1
|
Zhang S, Xu W, Liu S, Xu F, Chen X, Qin H, Yao K. Anesthetic effects on electrophysiological responses across the visual pathway. Sci Rep 2024; 14:27825. [PMID: 39537872 PMCID: PMC11561267 DOI: 10.1038/s41598-024-79240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Anesthetics are widely used in electrophysiological tests to assess retinal and visual system functions to avoid experimental errors caused by movement and stress in experimental animals. To determine the most suitable anesthetic for visual electrophysiological tests, excluding ketamine and chloral hydrate due to regulatory and side effect concerns, this study investigated the effects of ethyl carbamate (EC), avertin (AR), and pentobarbital sodium (PS) on visual signal conduction in the retina and primary visual cortex. Assessments included flash electroretinogram (FERG), pattern electroretinogram (PERG), pattern visual evoked potentials (PVEP), and flash visual evoked potentials (FVEP), FERG and FVEP were used to evaluate the responses of the retina and visual cortex to flash stimuli, respectively, while PERG and PVEP assessed responses to pattern stimuli. The research showed that AR demonstrates the least disruption to the visual signal pathway, as evidenced by consistently high characteristic peaks in the AR group across various tests. In contrast, mice given EC exhibited the lowest peak values in both FERG and FVEP, while subjects anesthetized with PS showed suppressed oscillatory potentials and PERG responses. Notably, substantial PVEP characteristic peaks were observed only in mice anesthetized with AR. Consequently, among the three anesthetics tested, AR is the most suitable for visual electrophysiological studies.
Collapse
Affiliation(s)
- Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
KOCAK S, GUNER I, YAMAN MO, YILMAZ TEKIZ, MEYDANLI EEGUZEL, YELMEN N, SAHIN G. Alpha B-crystallin Ameliorates Imbalance of Redox Homeostasis, Inflammation and Apoptosis in an Acute Lung Injury Model with Rats. Medeni Med J 2024; 39:211-220. [PMID: 39350576 PMCID: PMC11572206 DOI: 10.4274/mmj.galenos.2024.82274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Objective Ischemia-reperfusion (IR) of the aorta is a significant contributor to the development of postoperative acute lung damage after abdominal aortic surgery. The aim of the present study was to examine the effect of alpha B-crystallin, a small heat shock protein (known as HspB5), on lung injury induced by abdominal aortic IR in rats. Methods Male Sprague-Dawley rats were divided into three groups: control, ischemia-reperfusion (IR, 90 min ischemia and 180 min reperfusion), and alpha B-crystallin +IR. Alpha B-crystallin (50 μg/100 g) was intraperitoneally administered 1 h before IR. Lung tissue samples were obtained for histological and biochemical analyses of oxidative stress and cytokine and apoptosis parameters in plasma, lung tissues, and bronchoalveolar lavage (BAL) fluid. Results The levels of malondialdehyde, reactive oxygen species, total oxidant status, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor kappa B (NFKβ), caspase-9 (CASP-9), 8-hydroxy-2'-deoxyguanosine, total antioxidant status, superoxide dismutase, and interleukin-10 levels in lung tissues, plasma, and BAL fluid (p<0.05 versus control) increased in Aortic IR. However, alpha B-crystallin significantly reduced the lung tissue levels of oxidative, inflamatuvar, and apoptotic parameters in the plasma, lung tissues, and BAL fluid (p<0.05 versus aortic IR). Histopathological results showed that alpha B-crystallin ameliorated the morphological changes related to lung injury (p<0.001). Conclusion Alpha B-crystallin substantially restored disrupted the redox balance, inflammation, and apoptotic parameters in rats exposed to IR. The cytoprotective effect of alpha B-crystallin on redox balance might be attributed to improved lung injury.
