1
|
Bu F, Yuan X, Cui X, Guo R. Bibliometric Analysis and Visualized Study of Research on Mesenchymal Stem Cells in Ischemic Stroke. Stem Cell Rev Rep 2025:10.1007/s12015-025-10878-9. [PMID: 40257541 DOI: 10.1007/s12015-025-10878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND One of the major global causes of death and disability is ischemic stroke (IS). Mesenchymal stem cells (MSCs) emerge as a cell-based therapy for numerous diseases. Recently, research on the role of MSCs in ischemic stroke has developed rapidly worldwide. Bibliometric analysis of MSCs for IS has not yet been published, though. AIM Through bibliometric analysis, the aim of this study was to assess the current state of research on MSCs in the field of ischemic stroke research worldwide and to identify important results, major research areas, and emerging trends. METHODS Publications related to MSCs in ischemic stroke from January 1, 2002, to December 31, 2022, were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSViewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. We employed the Total Global Citation Score (TGCS) to assess the impact of publications. RESULTS The bibliometric analysis included a total of 2,048 publications. The 1,386 papers used in this study were authored by 200 individuals across 200 organizations in 72 countries, published in 202 journals. Cesar V Borlongan published the most documents among high-productivity authors. Michael Chopp was the author with the highest average number of citations per paper, with an average paper citation time of 118.54. We found that research of MSCs in ischemic stroke developed rapidly starting in 2008. Neurosciences were the most productive journals, and Chinese researchers have produced the most research papers in this subject. The most cited article is "Systemic administration of exosomes released from mesenchymal stromal cells promotes functional recovery and neurovascular plasticity after stroke in rats". CONCLUSION This study uses both numbers and descriptions to thoroughly review the research on MSCs related to IS. This information provides valuable experience for researchers to carry out MSCs' work on IS.
Collapse
Affiliation(s)
- Fanwei Bu
- Xinxiang First People's Hospital, Xinxiang, China
| | | | - Xiaocan Cui
- Xinxiang First People's Hospital, Xinxiang, China
| | - Ruyue Guo
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
2
|
Guillaumin S, Rossoni A, Zeugolis D. State-of the-art and future perspective in co-culture systems for tendon engineering. BIOMATERIALS AND BIOSYSTEMS 2025; 17:100110. [PMID: 40130022 PMCID: PMC11932666 DOI: 10.1016/j.bbiosy.2025.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
Tendon is a connective tissue that links bone to muscle, allowing for maintenance of skeleton posture, joint movement, energy storage and transmission of muscle force to bone. Tendon is a hypocellular and hypovascular tissue of poor self-regeneration capacity. Current surgical treatments are of limited success, frequently resulting in reinjury. Upcoming cell therapies are primarily based on tenocytes, a cell population of limited self-renewal capacity in vitro or mesenchymal stromal cells, a cell population prone to ectopic bone formation in vivo. Over the years mono- or multi- factorial cell culture technologies have failed to effectively maintain tenocyte phenotype in culture during expansion or to prime mesenchymal stromal cells towards tenogenic lineage prior to implantation. Upon these limitations the concept of co-culture was conceived. Here, we comprehensively review and discuss tenogenic differentiation of mesenchymal stromal cells through direct or indirect culture with tenocytes in an attempt to generate a tenocyte or a tendon-like cell population for regenerative medicine purposes.
Collapse
Affiliation(s)
- Salomé Guillaumin
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
3
|
Tian H, Tian F, Ma D, Xiao B, Ding Z, Zhai X, Song L, Ma C. Priming and Combined Strategies for the Application of Mesenchymal Stem Cells in Ischemic Stroke: A Promising Approach. Mol Neurobiol 2024; 61:7127-7150. [PMID: 38366307 DOI: 10.1007/s12035-024-04012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Tissue plasminogen activator (tPA) administration and mechanical thrombectomy are the main treatments but have a narrow time window. Mesenchymal stem cells (MSCs), which are easily scalable in vitro and lack ethical concerns, possess the potential to differentiate into various types of cells and secrete a great number of growth factors for neuroprotection and regeneration. Moreover, MSCs have low immunogenicity and tumorigenic properties, showing safety and preliminary efficacy both in preclinical studies and clinical trials of IS. However, it is unlikely that MSC treatment alone will be sufficient to maximize recovery due to the low survival rate of transplanted cells and various mechanisms of ischemic brain damage in the different stages of IS. Preconditioning was used to facilitate the homing, survival, and secretion ability of the grafted MSCs in the ischemic region, while combination therapies are alternatives that can maximize the treatment effects, focusing on multiple therapeutic targets to promote stroke recovery. In this case, the combination therapy can yield a synergistic effect. In this review, we summarize the type of MSCs, preconditioning methods, and combined strategies as well as their therapeutic mechanism in the treatment of IS to accelerate the transformation from basic research to clinical application.
