1
|
Pickett JR, Wu Y, Ta HT. VCAM-1 as a common biomarker in inflammatory bowel disease and colorectal cancer: unveiling the dual anti-inflammatory and anti-cancer capacities of anti-VCAM-1 therapies. Cancer Metastasis Rev 2025; 44:40. [PMID: 40095109 PMCID: PMC11913972 DOI: 10.1007/s10555-025-10258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Vascular cell adhesion molecule (VCAM)-1 has garnered significant research attention due to its potential as a disease biomarker and drug target across several inflammatory pathologies-including atherosclerosis, asthma, rheumatoid arthritis, and inflammatory bowel disease (IBD). The VCAM-1 protein has also been noted for its functional involvement in cancer metastasis and drug resistance to conventional chemotherapeutics. Although the anti-inflammatory and anti-cancer facets of VCAM-1 antagonisation have been examined separately, there is yet to be a review that explicitly addresses the functional interrelationship between these mechanisms. Furthermore, the pleiotropic mechanisms of anti-VCAM-1 therapies may present a useful paradigm for designing drug candidates with synergistic anti-inflammatory and anti-tumorigenic effects. The pathological overlap between inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CRC) serves as the quintessential disease model to observe this therapeutic duality. This review thereby details the adhesive mechanisms of VCAM-1 in colorectal disease-specifically, driving immune cell infiltration during IBD and tumour cell metastasis in CRC-and posits the potential of this receptor as a common drug target for both diseases. To explore this hypothesis, the current progress of novel VCAM-1-directed drug candidates in experimental models of IBD and CRC is also discussed.
Collapse
Affiliation(s)
- Jessica R Pickett
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia.
| |
Collapse
|
2
|
Zhou M, Dong S, Wang J, Luo X, Li R, Zhang Y, Ding H, Tan X, Qiao Z, Yang K, Chen W. Differential expression of HIF-1α and its hypoxia-related inducers in the spleens of plateau yaks and plain yellow cattle. Histol Histopathol 2025; 40:225-235. [PMID: 38864176 DOI: 10.14670/hh-18-768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The present study aims to investigate the distribution and expression characteristics of HIF-1α, VEGF, VEGFR-2, VCAM-1, and IL-4 in the spleen of plateau yaks and plain yellow cattle and to speculate the possible regulatory role of HIF-1α and its related hypoxia-inducible factors in the adaptation of the yak spleen to the plateau hypoxic environment. Histological features were observed using H&E and PAS stains. Immunohistochemical staining and optical density analysis were applied to investigate the distribution and differences in the expression of HIF-1α, VEGF, VEGFR-2, VCAM-1, and IL-4 in the spleen of yaks and cattle. The results showed that the area of splenic trabeculae and splenic nodules was significantly larger in the yak than in yellow cattle (P<0.05). Glycogen was mainly distributed in splenic arterial endothelial cells, vascular smooth muscle cells, splenic blood sinusoidal endothelial cells, and fibroblasts, and the distribution was significantly higher in the spleen of yaks than in cattle (P<0.05). HIF-1α, VEGF, VEGFR-2, VCAM-1, and IL-4 were mainly expressed in lymphocytes, arterial endothelial cells, vascular smooth muscle cells, splenic blood sinusoidal endothelial cells, and fibroblast cytoplasm, with higher expression in yak spleen (P<0.05). In conclusion, combining the differences in spleen tissue structure, glycogen distribution, and expression distribution of several hypoxia-related factors between yaks and cattle, we suggest that HIF-1α, VEGF, VEGFR-2, VCAM-1, and IL-4 may be important factors in the adaptation of yak spleen to the plateau environment, which provides a theoretical basis for further exploring the adaptation mechanism of plateau hypoxia in yaks.
Collapse
Affiliation(s)
- Manlin Zhou
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lan Zhou, Gansu, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Shihui Dong
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Jun Wang
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Xuehui Luo
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Rui Li
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lan Zhou, Gansu, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Yiyang Zhang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lan Zhou, Gansu, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Haie Ding
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Xiao Tan
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Zilin Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lan Zhou, Gansu, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
| | - Kun Yang
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lan Zhou, Gansu, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lan Zhou, Gansu, China.
| | - Weiji Chen
- College of Life Science and Engineering, Northwest Minzu University, Lan Zhou, Gansu, China
| |
Collapse
|
3
|
Wolint P, Hofmann S, von Atzigen J, Böni R, Miescher I, Giovanoli P, Calcagni M, Emmert MY, Buschmann J. Standardization to Characterize the Complexity of Vessel Network Using the Aortic Ring Model. Int J Mol Sci 2024; 26:291. [PMID: 39796147 PMCID: PMC11719671 DOI: 10.3390/ijms26010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Regeneration after ischemia requires to be promoted by (re)perfusion of the affected tissue, and, to date, there is no therapy that covers all needs. In treatment with mesenchymal stem cells (MSC), the secretome acts via paracrine mechanisms and has a positive influence on vascular regeneration via proangiogenic factors. A lack of standardization and the high complexity of vascular structures make it difficult to compare angiogenic readouts from different studies. This emphasizes the need for improved approaches and the introduction of an index in the preclinical setting. A characterization of human MSC secretomes obtained from one of the three formats-single cells, small, and large spheroids-was performed using the chicken aortic ring assay in combination with a modified angiogenic activity index (AAI) and an angiogenic profile. While the secretome of the small spheroid group showed an inhibitory effect on angiogenesis, the large spheroid group impressed with a fully pro-angiogenic response, and a higher AAI compared to the single cell group, underlying the suitability of these three-stem cell-derived secretomes with their distinct angiogenic properties to validate the AAI and the novel angiogenic profile established here.