Collapse
Affiliation(s)
- Seda KOCAK
- Kirsehir Ahi Evran University Faculty of Medicine, Department of Physiology, Kirsehir, Türkiye
| | - Ibrahim GUNER
- Tekirdag Namik Kemal University Faculty of Medicine, Department of Physiology, Tekirdag, Türkiye
| | - Muhittin Onur YAMAN
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Tugba EKIZ YILMAZ
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embriology, Istanbul, Türkiye
| | - Emine Elif GUZEL MEYDANLI
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embriology, Istanbul, Türkiye
| | - Nermin YELMEN
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Gulderen SAHIN
- Istanbul Aydin University Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| |
Collapse
|
3
|
Gu Q, Kumar A, Hook M, Xu F, Bajpai AK, Starlard-Davenport A, Yue J, Jablonski MM, Lu L. Exploring Early-Stage Retinal Neurodegeneration in Murine Pigmentary Glaucoma: Insights From Gene Networks and miRNA Regulation Analyses. Invest Ophthalmol Vis Sci 2023; 64:25. [PMID: 37707836 PMCID: PMC10506683 DOI: 10.1167/iovs.64.12.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/26/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose Glaucoma is a group of heterogeneous optic neuropathies characterized by the progressive degeneration of retinal ganglion cells. However, the underlying mechanisms have not been understood completely. We aimed to elucidate the genetic network associated with the development of pigmentary glaucoma with DBA/2J (D2) mouse model of glaucoma and corresponding genetic control D2-Gpnmb (D2G) mice carrying the wild type (WT) Gpnmb allele. Methods Retinas isolated from 13 D2 and 12 D2G mice were subdivided into 2 age groups: pre-onset (1-6 months: samples were collected at approximately 1-2, 2-4, and 5-6 months) and post-onset (7-15 months: samples were collected at approximately 7-9, 10-12, and 13-15 months) glaucoma were compared. Differential gene expression (DEG) analysis and gene-set enrichment analyses were performed. To identify micro-RNAs (miRNAs) that target Gpnmb, miRNA expression levels were correlated with time point matched mRNA expression levels. A weighted gene co-expression network analysis (WGCNA) was performed using the reference BXD mouse population. Quantitative real-time PCR (qRT-PCR) was used to validate Gpnmb and miRNA expression levels. Results A total of 314 and 86 DEGs were identified in the pre-onset and post-onset glaucoma groups, respectively. DEGs in the pre-onset glaucoma group were associated with the crystallin gene family, whereas those in the post-onset group were related to innate immune system response. Of 1329 miRNAs predicted to target Gpnmb, 3 miRNAs (miR-125a-3p, miR-3076-5p, and miR-214-5p) were selected. A total of 47 genes demonstrated overlapping with the identified DEGs between D2 and D2G, segregated into their time-relevant stages. Gpnmb was significantly downregulated, whereas 2 out of 3 miRNAs were significantly upregulated (P < 0.05) in D2 mice at both 3-and 10-month time points. Conclusions These findings suggest distinct gene-sets involved in pre-and post-glaucoma in the D2 mouse. We identified three miRNAs regulating Gpnmb in the development of murine pigmentary glaucoma.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Aman Kumar
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
4
|
Chou C, Martin GL, Perera G, Awata J, Larson A, Blanton R, Chin MT. A novel αB-crystallin R123W variant drives hypertrophic cardiomyopathy by promoting maladaptive calcium-dependent signal transduction. Front Cardiovasc Med 2023; 10:1223244. [PMID: 37435054 PMCID: PMC10331725 DOI: 10.3389/fcvm.2023.1223244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder affecting 1 in 500 people in the general population. Characterized by asymmetric left ventricular hypertrophy, cardiomyocyte disarray and cardiac fibrosis, HCM is a highly complex disease with heterogenous clinical presentation, onset and complication. While mutations in sarcomere genes can account for a substantial proportion of familial cases of HCM, 40%-50% of HCM patients do not carry such sarcomere variants and the causal mutations for their diseases remain elusive. Recently, we identified a novel variant of the alpha-crystallin B chain (CRYABR123W) in a pair of monozygotic twins who developed concordant HCM phenotypes that manifested over a nearly identical time course. Yet, how CRYABR123W promotes the HCM phenotype remains unclear. Here, we generated mice carrying the CryabR123W knock-in allele and demonstrated that hearts from these animals exhibit increased maximal elastance at young age but reduced diastolic function with aging. Upon transverse aortic constriction, mice carrying the CryabR123W allele developed pathogenic left ventricular hypertrophy with substantial cardiac fibrosis and progressively decreased ejection fraction. Crossing of mice with a Mybpc3 frame-shift model of HCM did not potentiate pathological hypertrophy in compound heterozygotes, indicating that the pathological mechanisms in the CryabR123W model are independent of the sarcomere. In contrast to another well-characterized CRYAB variant (R120G) which induced Desmin aggregation, no evidence of protein aggregation was observed in hearts expressing CRYABR123W despite its potent effect on driving cellular hypertrophy. Mechanistically, we uncovered an unexpected protein-protein interaction between CRYAB and calcineurin. Whereas CRYAB suppresses maladaptive calcium signaling in response to pressure-overload, the R123W mutation abolished this effect and instead drove pathologic NFAT activation. Thus, our data establish the CryabR123W allele as a novel genetic model of HCM and unveiled additional sarcomere-independent mechanisms of cardiac pathological hypertrophy.