Collapse
Affiliation(s)
- Hao Tian
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Dong Ma
- Department of Neurosurgery, The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong, 037003, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zhibin Ding
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoyan Zhai
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
- School of Basic Medicine of Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Lijuan Song
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Cungen Ma
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| |
Collapse
|
4
|
Felício RDFM, Jarduli-Maciel LR, Mosella MQS, Almeida FC, de Lima KC, de Azevedo JTC, Gardinassi LG, Ramos PIP, de Santis GC, Silva-Pinto AC, de Castro FA, Oliveira MC, Malmegrim KCR. Transcriptome profiling reveals distinct alterations in the B-cell signature and dysregulation of peripheral B-cell subsets in sickle cell anemia patients. Exp Hematol 2024; 137:104254. [PMID: 38871278 DOI: 10.1016/j.exphem.2024.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Sickle cell anemia (SCA) is characterized by immune system activation and heightened susceptibility to infections. We hypothesized that SCA patients exhibit transcriptional alterations in B-cell-related genes, impacting their peripheral B-cell compartment and leading to dysregulated humoral immunity and increased infection susceptibility. Our objective was to conduct an in silico analysis of whole blood transcriptomes from SCA patients and healthy controls obtained from public repositories. We aimed to identify alterations in the adaptive immune system and validate these findings in our own SCA patient cohort. Bioinformatic analyses unveiled significant transcriptional alterations in B-cell signatures, developmental pathways, and signaling pathways. These results were validated in peripheral blood mononuclear cells from our SCA patient cohort and controls using real-time polymerase chain reaction and flow cytometry. Ninety genes exhibited differential expression, with 70 upregulated and 20 downregulated. Dysregulation in the B-cell compartment of SCA patients was evident, characterized by increased frequencies of immature and naive B-cells, and decreased percentages of memory B-cell subsets compared with healthy controls. Our findings highlight previously unexplored transcriptional and quantitative alterations in peripheral B-cells among SCA patients. Understanding these changes sheds light on the mechanisms contributing to the heightened infection risk in this population. Future studies should delve deeper into these molecular changes to develop targeted interventions and therapeutic strategies aimed at mitigating infection susceptibility in individuals with SCA.
Collapse
Affiliation(s)
- Rafaela de Freitas Martins Felício
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto. Medical School, University of São Paulo, Ribeirão Preto, Brazil; Graduation Program in Bioscience and Biotechnology, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciana Ribeiro Jarduli-Maciel
- Graduation Program in Bioscience and Biotechnology, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maritza Queiroz Salas Mosella
- Graduation Program in Genetics, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Felipe Campos Almeida
- Graduation Program in Bioscience and Biotechnology, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Keli Cristina de Lima
- Graduation Program in Bioscience and Biotechnology, Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto. Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Pablo Ivan Pereira Ramos
- Center of Data and Knowledge Integration for Health Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Gil Cunha de Santis
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto. Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Silva-Pinto
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto. Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiola Attié de Castro
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto. Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto. Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
de Laorden EH, Simón D, Milla S, Portela-Lomba M, Mellén M, Sierra J, de la Villa P, Moreno-Flores MT, Iglesias M. Human placenta-derived mesenchymal stem cells stimulate neuronal regeneration by promoting axon growth and restoring neuronal activity. Front Cell Dev Biol 2023; 11:1328261. [PMID: 38188022 PMCID: PMC10766706 DOI: 10.3389/fcell.2023.1328261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery. In this context, we have evaluated hPMSCs as candidates for CNS lesion regeneration using a skillful co-culture model system. Indeed, we have demonstrated the hPMSCs ability to stimulate damaged rat-retina neurons regeneration by promoting axon growth and restoring neuronal activity both under normoxia and hypoxia conditions. With our model we have obtained neuronal regeneration values of 10%-14% and axonal length per neuron rates of 19-26, μm/neuron. To assess whether the regenerative capabilities of hPMSCs are contact-dependent effects or it is mediated through paracrine mechanisms, we carried out transwell co-culture and conditioned medium experiments confirming the role of secreted factors in axonal regeneration. It was found that hPMSCs produce brain derived, neurotrophic factor (BDNF), nerve-growth factor (NGF) and Neurotrophin-3 (NT-3), involved in the process of neuronal regeneration and restoration of the physiological activity of neurons. In effect, we confirmed the success of our treatment using the patch clamp technique to study ionic currents in individual isolated living cells demonstrating that in our model the regenerated neurons are electrophysiologically active, firing action potentials. The outcomes of our neuronal regeneration studies, combined with the axon-regenerating capabilities exhibited by mesenchymal stem cells derived from the placenta, present a hopeful outlook for the potential therapeutic application of hPMSCs in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Elvira H. de Laorden
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Diana Simón
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Santiago Milla