Collapse
Affiliation(s)
- Petra Wolint
- Division of Surgical Research, University Hospital of Zurich, 8091 Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Silvan Hofmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Julia von Atzigen
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Roland Böni
- White House Center for Liposuction, 8044 Zurich, Switzerland;
| | - Iris Miescher
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Zurich, Switzerland;
- Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Johanna Buschmann
- Division of Surgical Research, University Hospital of Zurich, 8091 Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| |
Collapse
|
4
|
Perera B, Wu Y, Pickett JR, Panagides N, Barretto FM, Fercher C, Sester DP, Jones ML, Ta HT, Zacchi LF. Isolation and Characterization of Antibodies Against Vascular Cell Adhesion Molecule-1 Reveals Putative Role for Ig-like Domains 2 and 3 in Cell-to-Cell Interaction. Int J Mol Sci 2024; 25:13650. [PMID: 39769411 PMCID: PMC11678699 DOI: 10.3390/ijms252413650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The vascular cell adhesion molecule-1 (VCAM-1) plays an important role in inflammation, where it facilitates the recruitment of leukocytes to the inflamed area via leukocytes' VLA-4 and endothelial cells' VCAM-1 interaction. VCAM-1 expression is also upregulated in certain cancers. VCAM-1 has seven Ig-like domains, with domains 1 and 4 shown to be critical for VLA-4 binding. However, the specific functions of individual VCAM-1 Ig-like domains remain poorly understood. In this study, we identified single-chain variable fragment (scFv) antibodies targeting domains 2, 3, and 5 of VCAM-1, and investigated the ability of these antibodies to block VCAM-1-mediated cell adhesion to macrophages. We show that scFv antibodies against Ig-like domains 2 and 3 interfere with the ability of macrophages to bind endothelial cells, suggesting that these domains also play a role in facilitating this interaction. These results emphasize the need to more carefully study the role of each domain on VCAM-1 function and highlight the potential of targeting these VCAM-1 domains for more tailored therapeutic interventions in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Binura Perera
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.W.); (J.R.P.); (H.T.T.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.W.); (J.R.P.); (H.T.T.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Jessica R. Pickett
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.W.); (J.R.P.); (H.T.T.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nadya Panagides
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
| | - Francisca M. Barretto
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Christian Fercher
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - David P. Sester
- Flow Cytometry Suite, Translational Research Institute, Woolloongabba, QLD 4102, Australia;
| | - Martina L. Jones
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Hang T. Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.W.); (J.R.P.); (H.T.T.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Lucia F. Zacchi
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia;
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Wang YE, Chen J, Yang H, He J, Varier KM, Chen Y, Wu X, Guo Q, Liang Y, Shen X, Wei M, Li W, Tao L. Polysialic acid driving cardiovascular targeting co-delivery 1,8-cineole and miR-126 to synergistically alleviate lipopolysaccharide-induced acute cardiovascular injury. Int J Biol Macromol 2024; 280:135970. [PMID: 39332566 DOI: 10.1016/j.ijbiomac.2024.135970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Infection-induced cardiovascular damage is the primary pathological mechanism underlying septic cardiac dysfunction. This condition affects the majority of patients in intensive care unit and has an unfavorable prognosis due to the lack of effective therapies available. Vascular cell adhesion molecule-1 (VCAM-1) plays a vital role in coordinating the inflammatory response and recruitment of leukocytes in cardiac tissue, making it a potential target for developing novel therapies. MicroRNA-126 (miR-126) has been shown to downregulate VCAM-1 expression in endothelial cells, reducing leukocyte adhesion and exerting anti-inflammatory effects. Therefore, this work described a polysialic acid (PSA) modified ROS-responsive nanosystem to targeted co-delivery 1,8-Cineole and miR-126 for mitigating septic cardiac dysfunction. The nanosystem consists of 1,8-Cineole nanoemulsion (CNE) conjugated with PEI/miR126 complex by a ROS-sensitive linker, with PSA on its surface to facilitate targeted delivery via specific interactions with selectins on endothelial cells. CNE has demonstrated protective effects against inflammation in the cardiovascular system and synergistic anti-inflammatory effects when combined with miR-126. The targeted nanosystem successfully delivered miR-126 and 1,8-Cineole to the injured heart tissues and vessels, reducing inflammatory responses and improving cardiac function. In summary, this work provides a promising therapy for alleviating the inflammatory response in sepsis while boosting cardiovascular protection.