Collapse
Affiliation(s)
- Chun Chou
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Gayani Perera
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Junya Awata
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Amy Larson
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Robert Blanton
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Michael T. Chin
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
5
|
Emerging therapeutic roles of small heat shock protein-derived mini-chaperones and their delivery strategies. Biochimie 2022; 208:56-65. [PMID: 36521577 DOI: 10.1016/j.biochi.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The small heat shock protein (sHsp) family is a group of proteins in which some are induced in response to external stimuli, such as environmental and pathological stresses, while others are constitutively expressed. They show chaperone-like activity, protect cells from apoptosis, and maintain cytoskeletal architecture. Short sequences or fragments ranging from approximately 19-20 residues in sHsps were shown to display chaperone activity in vitro. These sequences are termed sHsp-derived mini-peptides/mini-chaperones. These peptides offer an advantage in providing protective and therapeutic effects over full-length proteins owing to their small molecular weight and easy uptake into the cells. Research on sHsp mini-chaperone therapy has recently received attention and advanced tremendously. sHsp mini-chaperones have shown a wide range of therapeutic effects, such as anti-aggregation of proteins, anti-apoptotic, anti-inflammatory, anti-oxidant, senolytic, and anti-platelet activity. The administration of mini-chaperones into the several disease animal models, including experimental autoimmune encephalomyelitis, cataract, age-related macular degeneration, glaucoma, and thrombosis through various routes reduced symptoms or prevented the progression of the disease. However, it was found that the therapeutic potential of sHsp mini-chaperones is limited by their short turnover and enzymatic degradation in circulation. Nonetheless, carrier molecules approach such as nanoparticles, cell penetration peptides, and extracellular vesicles increased their efficacy by enhancing the uptake, retention time, protection from enzymatic degradation, and site-specific delivery without altering their biological activity. In this context, this review highlights the recent advances in the therapeutic potential of sHsp-derived mini-chaperones, their effect in experimental animal models, and approaches for increasing their efficacy.
Collapse
|
6
|
Rangel B, Mesentier-Louro LA, Lowe LL, Shariati AM, Dalal R, Imventarza JA, Liao YJ. Upregulation of retinal VEGF and connexin 43 in murine nonarteritic anterior ischemic optic neuropathy induced with 577 nm laser. Exp Eye Res 2022; 225:109139. [PMID: 35691373 PMCID: PMC10870834 DOI: 10.1016/j.exer.2022.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 12/29/2022]
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is a common acute optic neuropathy and cause of irreversible vision loss in those older than 50 years of age. There is currently no effective treatment for NAION and the biological mechanisms leading to neuronal loss are not fully understood. Promising novel targets include glial cells activation and intercellular communication mediated by molecules such as gap junction protein Connexin 43 (Cx43), which modulate neuronal fate in central nervous system disorders. In this study, we investigated retinal glial changes and neuronal loss following a novel NAION animal model using a 577 nm yellow laser. We induced unilateral photochemical thrombosis using rose bengal at the optic nerve head vasculature in adult C57BL/6 mice using a 577 nm laser and performed morphometric analysis of the retinal structure using serial in vivo optical coherence tomography (OCT) and histology for glial and neuronal markers. One day after experimental NAION, in acute phase, OCT imaging revealed peripapillary thickening of the retinal ganglion cell complex (GCC, baseline: 79.5 ± 1.0 μm, n = 8; NAION: 93.0 ± 2.5 μm, n = 8, P < 0.01) and total retina (baseline: 202.9 ± 2.4 μm, n = 8; NAION: 228.1 ± 6.8 μm, n = 8, P < 0.01). Twenty-one days after ischemia, at a chronic phase, there was significant GCC thinning (baseline 78.3 ± 2.1 μm, n = 6; NAION: 