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - María Portela-Lomba
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Marian Mellén
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Javier Sierra
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Pedro de la Villa
- Departamento de Biología de Sistemas, Unidad de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - María Teresa Moreno-Flores
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maite Iglesias
- Facultad de C.C. Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
6
|
Hao L, Yang Y, Xu X, Guo X, Zhan Q. Modulatory effects of mesenchymal stem cells on microglia in ischemic stroke. Front Neurol 2023; 13:1073958. [PMID: 36742051 PMCID: PMC9889551 DOI: 10.3389/fneur.2022.1073958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Ischemic stroke accounts for 70-80% of all stroke cases. Immunity plays an important role in the pathophysiology of ischemic stroke. Microglia are the first line of defense in the central nervous system. Microglial functions are largely dependent on their pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotype. Modulating neuroinflammation via targeting microglia polarization toward anti-inflammatory phenotype might be a novel treatment for ischemic stroke. Mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (MSC-EVs) have been demonstrated to modulate microglia activation and phenotype polarization. In this review, we summarize the physiological characteristics and functions of microglia in the healthy brain, the activation and polarization of microglia in stroke brain, the effects of MSC/MSC-EVs on the activation of MSC in vitro and in vivo, and possible underlying mechanisms, providing evidence for a possible novel therapeutics for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Hao
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yongtao Yang
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoli Xu
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Xiuming Guo ✉
| | - Qunling Zhan
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China,Qunling Zhan ✉
| |
Collapse
|
7
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Peng L, Hu G, Yao Q, Wu J, He Z, Law BYK, Hu G, Zhou X, Du J, Wu A, Yu L. Microglia autophagy in ischemic stroke: A double-edged sword. Front Immunol 2022; 13:1013311. [PMID: 36466850 PMCID: PMC9708732 DOI: 10.3389/fimmu.2022.1013311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 08/14/2023] Open
Abstract
Ischemic stroke (IS) is one of the major types of cerebrovascular diseases causing neurological morbidity and mortality worldwide. In the pathophysiological process of IS, microglia play a beneficial role in tissue repair. However, it could also cause cellular damage, consequently leading to cell death. Inflammation is characterized by the activation of microglia, and increasing evidence showed that autophagy interacts with inflammation through regulating correlative mediators and signaling pathways. In this paper, we summarized the beneficial and harmful effects of microglia in IS. In addition, we discussed the interplay between microglia autophagy and ischemic inflammation, as along with its application in the treatment of IS. We believe this could help to provide the theoretical references for further study into IS and treatments in the future.
Collapse
Affiliation(s)
- Li Peng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ziyang He
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junrong Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Luo H, Ye G, Liu Y, Huang D, Luo Q, Chen W, Qi Z. miR-150-3p enhances neuroprotective effects of neural stem cell exosomes after hypoxic-ischemic brain injury by targeting CASP2. Neurosci Lett 2022; 779:136635. [DOI: 10.1016/j.neulet.2022.136635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022]
|
10
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
11
|
Abu-Shahba N, Mahmoud M, El-Erian AM, Husseiny MI, Nour-Eldeen G, Helwa I, Amr K, ElHefnawi M, Othman AI, Ibrahim SA, Azmy O. Impact of type 2 diabetes mellitus on the immunoregulatory characteristics of adipose tissue-derived mesenchymal stem cells. Int J Biochem Cell Biol 2021; 140:106072. [PMID: 34455058 DOI: 10.1016/j.biocel.2021.106072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder associated with several complications. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) represent an emerging type of MSCs with high plasticity and immunoregulatory capabilities and are useful for treating inflammation-related disorders such as T2DM. However, the pathogenic microenvironment of T2DM may affect their therapeutic potential. We aimed to examine the impact of the diabetic milieu on the immunomodulatory/anti-inflammatory potential of AT-MSCs. METHODS We assessed the proliferation potential, cell surface expression of MSC-characteristic markers and immunomodulatory markers, along with the gene expression and protein secretion of pro-inflammatory and anti-inflammatory cytokines and adipokines in AT-MSCs derived from T2DM patients (dAT-MSCs) vs. those derived from non-diabetic volunteers (ndAT-MSCs). Furthermore, we evaluated the IFN-γ priming effect on both groups. RESULTS Our data revealed comparable proliferative activities in both groups. Flow cytometric analysis results showed a lower expression of CD200 and CD276 on dAT-MSCs vs. ndAT-MSCs. qPCR demonstrated upregulation of IL-1β associated with a downregulation of IL-1RN in dAT-MSCs vs. ndAT-MSCs. IFN-γ priming induced an elevation in CD274 expression associated with IDO1 and ILRN overexpression and IL-1β downregulation in both groups. ELISA analysis uncovered elevated levels of secreted IL-1β, TNF, and visfatin/NAMPT in dAT-MSCs, whereas IL-1RA and IDO levels were reduced. ELISA results were also evident in the secretome of dAT-MSCs upon IFN-γ priming. CONCLUSIONS This study suggests that the T2DM milieu alters the immunomodulatory characteristics of AT-MSCs with a shift towards a proinflammatory phenotype which may restrain their autologous therapeutic use. Furthermore, our findings indicate that IFN-γ priming could be a useful strategy for enhancing dAT-MSC anti-inflammatory potential.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt.
| | - Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Alaa Mohammed El-Erian
- Department of Endocrine Surgery, National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Mohamed Ibrahim Husseiny
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs DMRI, Beckman Research Institute, City of Hope, National Medical Center, Durate, CA, USA; Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ghada Nour-Eldeen
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Molecular Genetics and Enzymology, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Iman Helwa
- Department of Immunogenetics, Human Genetics and Genome Research Division, National Resrearch Centre, Egypt
| | - Khalda Amr
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Amel Ibrahim Othman
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | | - Osama Azmy
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Reproductive Health Research, Medical Research Division, National Research Centre, Cairo, Egypt; Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| |
Collapse
|
12
|
Zhao Y, Su G, Wang Q, Wang R, Zhang M. The CD200/CD200R mechanism in mesenchymal stem cells' regulation of dendritic cells. Am J Transl Res 2021; 13:9607-9613. [PMID: 34540085 PMCID: PMC8430165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the CD200/CD200R pathway mechanism in mesenchymal stem cells' (MSC) regulation of dendritic cells (DC) (MSc). METHODS We collected marrow samples from 40 patients admitted to our hospital from January 2018 to December 2019. The bone marrow MSCs were cultivated, and the peripheral blood mononuclear cells (PBMC) and peripheral blood DC were isolated to establish an in vitro immune response model. The expressions of the CD200 molecule on the surface of MSC were measured. Anti-CD200 blocking antibodies were added to the culture system to observe the effect of the PBMC differentiation and the immature DC (imDC) to mature DC (mDC). Then the impact of the different positive rates of CD200 in the same MSC on imDC maturity was measured. RESULTS After adding mitogen pHA, the IL-4, IL-10, and TNF-α secretions were increased (all P<0.05), and the OD value of the PBMC+pHA group was higher than it was in the PBMC group. After stimulated by pHA, the CD200 of the MSC group was higher than it was in the MSC+PBMC group (P<0.05). The MSC+PBMC group co-culture inhibited the development of imDC to mDC. Adding anti-CD200 antibodies to the MSC+PBMC co-culture system, MSC could still inhibit the differentiation of PBMC to imDC, and MSC had a significant inhibition effect on imDC to mDC maturation (P=0.006). The addition of MSC reduces the maturation markers on the surface of mDC (P<0.05). The addition of MSC inhibited the ability of mDC to stimulate PBMC (POD<0.05) and decreased the IL-12 (PIL-12<0.05) levels. The addition of the anti-CD200 antibody increased the proliferation ability of mDC to stimulate PBMC (POD<0.05), and it also increased the IL-12 levels in mDC (PIL-12<0.05). The expression of the DC mature immune phenotype in the CD200 high expression group was weak (PCD83, CD86<0.05). CONCLUSION The mechanism by which MSC inhibits DC may be achieved through the CD200/CD200R pathway, and the CD200/CD200R pathway mainly acts on the process from imDC to mDC.