Collapse
Affiliation(s)
- Yu-E Wang
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China; The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jianbo Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jinggang He
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Krishnapriya M Varier
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Yuanxian Liang
- School of Clinical Medicine, Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Maochen Wei
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Wei Li
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
6
|
Li Y, Yang W, Yang X, Ma A, Zhang X, Li H, Wu H. Quemeiteng granule relieves goiter by suppressing thyroid microvascular endothelial cell proliferation and angiogenesis via miR-217-5p-mediated targeting of FGF2-induced regulation of the ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117908. [PMID: 38367931 DOI: 10.1016/j.jep.2024.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Goiters are enlargements of the thyroid gland and are a global public issue. Quemeiteng granule (QMTG) is a traditional Chinese medicine (TCM) formula used to treat goiter in Yunnan Province. However, the effectiveness and underlying mechanism of these treatments have not been fully elucidated. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of QMTG on goiter and the downstream regulatory mechanisms. MATERIALS AND METHODS In this study, we first evaluated the antigoiter efficacy of QMTG through biochemical indices [body weight, thyroid coefficient, triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH)] and hematoxylin-eosin (HE) staining in a Propylthiouracil (PTU)-induced model. Based on microRNA sequencing (miRNA-seq) and bioinformatics analysis, key miRNA was screened out. A dual-luciferase reporter assay was performed to confirm the transcriptional regulation of the target gene by the miRNA. The viability of rat thyroid microvascular endothelial cells (RTMECs) and human thyroid microvascular endothelial cells (HTMECs) was assessed using the CCK-8 assays. The migration and angiogenesis of RTMECs and HTMECs were visualized through tube formation and wound scratch assays. Proteins involved in angiogenesis and the ERK pathway were assessed via Western blotting. RESULTS QMTG significantly increased body weight, decreased the thyroid coefficient, increased the levels of T3, T4, FT3 and FT4 and reduced TSH levels in rats with goiter. QMTG also promoted the morphological recovery of thyroid follicles. MiR-217-5p was identified as a key miRNA. Our studies revealed that miR-217-5p directly targets FGF2 and that QMTG promotes the recovery of thyroid hormone (TH) levels and morphological changes in the thyroid, suppresses thyroid microvascular endothelial cell vitality, tube formation and migration, and reduces the expression of VEGF, Ang-1 and VCAM-1 triggered by miR-217-5p, thereby inhibiting the Ras/MEK/ERK cascade through FGF2. CONCLUSIONS Our experiments demonstrated that the QMTG had therapeutic effects on goiter. These effects were attributed to the inhibition of ERK pathway-induced proliferation and angiogenesis through the targeting of FGF2 by miR-217-5p.
Collapse
Affiliation(s)
- Yang Li
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Yang
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewei Yang
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Aijia Ma
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuepeng Zhang
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wu
- Clinical Pharmacy Center, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
7
|
Shao Y, Sun L, Ma B, Jin R, Ban Y, Li R, Wang J, Lian H, Yue H. VCAM-1 Promotes Angiogenesis of Bone Marrow Mesenchymal Stem Cells Derived from Patients with Trauma-Induced Osteonecrosis of the Femoral Head by Regulating the Apelin/CCN2 Pathway. Stem Cells Int 2023; 2023:6684617. [PMID: 37868703 PMCID: PMC10586908 DOI: 10.1155/2023/6684617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
Trauma-induced osteonecrosis of the femoral head (TI-ONFH) is a pathological process in which the destruction of blood vessels supplying blood to the femoral head causes the death of bone tissue cells. Vascular cell adhesion molecule 1 (VCAM-1) has been shown to have potent proangiogenic activity, but the role in angiogenesis of TI-ONFH is unclear. In this work, we discovered that VCAM-1 was significantly downregulated in the bone marrow mesenchymal stem cells (BMSCs) derived from patients with TI-ONFH. Subsequently, we constructed BMSCs overexpressing VCAM-1 using a lentiviral vector. VCAM-1 enhances the migration and angiogenesis of BMSCs. We further performed mRNA transcriptome sequencing to explore the mechanisms by which VCAM-1 promotes angiogenesis. Gene ontology biological process enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were related to blood vessel development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that upregulated DEGs were engaged in the Apelin signaling pathway. Apelin-13 is the endogenous ligand of the APJ receptor and activates this G protein-coupled receptor. Treatment with Apelin-13 activated the Apelin signaling pathway and suppressed the expression of cellular communication network factor 2 in BMSCs. Furthermore, Apelin-13 also inhibits the migration and angiogenesis of VCAM-1-BMSCs. In summary, VCAM-1 plays an important role in vascular microcirculation disorders of TI-ONFH, which provides a new direction for the molecular mechanism and treatment of TI-ONFH.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Lei Sun
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Baodong Ma
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Ranran Jin
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Yueyao Ban
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Ruibo Li
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Jianfa Wang
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Hongkai Lian
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Han Yue
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Kaur G, Sharma D, Bisen S, Mukhopadhyay CS, Gurdziel K, Singh NK. Vascular cell-adhesion molecule 1 (VCAM-1) regulates JunB-mediated IL-8/CXCL1 expression and pathological neovascularization. Commun Biol 2023; 6:516. [PMID: 37179352 PMCID: PMC10183029 DOI: 10.1038/s42003-023-04905-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Vascular adhesion molecules play an important role in various immunological disorders, particularly in cancers. However, little is known regarding the role of these adhesion molecules in proliferative retinopathies. We observed that IL-33 regulates VCAM-1 expression in human retinal endothelial cells and that genetic deletion of IL-33 reduces hypoxia-induced VCAM-1 expression and retinal neovascularization in C57BL/6 mice. We found that VCAM-1 via JunB regulates IL-8 promoter activity and expression in human retinal endothelial cells. In addition, our study outlines the regulatory role of VCAM-1-JunB-IL-8 signaling on retinal endothelial cell sprouting and angiogenesis. Our RNA sequencing results show an induced expression of CXCL1 (a murine functional homolog of IL-8) in the hypoxic retina, and intravitreal injection of VCAM-1 siRNA not only decreases hypoxia-induced VCAM-1-JunB-CXCL1 signaling but also reduces OIR-induced sprouting and retinal neovascularization. These findings suggest that VCAM-1-JunB-IL-8 signaling plays a crucial role in retinal neovascularization, and its antagonism might provide an advanced treatment option for proliferative retinopathies.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
9
|
Troncoso MF, Díaz-Vesga MC, Sanhueza-Olivares F, Riquelme JA, Müller M, Garrido L, Gabrielli L, Chiong M, Corbalan R, Castro PF, Lavandero S. Targeting VCAM-1: a therapeutic opportunity for vascular damage. Expert Opin Ther Targets 2023; 27:207-223. [PMID: 36880349 DOI: 10.1080/14728222.2023.2187778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
INTRODUCTION The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.