72.2 ± 1.9 μm, n = 5, P < 0.05), mimicking human disease. Examination of molecular changes in the retina one day after ischemia revealed that NAION induced a significant increase in retinal VEGF levels (control: 2319 ± 195, n = 5; NAION: 4549 ± 683 gray mean value, n = 5, P < 0.05), which highly correlated with retinal thickness (r = 0.89, P < 0.05). NAION also led to significant increase in mRNA level for Cx43 (Gj1a) at day 1 (control: 1.291 ± 0.38; NAION: 3.360 ± 0.58 puncta/mm2, n = 5, P < 0.05), but not of glial fibrillary acidic protein (Gfap) at the same time (control: 2,800 ± 0.59; NAION: 4,690 ± 0.90 puncta/mm2 n = 5, P = 0.19). Retinal ganglion cell loss at day 21 was confirmed by a 30% decrease in Brn3a+ cells (control: 2,844 ± 235; NAION: 2,001 ± 264 cells/mm2, n = 4, P < 0.05). We described a novel protocol of NAION induction by photochemical thrombosis using a 577 nm laser, leading to retinal edema and VEGF increase at day 1 and RGCs loss at day 21 after injury, consistent with the pathophysiology of human NAION. Early changes in glial cells intercommunication revealed by increased Cx43+ gap junctions are consistent with a retinal glial role in mediating cell-to-cell signaling after an ischemic insult. Our study demonstrates an early glial response in a novel NAION animal model and reveals glial intercommunication molecules such as Cx43 as a promising therapeutic target in acute NAION.
Collapse
Affiliation(s)
- Barbara Rangel
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | | | - Lauryn L Lowe
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Ali Mohammad Shariati
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Joel A Imventarza
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA; Department of Neurology, Stanford University School of Medicine, Stanford, CA, 94304, USA.
| |
Collapse
|
7
|
Rajeswaren V, Wong JO, Yabroudi D, Nahomi RB, Rankenberg J, Nam MH, Nagaraj RH. Small Heat Shock Proteins in Retinal Diseases. Front Mol Biosci 2022; 9:860375. [PMID: 35480891 PMCID: PMC9035800 DOI: 10.3389/fmolb.2022.860375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.
Collapse
Affiliation(s)
- Vivian Rajeswaren
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Jeffrey O. Wong
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Dana Yabroudi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Rooban B. Nahomi
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Johanna Rankenberg
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| | - Ram H. Nagaraj
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, School of Medicine, Aurora, CO, United States
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
- *Correspondence: Mi-Hyun Nam, ; Ram H. Nagaraj,
| |
Collapse
|
8
|
Phadte AS, Sluzala ZB, Fort PE. Therapeutic Potential of α-Crystallins in Retinal Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:1001. [PMID: 34201535 PMCID: PMC8300683 DOI: 10.3390/antiox10071001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The chaperone and anti-apoptotic activity of α-crystallins (αA- and αB-) and their derivatives has received increasing attention due to their tremendous potential in preventing cell death. While originally known and described for their role in the lens, the upregulation of these proteins in cells and animal models of neurodegenerative diseases highlighted their involvement in adaptive protective responses to neurodegeneration associated stress. However, several studies also suggest that chronic neurodegenerative conditions are associated with progressive loss of function of these proteins. Thus, while external supplementation of α-crystallin shows promise, their potential as a protein-based therapeutic for the treatment of chronic neurodegenerative diseases remains ambiguous. The current review aims at assessing the current literature supporting the anti-apoptotic potential of αA- and αB-crystallins and its potential involvement in retinal neurodegenerative diseases. The review further extends into potentially modulating the chaperone and the anti-apoptotic function of α-crystallins and the use of such functionally enhanced proteins for promoting neuronal viability in retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Ashutosh S. Phadte
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Zachary B. Sluzala
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
