Liu X, Wu S, Gong Y, Yang L. Effect of Nintedanib Nanothermoreversible Hydrogel on Neovascularization in an Ocular Alkali Burn Rat Model.
Curr Eye Res 2022;
47:1578-1589. [PMID:
36259508 DOI:
10.1080/02713683.2022.2129071]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE
To compare the therapeutic effects of different forms of nintedanib ophthalmic preparations on neovascularization corneal alkali burns in rats.
METHODS
Forty rat models of left eye corneal alkali burns were constructed, and the five groups (N = 8) were treated with normal saline, dexamethasone ointment (dexamethasone), 0.2% nintedanib aqueous solution and nintedanib nano thermoreversible hydrogel (NNTH). A slit lamp microscope was used to observe the area of neovascularization. The levels of the inflammatory factors were detected by ELISA. HE staining was performed on the rat corneas. Vascular endothelial growth factor (VEGFA) was detected by immunohistochemistry, and the expression of corneal VEGFA and CD31 was detected by western blotting. An MTT assay was performed to detect the cytotoxicity of nintedanib on human corneal epithelial cells (HCECs) and human umbilical vein vascular endothelial cells (HUVECs). Cell migration was detected by a cell scratch assay, and the proportion of apoptotic cells was detected by Annexin/PI double staining. Immunofluorescence and western blotting were performed to detect the protein expression of VEGFA and CD31.
RESULTS
NNTH had a stronger inhibitory effect on corneal neovascularization (CNV) in alkali-burned rats while reducing the level of inflammatory factors. NNTH had a longer drug duration of release than nanoformulations in vitro. Nintedanib at low concentrations (<8 μM) had no significant cytotoxicity to HCECs but significantly induced apoptosis and inhibited the expression of VEGFA and CD31 and the migration of HUVECs.
CONCLUSIONS
Nanomorphic thermoreversible hydrogel is superior among the nintedanib ophthalmic preparations, showing better inhibition of CNV in alkali-burned eyeballs and it blocked the migration and proangiogenic ability of HUVECs.
Collapse