Collapse
Affiliation(s)
- Mayarling F Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magda C Díaz-Vesga
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Garrido
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramon Corbalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Scott G, Asrat S, Allinne J, Keat Lim W, Nagashima K, Birchard D, Srivatsan S, Ajithdoss DK, Oyejide A, Ben LH, Walls J, Le Floc'h A, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. IL-4 and IL-13, not eosinophils, drive type 2 airway inflammation, remodeling and lung function decline. Cytokine 2023; 162:156091. [PMID: 36481478 DOI: 10.1016/j.cyto.2022.156091] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE Type 2 (T2) asthma is characterized by airflow limitations and elevated levels of blood and sputum eosinophils, fractional exhaled nitric oxide, IgE, and periostin. While eosinophils are associated with exacerbations, the contribution of eosinophils to lung inflammation, remodeling and function remains largely hypothetical. OBJECTIVES To determine the effect of T2 cytokines IL-4, IL-13 and IL-5 on eosinophil biology and compare the impact of depleting just eosinophils versus inhibiting all aspects of T2 inflammation on airway inflammation. METHODS Human eosinophils or endothelial cells stimulated with IL-4, IL-13 or IL-5 were assessed for gene changes or chemokine release.Mice exposed to house dust mite extract received anti-IL-4Rα (dupilumab), anti-IL-5 or control antibodies and were assessed for changes in lung histological and inflammatory endpoints. MEASUREMENTS AND MAIN RESULTS IL-4 or IL-13 stimulation of human eosinophils and endothelial cells induced gene expression changes related to granulocyte migration; whereas, IL-5 induced changes reflecting granulocyte differentiation.In a mouse model, blocking IL-4Rα improved lung function by impacting multiple effectors of inflammation and remodeling, except peripheral eosinophil counts, thereby disconnecting blood eosinophils from airway inflammation, remodeling and function. Blocking IL-5 globally reduced eosinophil counts but did not impact inflammatory or functional measures of lung pathology. Whole lung transcriptome analysis revealed that IL-5 or IL-4Rα blockade impacted eosinophil associated genes, whereas IL-4Rα blockade also impacted genes associated with multiple cells, cytokines and chemokines, mucus production, cell:cell adhesion and vascular permeability. CONCLUSIONS Eosinophils are not the sole contributor to asthma pathophysiology or lung function decline and emphasizes the need to block additional mediators to modify lung inflammation and impact lung function.
Collapse
Affiliation(s)
- George Scott
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Seblewongel Asrat
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jeanne Allinne
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kirsten Nagashima
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dylan Birchard
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Subhashini Srivatsan
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dharani K Ajithdoss
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Adelekan Oyejide
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Li-Hong Ben
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Johnathon Walls
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Audrey Le Floc'h
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
11
|
Xie X, Li Y, Lian S, Lu Y, Jia L. Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduct Target Ther 2022; 7:341. [PMID: 36184654 PMCID: PMC9526788 DOI: 10.1038/s41392-022-01174-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The war against cancer traces back to the signature event half-a-century ago when the US National Cancer Act was signed into law. The cancer crusade costs trillions with disappointing returns, teasing the possibility of a new breakthrough. Cure for cancer post-metastases still seems tantalisingly out of reach. Once metastasized, cancer-related death is extremely difficult, if not impossible, to be reversed. Here we present cancer pre-metastasis chemoprevention strategy that can prevent circulating tumour cells (CTCs) from initiating metastases safely and effectively, and is disparate from the traditional cancer chemotherapy and cancer chemoprevention. Deep learning of the biology of CTCs and their disseminating organotropism, complexity of their adhesion to endothelial niche reveals that if the adhesion of CTCs to their metastasis niche (the first and the most important part in cancer metastatic cascade) can be pharmaceutically interrupted, the lethal metastatic cascade could be prevented from getting initiated. We analyse the key inflammatory and adhesive factors contributing to CTC adhesion/germination, provide pharmacological fundamentals for abortifacients to intervene CTC adhesion to the distant metastasis sites. The adhesion/inhibition ratio (AIR) is defined for selecting the best cancer metastasis chemopreventive candidates. The successful development of such new therapeutic modalities for cancer metastasis chemoprevention has great potential to revolutionise the current ineffective post-metastasis treatments.
