stimulation, hypothermia significantly suppressed the gene expression of matrix-destructive enzymes after medium-term (MMP-3: -4.1-fold [ P = .0211]) and long-term exposure (a disintegrin and metalloproteinase with thrombospondin motifs 4 [ADAMTS4]: -4.3-fold [ P = .0045]; MMP-3: -25.8-fold [ P = .014]; MMP-13: -122-fold [ P = .0444]) and attenuated IL-6 expression by trend. CONCLUSION After blunt cartilage trauma, initial hypothermia for only 2 hours and/or 16 hours induced significant cell-protective and chondroprotective effects and promoted the anabolic activity of chondrocytes, while the expression of matrix-destructive enzymes by stimulated FLS was attenuated by prolonged hypothermia. CLINICAL RELEVANCE The findings of this preliminary ex vivo investigation indicate that optimized cryotherapy management after cartilage trauma might prevent matrix-degenerative processes associated with the pathogenesis of posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Madeleine Zimmermann
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Helga Joos
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Thomas Kappe
- Department of Orthopaedic Surgery, University of Ulm, Ulm, Germany
| | - Rolf E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| |
Collapse
|
31
|
Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017; 25:1577-1587. [PMID: 28705606 DOI: 10.1016/j.joca.2017.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/09/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) as a debilitating affliction of joints currently affects millions of people and remains an unsolved problem. The disease involves multiple cellular and molecular pathways that converge on the progressive destruction of cartilage. Activation of cartilage regenerative potential and specific targeting pathogenic mediators have been the major focus of research efforts aimed at slowing the progression of cartilage degeneration and preserve joint function. This review will summarize recent key discoveries toward better understanding of the complex mechanisms behind OA development and highlight the latest advances in basic and clinical research in the approach for cartilage regeneration. Prospectively, more potent therapeutic strategies against progressive cartilage deterioration may use a combination of cytotherapy, pharmacotherapy, and bioscaffoldings for improved chondrogenic differentiation and stem/progenitor cell homing as well as the concomitant reduced enzymatic matrix degradation and inflammation. Further, treatments need to be provided with increased preciseness of targeted therapy. One might expect that the regenerative therapies could potentially control or even possibly cure OA if performed at early stages of the disease.
Collapse
Affiliation(s)
- M H Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J B Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Q Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
Tu J, Stoner S, Fromm PD, Wang T, Chen D, Tuckermann J, Cooper MS, Seibel MJ, Zhou H. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB J 2017; 32:478-487. [PMID: 28928247 DOI: 10.1096/fj.201700659r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023]
Abstract
Previous studies demonstrated that endogenous glucocorticoid signaling in osteoblasts promotes inflammation in murine immune arthritis. The current study determined whether disruption of endogenous glucocorticoid signaling in chondrocytes also modulates the course and severity of arthritis. Tamoxifen-inducible chondrocyte-targeted glucocorticoid receptor-knockout (chGRKO) mice were generated by breeding GRflox/flox mice with tamoxifen-inducible collagen 2a1 Cre (Col2a1-CreERT2) mice. Antigen-induced arthritis (AIA) and K/BxN serum transfer-induced arthritis (STIA) were induced in both chGRKO mice and their Cre-negative GRflox/flox littermates [wild type (WT)]. Arthritis was assessed by measurement of joint swelling and histology of joints collected at d 14. Neutrophil activity and gene expression patterns associated with cartilage damage were also evaluated. In both arthritis models clinical (joint swelling) and histologic indices of inflammatory activity were significantly greater in chGRKO than in WT mice. The STIA model was characterized by early up-regulation of CXCR2/CXCR2 ligand gene expression in ankle tissues, and significant and selective expansion of splenic CXCR2+ neutrophils in chGRKO arthritic compared to WT arthritic mice. At later stages, gene expression of enzymes involved in cartilage degradation was up-regulated in chGRKO but not WT arthritic mice. Therefore, we summarize that chondrocytes actively mitigate local joint inflammation, cartilage degradation and systemic neutrophil activity via a glucocorticoid-dependent pathway.-Tu, J., Stoner, S., Fromm, P. D., Wang, T., Chen, D., Tuckermann, J., Cooper, M. S., Seibel, M. J., Zhou, H. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage.
Collapse
Affiliation(s)
- Jinwen Tu
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia; .,Adrenal Steroid Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Shihani Stoner
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia
| | - Phillip D Fromm
- Dendritic Cell Research, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia
| | - Tingyu Wang
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and
| | - Mark S Cooper
- Adrenal Steroid Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| | - Markus J Seibel
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| | - Hong Zhou
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia; .,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Ha SH, Kim HK, Anh NTT, Kim N, Ko KS, Rhee BD, Han J. Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:531-546. [PMID: 28883757 PMCID: PMC5587603 DOI: 10.4196/kjpp.2017.21.5.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022]
Abstract
Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including ‘chemotaxis’, ‘hematopoietic organ development’, ‘positive regulation of cell proliferation’, and ‘regulation of cytokine biosynthetic process’. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.
Collapse
Affiliation(s)
- Seung Hee Ha
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.,Department of Health Technology Development, Health Project Management Team, Korea Health Industry Development Institute (KHIDI), Cheongju 28159, Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Nguyen Thi Tuyet Anh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
34
|
Pearson MJ, Herndler-Brandstetter D, Tariq MA, Nicholson TA, Philp AM, Smith HL, Davis ET, Jones SW, Lord JM. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep 2017; 7:3451. [PMID: 28615667 PMCID: PMC5471184 DOI: 10.1038/s41598-017-03759-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023] Open
Abstract
Increasing evidence suggests that inflammation plays a central role in driving joint pathology in certain patients with osteoarthritis (OA). Since many patients with OA are obese and increased adiposity is associated with chronic inflammation, we investigated whether obese patients with hip OA exhibited differential pro-inflammatory cytokine signalling and peripheral and local lymphocyte populations, compared to normal weight hip OA patients. No differences in either peripheral blood or local lymphocyte populations were found between obese and normal-weight hip OA patients. However, synovial fibroblasts from obese OA patients were found to secrete greater amounts of the pro-inflammatory cytokine IL-6, compared to those from normal-weight patients (p < 0.05), which reflected the greater levels of IL-6 detected in the synovial fluid of the obese OA patients. Investigation into the inflammatory mechanism demonstrated that IL-6 secretion from synovial fibroblasts was induced by chondrocyte-derived IL-6. Furthermore, this IL-6 inflammatory response, mediated by chondrocyte-synovial fibroblast cross-talk, was enhanced by the obesity-related adipokine leptin. This study suggests that obesity enhances the cross-talk between chondrocytes and synovial fibroblasts via raised levels of the pro-inflammatory adipokine leptin, leading to greater production of IL-6 in OA patients.
Collapse
Affiliation(s)
- Mark J Pearson
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | | | - Mohammad A Tariq
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Thomas A Nicholson
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Ashleigh M Philp
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Hannah L Smith
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Edward T Davis
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham, West Midlands, B31 2AP, UK
| | - Simon W Jones
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK
| | - Janet M Lord
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, West Midlands, B15 2TT, UK.
| |
Collapse
|