9
|
Shao W, Liu X, Gao L, Tian C, Shi Q. αA-Crystallin inhibits optic nerve astrocyte activation induced by oxygen-glucose deprivation in vitro. Life Sci 2021; 278:119533. [PMID: 33887346 DOI: 10.1016/j.lfs.2021.119533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
AIMS A previous study reported that intravitreal injection of αA-crystallin inhibits glial scar formation after optic nerve traumatic injury. The purpose of this study was to investigate the effect of αA-crystallin on optic nerve astrocytes induced by oxygen glucose deprivation (OGD) in vitro. MATERIALS AND METHODS Optic nerve astrocytes from newborn Long Evans rats were cultured with αA-crystallin (10-4 g/l) to detect the effects of αA-crystallin on astrocytes. Using a scratch assay, the effect of αA-crystallin treatment on astrocyte migration was assessed. Astrocytes were exposed to OGD and glucose reintroduction/reoxygenation culture for 24 h and 48 h. The expression of glial fibrillary acidic protein (GFAP) and neurocan were subsequently evaluated via immunocytochemistry and western blot. BMP2/4, BMPRIa/Ib and Smad1/5/8 mRNA expression levels were detected by RT-PCR. KEY FINDINGS The results showed that αA-crystallin slowed the migration of astrocytes in filling the scratch gaps. GFAP and neurocan expression in astrocytes was increased after OGD. However, after treatment with αA-crystallin, GFAP and neurocan expression levels clearly decreased. Furthermore, RT-PCR showed that BMP2 and BMP4 mRNA expression levels decreased significantly. SIGNIFICANCE These results suggest that αA-crystallin inhibits the activation of astrocytes after OGD injury in vitro. Inhibition of the BMP/Smad signaling pathway might be the mechanism underlying this effect.
Collapse
Affiliation(s)
- Weiyang Shao
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lixiong Gao
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Chunyu Tian
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Qian Shi
- Ophthalmology Department, Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
10
|
Biomarkers of lesion severity in a rodent model of nonarteritic anterior ischemic optic neuropathy (rNAION). PLoS One 2021; 16:e0243186. [PMID: 33764998 PMCID: PMC7993789 DOI: 10.1371/journal.pone.0243186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/28/2021] [Indexed: 11/25/2022] Open
Abstract
The rodent model of nonarteritic anterior ischemic optic neuropathy (rNAION) is similar in many of its pathophysiological responses to clinical NAION. Like human NAION, there is significant variability in the severity of the lesion produced, and little is known of the parameters associated with rNAION induction severity or if pre- or early post-induction biomarkers can be identified that enable prediction of lesion severity and ultimate loss of retinal ganglion cells (RGCs). Adult male Sprague-Dawley outbred rats were evaluated for various parameters including physiological characteristics (heart rate, respiratory rate, temperature, hematocrit [Hct]), optic nerve head (ONH) appearance, pre- and post-induction mean diameter, and intravenous fluorescein and indocyanine green angiographic patterns of vascular leakage at 5 hours post-induction, performed using a spectral domain-optical coherence tomography (SD-OCT) instrument. Early changes were correlated with ultimate RGC loss by Brn3a (+) immunohistology. RGC loss also was correlated with the relative level of laser exposure. The severity of ONH edema 2d, but not 5hr, post induction was most closely associated with the degree of RGC loss, revealing a threshold effect, and consistent with a compartment syndrome where a minimum level of capillary compression within a tight space is responsible for damage. RGC loss increased dramatically as the degree of laser exposure increased. Neither physiological parameters nor the degree of capillary leakage 5hr post induction were informative as to the ultimate degree of RGC loss. Similar to human NAION, the rNAION model exhibits marked variability in lesion severity. Unlike clinical NAION, pre-induction ONH diameter likely does not contribute to ultimate lesion severity; however, cross-sectional ONH edema can be used as a biomarker 2d post-induction to determine randomization of subjects prior to inclusion in specific neuroprotection or neuroregeneration studies.