Collapse
Affiliation(s)
- Xiaodong Xie
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Shu Lian
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China. .,Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
12
|
Gu W, Shen H, Xie L, Zhang X, Yang J. The Role of Feedback Loops in Targeted Therapy for Pancreatic Cancer. Front Oncol 2022; 12:800140. [PMID: 35651786 PMCID: PMC9148955 DOI: 10.3389/fonc.2022.800140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic cancer is the leading cause of cancer-related deaths worldwide, with limited treatment options and low long-term survival rates. The complex and variable signal regulation networks are one of the important reasons why it is difficult for pancreatic cancer to develop precise targeted therapy drugs. Numerous studies have associated feedback loop regulation with the development and therapeutic response of cancers including pancreatic cancer. Therefore, we review researches on the role of feedback loops in the progression of pancreatic cancer, and summarize the connection between feedback loops and several signaling pathways in pancreatic cancer, as well as recent advances in the intervention of feedback loops in pancreatic cancer treatment, highlighting the potential of capitalizing on feedback loops modulation in targeted therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Weigang Gu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - HongZhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Xie
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiaofeng Zhang, ; Jianfeng Yang,
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaofeng Zhang, ; Jianfeng Yang,
| |
Collapse
|
13
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
14
|
Ruan Y, Kim HN, Ogana HA, Gang EJ, Li S, Liu HC, Bhojwani D, Wayne AS, Yang M, Kim YM. In vitro and in vivo effects of AVA4746, a novel competitive antagonist of the ligand binding of VLA-4, in B-cell acute lymphoblastic leukemia. Exp Ther Med 2021; 23:47. [PMID: 34934426 PMCID: PMC8652384 DOI: 10.3892/etm.2021.10969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Treatment of resistant or recurrent acute lymphoblastic leukemia (ALL) remains a challenge. It was previously demonstrated that the adhesion molecule integrin α4, referred to hereafter as α4, mediates the cell adhesion-mediated drug resistance (CAM-DR) of B-cell ALL by binding to vascular cell adhesion molecule-1 (VCAM-1) on bone marrow stroma. In addition, it was previously observed that the blockade of α4 with natalizumab or inhibition using the small molecule antagonist TBC3486 sensitized relapsed ALL cells to chemotherapy. However, α4-targeted therapy is not clinically available for the treatment of leukemia to date. In the present study, the use of a novel non-peptidic small molecule integrin α4 antagonist, AVA4746, as a potential new approach to combat drug-resistant B-ALL was explored. An in vitro co-culture = model of primary B-ALL cells and an in vivo xenograft model of patient-derived B-ALL cells were utilized for evaluation of AVA4746. VLA-4 conformation activation, cell adhesion/de-adhesion, endothelial tube formation, in vivo leukemia cell mobilization and survival assays were performed. AVA4746 exhibited high affinity for binding to B-ALL cells, where it also efficiently blocked ligand-binding to VCAM-1. In addition, AVA4746 caused the functional de-adhesion of primary B-ALL cells from VCAM-1. Inhibition of α4 using AVA4746 also prevented angiogenesis in vitro and when applied in combination with chemotherapy consisting of Vincristine, Dexamethasone and L-asparaginase, it prolonged the survival of ~33% of the mice in an in vivo xenograft model of B-ALL. These data implicate the potential of targeting the α4-VCAM-1 interaction using AVA4746 for the treatment of drug-resistant B-lineage ALL.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Heather A Ogana
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Eun Ji Gang
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Shuangyue Li
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Deepa Bhojwani
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Alan S Wayne
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Mo Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
15
|
Rezaiian F, Davoodi SH, Nikooyeh B, Ehsani AH, Kalayi A, Shariatzadeh N, Zahedirad M, Neyestani TR. Metabolic Syndrome and Its Components are Linked with Increased Risk of Non-Melanoma Skin Cancers in Iranian Subjects: A Case-Control Study. Nutr Cancer 2021; 74:2451-2459. [PMID: 34875944 DOI: 10.1080/01635581.2021.2012581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The associations between components of metabolic syndrome (MetS), insulin resistance (IR), and several malignancies have been reported. However, the possible link between IR and dermal malignancies, including non-melanoma skin cancers (NMSCs), has not been investigated to date. In this study, we aimed to examine the possible association between components of MetS, IR, adhesion molecules, and NMSC for the first time. This was a case-control study comprising 73 confirmed cases of NMSC and 72 unrelated healthy controls. Anthropometric and biochemical assessments including fasting blood lipid profile, glucose and insulin assays were performed. To evaluate IR, HOMA-IR formula was used. Though fasting serum glucose showed no significant between-group difference, serum concentrations of insulin (p = 0.048) as well as HOMA-IR (p = 0.037) were both significantly higher in NMSC group than in controls. Logistic regression analysis revealed significant associations between waist circumference (OR: 1.04, 95% CI: 1.007-1.080, p = 0.018), percent of visceral fat (OR: 1.10, 95% CI: 1.024-1.190, p = 0.01), HOMA-IR (OR: 1.169, 95% CI: 1.004-1.360, p = 0.044), circulating VCAM-1 concentrations (OR: 1.005, 95% CI: 1.003-1.007, p < 0.001) and NMSC risk. Interestingly, the occurrence of MetS was significantly higher in subjects with NMSC than in healthy controls (p = 0.038). MetS and its components were associated with increased NMSC risk.
Collapse
Affiliation(s)
- Fatemeh Rezaiian
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Technology Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Cellular Molecular Nutrition, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Technology Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Technology Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Houshang Ehsani
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Kalayi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Technology Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Shariatzadeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Technology Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Zahedirad
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Technology Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Technology Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Silencing of lncRNA XIST impairs angiogenesis and exacerbates cerebral vascular injury after ischemic stroke. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:148-160. [PMID: 34513301 PMCID: PMC8413678 DOI: 10.1016/j.omtn.2021.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the function and regulatory mechanism of long non-coding RNA (lncRNA) X-inactive-specific transcript (XIST) in cerebral ischemic stroke (CIS). The impact of lncRNA XIST on CIS was evaluated in acute CIS patients, middle cerebral artery occlusion (MCAO) mice, and oxygen-glucose deprivation and restoration brain endothelial cells. Our results demonstrated that the expression of lncRNA XIST decreased during the early stages of CIS but then increased in the later stages in CIS patients and ischemic models in vivo and in vitro. In addition, the serum levels of lncRNA XIST negatively correlated with severity of neurological impairment of CIS patients. Further studies exhibited that lncRNA XIST regulated the expression of proangiogenic factor-integrin α5 (Itgα5) and anti-inflammation factor-Kruppel-like transcription factor 4 (KLF4) by targeting microRNA-92a (miR-92a). Silencing of lncRNA XIST impaired angiogenesis and exacerbated cerebral vascular injury following CIS, leading to larger infarcts and worse neurological deficits in transient MCAO mice. Mechanistic analysis revealed that lncRNA XIST modulated angiogenesis and alleviated cerebral vascular injury following CIS through mediating the miR-92a/Itgα5 or KLF4 axis, respectively. These data indicate that lncRNA XIST confers protection against CIS, providing a valuable target for future prevention and treatment of CIS.