Collapse
Affiliation(s)
- Yulei Zhao
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| | - Guohong Su
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| | - Qing Wang
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| | - Ruihuan Wang
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| | - Minjuan Zhang
- The Second Department of Hematology, Cangzhou Central Hospital 16 West Xinhua Road, Yunhe, Cangzhou, China
| |
Collapse
|
13
|
Saharkhiz M, Razavi FE, Riahi SM, Ayadilord M, Rostami Z, Naseri M. An In Vitro Study of the Effects of Crocin on the Modulation of DSPP, VEGF-A, HLA-G5, STAT3 and CD200 Expression in Human Dental Pulp Stem Cells. Cell Reprogram 2021; 23:239-249. [PMID: 34348036 DOI: 10.1089/cell.2021.0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have been recommended as promising candidate for cell-based therapeutic applications due to high potentials in tissue repair/regeneration and modulation of immune responses. The gene expression change strategy by natural plant enhancers is an available opportunity to improve the stemness properties of these cells. The objective of this research was the evaluation of Crocin effects (saffron plant's bioactive compound) on immunoregulation and tissue regeneration-related biomarkers expression in human DPSCs. Based on the results of cell viability assay, application of 400 μM and lower concentrations of Crocin had no toxic effects on DPSCs; however, the time-dependent cytotoxic effects were observed at higher concentrations. This study, probably for the first time, detected the surface expression of CD200 in DPSCs with a slight time-dependent upward trend and reported that treatment with Crocin could increase expression of this macromolecule up to many times over. Also, it revealed that this carotenoid significantly led to the time-dependent upregulation of dentin sialophosphoprotein, vascular endothelial growth factor A, human leukocyte antigen-G5, and signal transducer and activator of transcription-3 messenger ribonucleic acids (mRNAs); however, this significant upregulation for STAT3 occurred, followed by a remarkable reduction. The results of this study indicated that cell treatment with Crocin may be effective in improving the stemness capacities of DPSCs. Therefore, the study provided basis for more insights into the biological effects of Crocin on DPSCs that it may aid in the future improvement of mesenchymal stem cell-based therapies.
Collapse
Affiliation(s)
- Mansoore Saharkhiz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Department of Prosthodontics, Dental Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Mohammad Riahi
- Department of Epidemiology and Biostatistics, Cardiovascular Diseases Research Center, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Malaksima Ayadilord
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
14
|
Abstract
Mesenchymal stem cells (MSCs), a kind of multipotent stem cells with self-renewal ability and multi-differentiation ability, have become the “practical stem cells” for the treatment of diseases. MSCs have immunomodulatory properties and can be used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE) and Crohn’s disease. MSCs also can be used in cancer and aging. At present, many clinical experiments are using MSCs. MSCs can reduce the occurrence of inflammation and apoptosis of tissue cells, and promote the proliferation of endogenous tissue and organ cells, so as to achieve the effect of repairing tissue and organs. MSCs presumably also play an important role in Corona Virus Disease 2019 (COVID-19) infection.
Collapse
|
15
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
16
|
Zhang XL, Zhang XG, Huang YR, Zheng YY, Ying PJ, Zhang XJ, Lu X, Wang YJ, Zheng GQ. Stem Cell-Based Therapy for Experimental Ischemic Stroke: A Preclinical Systematic Review. Front Cell Neurosci 2021; 15:628908. [PMID: 33935650 PMCID: PMC8079818 DOI: 10.3389/fncel.2021.628908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell transplantation offers promise in the treatment of ischemic stroke. Here we utilized systematic review, meta-analysis, and meta-regression to study the biological effect of stem cell treatments in animal models of ischemic stroke. A total of 98 eligible publications were included by searching PubMed, EMBASE, and Web of Science from inception to August 1, 2020. There are about 141 comparisons, involving 5,200 animals, that examined the effect of stem cell transplantation on neurological function and infarct volume as primary outcome measures in animal models for stroke. Stem cell-based therapy can improve both neurological function (effect size, −3.37; 95% confidence interval, −3.83 to −2.90) and infarct volume (effect size, −11.37; 95% confidence interval, −12.89 to −9.85) compared with controls. These results suggest that stem cell therapy could improve neurological function deficits and infarct volume, exerting potential neuroprotective effect for experimental ischemic stroke, but further clinical studies are still needed.