Collapse
|
17
|
Li H, Chang HM, Lin YM, Shi Z, Leung PCK. TGF-β1 inhibits microvascular-like formation by decreasing VCAM1 and ICAM1 via the upregulation of SNAIL in human granulosa cells. Mol Cell Endocrinol 2021; 535:111395. [PMID: 34265344 DOI: 10.1016/j.mce.2021.111395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Three major endothelial cell junctional adhesion molecules (VCAM1, ICAM1 and E-SELECTIN) play important roles in the process of angiogenesis, a progression of extensive physiological vascularization that occurs during the formation of the corpus luteum. Our previous studies demonstrated that TGF-β1 is a negative regulator of luteinization and progesterone production in luteinized human granulosa (hGL) cells. Whether TGF-β1 can regulate the expression of these endothelial cell adhesion molecules and subsequent angiogenesis in hGL cells remains to be elucidated. Using dual inhibition approaches (small molecular inhibitors and siRNA-based knockdown), we provided the first data showing that TGF-β1 significantly upregulates the expression of the SNAIL transcription factor, which in turn suppresses the expression of VCAM1 and ICAM1 in hGL cells. Additionally, we demonstrate that the suppressive effects on the expression of VCAM1 and ICAM1 induced by TGF-β1 treatment were most likely via an ALK5-mediated SMAD-dependent signaling pathway. Furthermore, functional studies showed that hGL cells cultured on Matrigel exhibited two typical endothelial cell phenotypes, microvascular-like formation and a sprouting microvascular pattern. Notably, these phenotypes were significantly suppressed by either TGF-β1 treatment or knockdown of VCAM1 and ICAM1. Our findings suggest that TGF-β1 plays a potential role in the inhibition of granulosa cell angiogenesis by downregulating the expression of VCAM1 and ICAM1 during follicular development and corpus luteum formation.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Yung-Ming Lin
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Zhendan Shi
- Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
18
|
Huang Y, Miao H, Xia C, Feng H, Xu S, Liang Z, Wang Y, Zhao C, Qin G, Ou X, Zhao F. High VCAM-1 Predicts Poor Prognosis and is Associated with Chemotherapy Resistance in Nasopharyngeal Carcinoma. Onco Targets Ther 2021; 14:1633-1641. [PMID: 33688210 PMCID: PMC7936694 DOI: 10.2147/ott.s292259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is a malignant tumor endemic in southern China and Southeast Asia with a poor prognosis. Vascular cell adhesion protein 1 (VCAM-1) is highly expressed in NPC; however, it is unclear whether VCAM-1 is correlated with chemotherapy resistance and prognosis in NPC. Patients and Methods To further explore the role of VCAM-1 in chemotherapy resistance and prognosis in NPC, we examined the expression of VCAM-1, the sensitivity of chemotherapy drugs, and clinical follow-up data from 73 patients with NPC. Then, the results of VCAM-1 expression were analyzed in response to chemotherapy drugs, progression-free survival (PFS), and overall survival (OS). Results The expression of VCAM-1 protein in NPC was significantly higher than that in chronic inflammatory tissue. No significant differences in the expression of VCAM-1 among gender, age, pathologic classification, tumor classification, lymph node status, metastasis status, and overall clinical stage were found. The periods of PFS and OS in patients with high VCAM-1 expression were significantly shorter than those in patients with low VCAM-1 expression. The sensitivity rates of NPC to eight chemotherapy drugs were different; carboplatin and docetaxel showed the highest chemotherapy sensitivity and resistance rates, respectively. The resistance rates to paclitaxel were different between the patients with high VCAM-1 expression and those with low VCAM-1 expression. Conclusion Our data indicated that VCAM-1 was highly expressed in NPC. Patients with high VCAM-1 expression were more prone to shorter periods of PFS and OS. VCAM-1 could be a prognostic marker of NPC patients. The detection of VCAM-1 expression in NPC may be valuable for chemotherapy drug evaluation and management of patients with NPC in the clinic.
Collapse
Affiliation(s)
- Yu Huang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Hongbin Miao
- Department of Otolaryngology-Head and Neck Surgery, The People's Hospital of Bishan District, Chongqing Medical University, Bishan, 402760, Chongqing, People's Republic of China
| | - Chenxi Xia
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Huajun Feng
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Shengen Xu
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhuoping Liang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yuanyuan Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Chong Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaoyi Ou
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Feipeng Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| |
Collapse
|
19
|
Wang Y, Zhang L, Wu Y, Zhu R, Wang Y, Cao Y, Long W, Ji C, Wang H, You L. Peptidome analysis of umbilical cord mesenchymal stem cell (hUC-MSC) conditioned medium from preterm and term infants. Stem Cell Res Ther 2020; 11:414. [PMID: 32967723 PMCID: PMC7510303 DOI: 10.1186/s13287-020-01931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background The therapeutic role of mesenchymal stem cells (MSCs) has been widely confirmed in several animal models of premature infant diseases. Micromolecule peptides have shown promise for the treatment of premature infant diseases. However, the potential role of peptides secreted from MSCs has not been studied. The purpose of this study is to help to broaden the knowledge of the hUC-MSC secretome at the peptide level through peptidomic profile analysis. Methods We used tandem mass tag (TMT) labeling technology followed by tandem mass spectrometry to compare the peptidomic profile of preterm and term umbilical cord MSC (hUC-MSC) conditioned medium (CM). Gene Ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) were conducted to explore the differentially expressed peptides by predicting the functions of their precursor proteins. To evaluate the effect of candidate peptides on human lung epithelial cells stimulated by hydrogen peroxide (H2O2), quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were, respectively, adopted to detect inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression levels at the mRNA and protein levels. Results A total of 131 peptides derived from 106 precursor proteins were differentially expressed in the preterm hUC-MSC CM compared with the term group, comprising 37 upregulated peptides and 94 downregulated peptides. Bioinformatics analysis showed that these differentially expressed peptides may be associated with developmental disorders, inflammatory response, and organismal injury. We also found that peptides 7118TGAKIKLVGT7127 derived from MUC19 and 508AAAAGPANVH517 derived from SIX5 reduced the expression levels of TNF-α, IL-1β, and IL-6 in H2O2-treated human lung epithelial cells. Conclusions In summary, this study provides further secretomics information on hUC-MSCs and provides a series of peptides that might have antiinflammatory effects on pulmonary epithelial cells and contribute to the prevention and treatment of respiratory diseases in premature infants.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.,Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yun Wu
- Department of Ultrasound, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Rongping Zhu
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Wei Long
- Department of Obstetrics, Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternity and Child Health Care Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| |
Collapse
|
20
|
Eteraf-Oskouei T, Shafiee-Khamneh A, Heshmati-Afshar F, Delazar A. Anti-inflammatory and anti-angiogenesis effect of bee pollen methanolic extract using air pouch model of inflammation. Res Pharm Sci 2020; 15:66-75. [PMID: 32180818 PMCID: PMC7053286 DOI: 10.4103/1735-5362.278716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Research on new drugs with a natural source and low side effects is a priority in pharmacology studies. The present study was conducted to investigate the anti-inflammatory and anti-angiogenesis effects of bee pollen extract in the air pouch model of inflammation. EXPERIMENTAL APPROACH To achieve this goal, male rats were moderately anesthetized and then 20 and 10 mL of sterile air were subcutaneously injected into the intrascapular area of the back of the rat on first and third days, respectively. On day 6, inflammation was induced by intrapouch injection of carrageenan. Normal saline in the control group and bee pollen methanolic extract (50, 100, and 200 mg/pouch) were administered at day 6, simultaneously with carrageenan, and then for 2 consecutive days only normal saline and the extracts were injected. Following sacrificing the rats the pouch was opened and the exudate volume, leukocyte accumulation, granulation tissue weight, vascular endothelial growth factor (VEGF), interleukin 1beta, and tumor necrosis factor alpha (TNF-α) concentrations were determined 3 days after induction of inflammation. In order to investigate the angiogenesis, the granulation tissue was removed, homogenized in the Drabkin's reagent, and then centrifuged. The supernatant was filtered and the hemoglobin concentration was determined using a spectrophotometer. RESULTS Bee pollen extract significantly decreased the exudate volume, leukocyte accumulation, granulation tissue weight, angiogenesis, VEGF, and TNF-α concentration. CONCLUSION AND IMPLICATIONS The findings of the current study revealed that bee pollen methanolic extract has an anti-inflammatory and anti-angiogenesis effect, which could be attributed to the inhibition of VEGF and TNF-α production in the inflammatory exudates.
Collapse
Affiliation(s)
- Tahereh Eteraf-Oskouei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Ayda Shafiee-Khamneh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Fariba Heshmati-Afshar
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Abbas Delazar
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| |
Collapse
|
21
|
Zhang S, Wang HJ, Li J, Hu XL, Shen Q. Radial Glial Cell-Derived VCAM1 Regulates Cortical Angiogenesis Through Distinct Enrichments in the Proximal and Distal Radial Processes. Cereb Cortex 2020; 30:3717-3730. [PMID: 31907535 DOI: 10.1093/cercor/bhz337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/27/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis in the developing cerebral cortex accompanies cortical neurogenesis. However, the precise mechanisms underlying cortical angiogenesis at the embryonic stage remain largely unknown. Here, we show that radial glia-derived vascular cell adhesion molecule 1 (VCAM1) coordinates cortical vascularization through different enrichments in the proximal and distal radial glial processes. We found that VCAM1 was highly enriched around the blood vessels in the inner ventricular zone (VZ), preventing the ingrowth of blood vessels into the mitotic cell layer along the ventricular surface. Disrupting the enrichment of VCAM1 surrounding the blood vessels by a tetraspanin-blocking peptide or conditional deletion of Vcam1 gene in neural progenitor cells increased angiogenesis in the inner VZ. Conversely, VCAM1 expressed in the basal endfeet of radial glial processes promoted angiogenic sprouting from the perineural vascular plexus (PNVP). In utero, overexpression of VCAM1 increased the vessel density in the cortical plate, while knockdown of Vcam1 accomplished the opposite. In vitro, we observed that VCAM1 bidirectionally affected endothelial cell proliferation in a concentration-dependent manner. Taken together, our findings identify that distinct concentrations of VCAM1 around VZ blood vessels and the PNVP differently organize cortical angiogenesis during late embryogenesis.