Collapse
Affiliation(s)
- Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Ran Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Abstract
Ischemic brain injury is a common cause of long-term neurological deficits in children as well as adults, and no efficient treatments could reverse the sequelae in clinic till now. Stem cells have the capacity of self-renewal and multilineage differentiation. The therapeutic efficacy of stem cell transplantation for ischemic brain injury have been tested for many years. The grafts could survive and mature in the ischemic brain environment. Stem cell transplantation could improve functional recovery of ischemic brain injury models in pre-clinical trials. The potential mechanisms included cell replacement, release of neurotrophic and anti-inflammatory factors, immunoregulation as well as activation of endogenous neurogenesis. Besides, many clinical trials were conducted and some of trials already had preliminary results. From the current published data, cell transplantation for clinical application is safe and feasible. No severe adverse events and tumorigenesis were reported. While the therapeutic efficacy of stem cell therapy in clinic still needs more evidences. In this review, we overviewed the studies about stem cell therapy for ischemic brain injury. Different types of stem cells used for transplantation as well as the therapeutic mechanisms were discussed in detail. The related pre-clinical and clinical trials were summarized into two separate tables. In addition, we also discussed the unsolved problems and concerns about stem cell therapy for ischemic brain injury that need to be overcome before clinic transformation.
Collapse
Affiliation(s)
- Xiao-Li Ji
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Ling Ma
- Stem Cell Research Center, Institute of Pediatrics, Children's Hospital, Fudan University, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Man Xiong
- Stem Cell Research Center, Institute of Pediatrics, Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Zhang C, Zhang C, Xu Y, Li C, Cao Y, Li P. Exosomes derived from human placenta-derived mesenchymal stem cells improve neurologic function by promoting angiogenesis after spinal cord injury. Neurosci Lett 2020; 739:135399. [PMID: 32979457 DOI: 10.1016/j.neulet.2020.135399] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system condition with no effective clinal treatment. Recently, transplantation of bone marrow mesenchymal stem cells (MSCs) derived exosomes has been proposed as a potential treatment for SCI. However, whether exosomes have similar functions as transplanted human placenta-derived MSCs(hPMSCs) has remained unclear. METHODS The hPMSCs-derived exosomes (hPMSCs-Exos) were extracted using a sequential centrifugation approach. Then, the effects of hPMSCs-Exos on angiogenesis were analysis both in vitro and in vivo. In addition, the sensory and locomotor functions of mice after SCI were also analyzed. RESULTS The administration of hPMSCs-Exos promote the tube formation and migration of human umbilical vein endothelial cell (HUVECs). Furthermore, vessel numbers, vessel volume fraction and vessel connectivity in spinal cords significantly increased after exosomes were intrathecally injected in the SCI model. In addition, the locomotor and sensory function, also significantly improved in the exosome treatment group. CONCLUSIONS The results of the present study demonstrated that hPMSCs-Exos have proangiogenic effects on endothelial cells and enhanced angiogenesis in SCI model. Thus, this treatment strategy demonstrates great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Ciliu Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University Changsha, 410008, China
| | - ChengLiang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, 410008 Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, China.
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, 410008 Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, China.
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University Changsha, 410008, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, China.
| |
Collapse
|
19
|
Yang Y, Xiao Z, Ye K, He X, Sun B, Qin Z, Yu J, Yao J, Wu Q, Bao Z, Zhao W. SARS-CoV-2: characteristics and current advances in research. Virol J 2020; 17:117. [PMID: 32727485 PMCID: PMC7387805 DOI: 10.1186/s12985-020-01369-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has spread rapidly across the world and become an international public health emergency. Both SARS-CoV-2 and SARS-CoV belong to subfamily Coronavirinae in the family Coronaviridae of the order Nidovirales and they are classified as the SARS-like species while belong to different cluster. Besides, viral structure, epidemiology characteristics and pathological characteristics are also different. We present a comprehensive survey of the latest coronavirus-SARS-CoV-2-from investigating its origin and evolution alongside SARS-CoV. Meanwhile, pathogenesis, cardiovascular disease in COVID-19 patients, myocardial injury and venous thromboembolism induced by SARS-CoV-2 as well as the treatment methods are summarized in this review.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqiang Xiao
- Department of clinical medicine, Zhengzhou university, 100 Science Avenue, Zhengzhou, 450001, China
| | - Kaiyan Ye
- Second Clinical Medical College, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bo Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jianghai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jinxiu Yao
- Yang Jiang Hospital, Yangjiang, 510515, Guangdong Province, China