Collapse
Affiliation(s)
- Sanguo Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huanhuan Joyce Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jia Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Ling Hu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Brain and Spinal Cord Clinical Research Center, Tongji University Shanghai 200092, China
| |
Collapse
|
22
|
Fei J, Ling YM, Zeng MJ, Zhang KW. Shixiang Plaster, a Traditional Chinese Medicine, Promotes Healing in a Rat Model of Diabetic Ulcer Through the receptor for Advanced Glycation End Products (RAGE)/Nuclear Factor kappa B (NF-κB) and Vascular Endothelial Growth Factor (VEGF)/Vascular Cell Adhesion Molecule-1 (VCAM-1)/Endothelial Nitric Oxide Synthase (eNOS) Signaling Pathways. Med Sci Monit 2019; 25:9446-9457. [PMID: 31825949 PMCID: PMC6925528 DOI: 10.12659/msm.918268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Shixiang plaster is a traditional Chinese medicine has been used to treat chronic ulcers, including diabetic ulcers. Aminoguanidine is a hydrazine derivative that inhibits the formation of advanced glycosylation end products (AGEs). This study aimed to investigate the effects of shixiang plaster and aminoguanidine on wound healing in the streptozotocin-induced rat model of diabetes and the molecular mechanisms involved. Material/Methods Sprague-Dawley rats treated with intraperitoneal streptozotocin and given surgical wounds were divided into the untreated chronic ulcer group (n=10), the aminoguanidine group (n=10), the shixiang plaster group (n=10), and the control group with sham surgery (n=10). Granulation tissue samples underwent light microscopy to evaluate angiogenesis and immunohistochemistry to identify AGE, vascular endothelial growth factor (VEGF), and CD34 expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot measured mRNA and protein expression of receptor for advanced glycation end products (RAGE), vascular cell adhesion molecule-1 (VCAM-1), nuclear factor kappa B (NF-κB) and endothelial nitric oxide synthase (eNOS). Results The shixiang plaster group showed a significant increase in angiogenesis in ulcer granulation tissue, significantly reduced expression of AGEs and increased expression of VEGF and CD34 expression in granulation tissue compared with the untreated chronic ulcer group (p<0.05). The shixiang plaster group showed significantly down-regulated expression of RAGE and VCAM-1 compared with the untreated chronic ulcer group (p<0.05). Shixiang plaster promoted angiogenesis by activating the NF-κB p65 associated pathway and eNOS activation. Conclusions Shixiang plaster promoted healing in a rat model of diabetic ulcer through the RAGE/NF-κB and VEGF/VCAM-1/eNOS signaling pathways.
Collapse
Affiliation(s)
- Ji Fei
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| | - Yi-Ming Ling
- Department of Orthopedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China (mainland)
| | - Man-Jie Zeng
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| | - Kai-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
23
|
Kong DH, Kim YK, Kim MR, Jang JH, Lee S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int J Mol Sci 2018; 19:ijms19041057. [PMID: 29614819 PMCID: PMC5979609 DOI: 10.3390/ijms19041057] [Citation(s) in RCA: 430] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that triggers the expression of inflammatory molecules, including other cytokines and cell adhesion molecules. TNFα induces the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 (VCAM-1). VCAM-1 was originally identified as a cell adhesion molecule that helps regulate inflammation-associated vascular adhesion and the transendothelial migration of leukocytes, such as macrophages and T cells. Recent evidence suggests that VCAM-1 is closely associated with the progression of various immunological disorders, including rheumatoid arthritis, asthma, transplant rejection, and cancer. This review covers the role and relevance of VCAM-1 in inflammation, and also highlights the emerging potential of VCAM-1 as a novel therapeutic target in immunological disorders and cancer.
Collapse
Affiliation(s)
- Deok-Hoon Kong
- Research Center, Scripps Korea Antibody Institute, Chuncheon 200-701, Korea.
| | - Young Kwan Kim
- Research Center, Scripps Korea Antibody Institute, Chuncheon 200-701, Korea.
| | - Mi Ra Kim
- Research Center, Scripps Korea Antibody Institute, Chuncheon 200-701, Korea.
| | - Ji Hye Jang
- Research Center, Scripps Korea Antibody Institute, Chuncheon 200-701, Korea.
| | - Sukmook Lee
- Research Center, Scripps Korea Antibody Institute, Chuncheon 200-701, Korea.
| |
Collapse
|
24
|
Vu KT, Zhang F, Hulleman JD. Conditional, Genetically Encoded, Small Molecule-Regulated Inhibition of NFκB Signaling in RPE Cells. Invest Ophthalmol Vis Sci 2017; 58:4126-4137. [PMID: 28829844 PMCID: PMC5566385 DOI: 10.1167/iovs.17-22133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Nuclear factor κB (NFκB) is a ubiquitously expressed, proinflammatory transcription factor that controls the expression of genes involved in cell survival, angiogenesis, complement activation, and inflammation. Studies have implicated NFκB-dependent cytokines or complement-related factors as being detrimentally involved in retinal diseases, thus making inhibition of NFκB signaling a potential therapeutic target. We sought to develop a conditional and reversible method that could regulate pathogenic NFκB signaling by the addition of a small molecule. Methods We developed a genetically based, trimethoprim (TMP)-regulated approach that conditionally inhibits NFκB signaling by fusing a destabilized dihydrofolate reductase (DHFR) domain to an inhibitor of NFκB, IκBα, in ARPE-19 cells. We then challenged ARPE-19 cells with a number of stimuli that have been demonstrated to trigger NFκB signaling, including LPS, TNFα, IL-1α, and A2E. Western blotting, electrophoretic mobility shift assay, quantitative PCR, ELISA, and NFκB reporter assays were used to evaluate the effectiveness of this DHFR-IκBα approach. Results This destabilized domain approach, coupled with doxycycline-inducibility, allowed for accurate control over the abundance of DHFR-IκBα. Stabilization of DHFR-IκBα with TMP prevented IL-1α-, A2E-, LPS-, and TNFα-induced NFκB-mediated upregulation and release of the proinflammatory cytokines IL-1β and IL-6 from ARPE-19 cells (by as much as 93%). This strategy is dosable, completely reversible, and can be cycled “on” or “off” within the same cell population repeatedly to confer protection at desired time points. Conclusions These studies lay the groundwork for the use of destabilized domains in retinal pigment epithelium (RPE) cells in vivo and in this context, demonstrate their utility for preventing inflammatory signaling.
Collapse
Affiliation(s)
- Khiem T Vu
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Fang Zhang
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|