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhang Bao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW During the last decades, the field of regenerative medicine has been rapidly evolving. Major progress has been made in the development of biological substitutes applying the principles of cell transplantation, material science, and bioengineering. RECENT FINDINGS Among other sources, amniotic-derived products have been used for decades in various fields of medicine as a biomaterial for the wound care and tissue replacement. Moreover, human amniotic epithelial and mesenchymal cells have been intensively studied for their immunomodulatory capacities. Amniotic cells possess two major characteristics that have already been widely exploited. The first is their ability to modulate and suppress the innate and adaptive immunities, making them a true asset for chronic inflammatory disorders and for the induction of tolerance in transplantation models. The second is their multilineage differentiation capacity, offering a source of cells for tissue engineering. The latter combined with the use of amniotic membrane as a scaffold offers all components necessary to create an optimal environment for cell and tissue regeneration. This review summarizes beneficial properties of hAM and its derivatives and discusses their potential in regenerative medicine.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
21
|
Campos J, Guerra-Gomes S, Serra SC, Baltazar G, Oliveira JF, Teixeira FG, Salgado AJ. Astrocyte signaling impacts the effects of human bone marrow mesenchymal stem cells secretome application into the hippocampus: A proliferation and morphometrical analysis on astrocytic cell populations. Brain Res 2020; 1732:146700. [DOI: 10.1016/j.brainres.2020.146700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
|
22
|
Canciello A, Teti G, Mazzotti E, Falconi M, Russo V, Giordano A, Barboni B. Progesterone Prolongs Viability and Anti-inflammatory Functions of Explanted Preterm Ovine Amniotic Membrane. Front Bioeng Biotechnol 2020; 8:135. [PMID: 32258004 PMCID: PMC7089934 DOI: 10.3389/fbioe.2020.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Amniotic membrane (AM) is considered an important medical device with many applications in regenerative medicine. The therapeutic properties of AM are due to its resistant extracellular matrix and to the large number of bioactive molecules released by its cells. An important goal that still remains to be achieved is the identification of cultural and preservation protocols able to maintain in time the membrane morphology and the biological properties of its cells. Recently, our research group demonstrated that progesterone (P4) is crucial in preventing the loss of the epithelial phenotype of amniotic epithelial cells in vitro. Followed by this premise, it has been evaluated whether P4 may also affect AM properties in a short-term culture. Results confirm that P4 preserves AM integrity and architecture with respect to untreated AM, which showed alterations in morphology. Transmission electron microscopy (TEM) analyses demonstrate that P4 also maintains unaltered cell-cell junctions, nuclear status, and intracellular organelles. On the contrary, an untreated AM experienced an extensive cell death and a strong reduction of immunomodulatory properties, measured in terms of anti-inflammatory cytokine expression and secretion. Overall, these results could open to new strategies to ameliorate the protocols for cryopreservation and tissue culture, which represent preliminary stages of AM application in regenerative medicine.
Collapse
Affiliation(s)
- Angelo Canciello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Eleonora Mazzotti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
23
|
Ngwa C, Liu F. CD200-CD200R signaling and diseases: a potential therapeutic target? INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:297-309. [PMID: 31993106 PMCID: PMC6971504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
CD200 and its receptor, CD200R, constitutes an endogenous inhibitory signaling, and is being increasingly recognized in studies of various central nervous system (CNS) disorders. Emerging data have demonstrated that neuronal CD200 binds to CD200R to modulate immune responses to pathogenic stimuli. However, on which component of the immune response that CD200-CD200R signaling acts is not well understood. In this review, we focused on cellular expression of the signaling, the effects on immune cell activation, and the function in pathological procedures of neurodegenerative diseases, in both clinical and experimental disease models. Essential functions of CD200-CD200R interaction and the treatment relevance have been elaborated. Immune responses to diseases under the control of CD200-CD200R axis were also discussed in the review.
Collapse
Affiliation(s)
- Conelius Ngwa
- Department of Neurology, The University of Texas Health Science Center at Houston McGovern Medical School Houston, TX 77030, USA
| | - Fudong Liu
- Department of Neurology, The University of Texas Health Science Center at Houston McGovern Medical School Houston, TX 77030, USA
| |
Collapse
|
24
|
Surugiu R, Olaru A, Hermann DM, Glavan D, Catalin B, Popa-Wagner A. Recent Advances in Mono- and Combined Stem Cell Therapies of Stroke in Animal Models and Humans. Int J Mol Sci 2019; 20:ijms20236029. [PMID: 31795466 PMCID: PMC6928803 DOI: 10.3390/ijms20236029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Following the failure of acute neuroprotection therapies, major efforts are currently made worldwide to promote neurological recovery and brain plasticity in the subacute and post-acute phases of stroke. Currently, there is hope that stroke recovery might be promoted by cell-based therapies. The field of stem cell therapy for cerebral ischemia has made significant progress in the last five years. A variety of stem cells have been tested in animal models and humans including adipose stem cells, human umbilical cord blood-derived mesenchymal stem cells, human amnion epithelial cells, human placenta amniotic membrane-derived mesenchymal stem cells, adult human pluripotent-like olfactory stem cells, human bone marrow endothelial progenitor cells, electrically-stimulated human neuronal progenitor cells, or induced pluripotent stem cells (iPSCs) of human origin. Combination therapies in animal models include a mix of two or more therapeutic factors consisting of bone marrow stromal cells, exercise and thyroid hormones, endothelial progenitor cells overexpressing the chemokine CXCL12. Mechanisms underlying the beneficial effects of transplanted cells include the “bystander” effects, paracrine mechanisms, or extracellular vesicles-mediated restorative effects. Mitochondria transfer also appears to be a powerful strategy for regenerative processes. Studies in humans are currently limited to a small number of studies using autologous stem cells mainly aimed to assess tolerability and side-effects of human stem cells in the clinic.
Collapse
Affiliation(s)
- Roxana Surugiu
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, 20049 Craiova, Romania
| | - Andrei Olaru
- Department of Ophthalmology, University of Medicine and Pharmacy, 20049 Craiova, Romania
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45122 Essen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 20049 Craiova, Romania
| | - Bogdan Catalin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 20049 Craiova, Romania
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45122 Essen, Germany
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus and Queensland Eye Institute, Brisbane, QLD 4000, Australia
| |
Collapse
|
25
|
Zhao X, Li J, Sun H. CD200-CD200R Interaction: An Important Regulator After Stroke. Front Neurosci 2019; 13:840. [PMID: 31440137 PMCID: PMC6693438 DOI: 10.3389/fnins.2019.00840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
The high mortality and morbidity rate of stroke is a chronic problem that plagues human society. The activation of microglia is one of the principal reasons why neuroinflammation induces cerebral dysfunction. Because of their vital functions in the regulation of neuroinflammation, microglia constitute an important target for stroke. Given that there is an innate self-preservation mechanism between neurons and microglia, the transmembrane glycoproteins on the surface of their membranes, namely CD200 and CD200R, have become a popular topic of research. Numerous studies have demonstrated that CD200-CD200R interaction, microglial activation, and poststroke neuroinflammatory damage are inextricably linked. In this review, we describe the above relationship from a new perspective. We specifically focus on neuroinflammation after stroke. The role of crosstalk of CD200-CD200R inhibitory immune ligand receptors in immune regulation will also be illustrated. Thus, we will see how poststroke injury can be influenced by the CD200-CD200R crosstalk. Finally, we will discuss the possibility of clinical application of the result of CD200-CD200R interaction to manage neuroinflammatory injury after stroke.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second Clinical Medical College, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Jing Li
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second Clinical Medical College, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second Clinical Medical College, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Bae SH, Jo A, Park JH, Lim CW, Choi Y, Oh J, Park JM, Kong T, Weissleder R, Lee H, Moon J. Bioassay for monitoring the anti-aging effect of cord blood treatment. Theranostics 2019; 9:1-10. [PMID: 30662549 PMCID: PMC6332798 DOI: 10.7150/thno.30422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Treating aged animals with plasma of an early developmental stage (e.g, umbilical cord plasma) showed an impressive potential to slow age-associated degradation of neuronal and cognitive functions. Translating such findings to clinical realities, however, requires effective ways for assessing treatment efficacy; ideal methods should be minimally invasive, amenable for serial assays, cost-effective, and quantitative. Methods: We developed a new biosensor approach to monitor anti-aging therapy. We advanced two key sensor components: i) a blood-borne metabolite was identified as a surrogate aging-marker; and ii) a compact and cost-effective assay system was developed for on-site applications. We treated aged mice either with human umbilical cord plasma or saline; unbiased metabolite profiling on mouse plasma revealed arachidonic acid (AA) as a potent indicator associated with anti-aging effect. We next implemented a competitive magneto-electrochemical sensor (cMES) optimized for AA detection directly from plasma. The developed platform could detect AA directly from small volumes of plasma (0.5 µL) within 1.5 hour. Results: cMES assays confirmed a strong correlation between AA levels and anti-aging effect: AA levels, while decreasing with aging, increased in the plasma-treated aged mice which also showed improved learning and memory performance. Conclusions: The cMES platform will empower both pre- and clinical anti-aging research by enabling minimally invasive, longitudinal treatment surveillance; these capacities will accelerate the development of anti-aging therapies, improving the quality of individual lives.
Collapse
Affiliation(s)
- Sang-Hun Bae
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ala Jo
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jae Hyun Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Chul-Woo Lim
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - TaeHo Kong
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
27
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|