Collapse
|
11
|
Wang F, Jiang Z, Lou B, Duan F, Qiu S, Cheng Z, Ma X, Yang Y, Lin X. αB-Crystallin Alleviates Endotoxin-Induced Retinal Inflammation and Inhibits Microglial Activation and Autophagy. Front Immunol 2021; 12:641999. [PMID: 33777038 PMCID: PMC7991093 DOI: 10.3389/fimmu.2021.641999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
αB-Crystallin, a member of the small heat shock protein (sHSP) family, plays an immunomodulatory and neuroprotective role by inhibiting microglial activation in several diseases. However, its effect on endotoxin-induced uveitis (EIU) is unclear. Autophagy may be associated with microglial activation, and αB-crystallin is involved in the regulation of autophagy in some cells. The role of αB-crystallin in microglial autophagy is unknown. This study aimed to explore the role of αB-crystallin on retinal microglial autophagy, microglial activation, and neuroinflammation in both cultured BV2 cells and the EIU mouse model. Our results show that αB-crystallin reduced the release of typical proinflammatory cytokines at both the mRNA and protein level, inhibited microglial activation in morphology, and suppressed the expression of autophagy-related molecules and the number of autophagolysosomes in vitro. In the EIU mouse model, αB-crystallin treatment alleviated the release of ocular inflammatory cytokines and the representative signs of inflammation, reduced the apoptosis of ganglion cells, and rescued retinal inflammatory structural and functional damage, as evaluated by optical coherence tomographic and electroretinography. Taken together, these results indicate that αB-crystallin inhibits the activation of microglia and supresses microglial autophagy, ultimately reducing endotoxin-induced neuroinflammation. In conclusion, αB-crystallin provides a novel and promising option for affecting microglial autophagy and alleviating symptoms of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Fangyu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxin Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhixing Cheng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Chaudhury S, Keegan BM, Blagg BSJ. The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies. Med Res Rev 2021; 41:202-222. [PMID: 32844464 PMCID: PMC8485878 DOI: 10.1002/med.21729] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
Heat shock proteins (Hsps) are molecular chaperones that also play important roles in the activation of the heat shock response (HSR). The HSR is an evolutionary conserved and protective mechanism that is used to counter abnormal physiological conditions, stressors, and disease states, such as those exemplified in cancer and/or neurodegeneration. In normal cells, heat shock factor-1 (HSF-1), the transcription factor that regulates the HSR, remains in a dormant multiprotein complex that is formed upon association with chaperones (Hsp90, Hsp70, etc.), co-chaperones, and client proteins. However, under cellular stress, HSF-1 dissociates from Hsp90 and induces the transcriptional upregulation of Hsp70 to afford protection against the encountered cellular stress. As a consequence of both peripheral and central neuropathies, cellular stress occurs and results in the accumulation of unfolded and/or misfolded proteins, which can be counterbalanced by activation of the HSR. Since Hsp90 is the primary regulator of the HSR, modulation of Hsp90 by small molecules represents an attractive therapeutic approach against both peripheral and central neuropathies.
Collapse
Affiliation(s)
- Subhabrata Chaudhury
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bradley M Keegan
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
13
|
Mekala NK, Sasikumar S, Akula KK, Parekh Y, Rao CM, Bokara KK. HspB5 protects mouse neural stem/progenitor cells from paraquat toxicity. AMERICAN JOURNAL OF STEM CELLS 2020; 9:68-77. [PMID: 33489464 PMCID: PMC7811932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION HspB5 (αB-crystallin) is known to be involved in a variety of cellular functions, including, protection of cells from oxidative damage and inhibiting apoptosis. Neural stem/progenitor cells (NSPCs) have significant therapeutic value, especially in the NSC/NPC transplantation therapy. However, the viability of the transplanted NSPCs remains low because of various factors, including oxidative stress. OBJECTIVE The current investigation explored the possible role of HspB5 in the protection of mouse NSPCs (mNSPCs) against paraquat-induced toxicity. METHODS The recombinant human HspB5 was expressed in E.coli and was purified using gel filtration and Ion-exchange chromatography. The biophysical characterization of HspB5 was carried out using DLS, CD, and Analytical Ultracentrifugation (SV); the chaperone activity of HspB5 was determined by alcohol dehydrogenase aggregation assay. We have subjected the mNSPCs to paraquat-induced oxidative stress and monitored the protective ability of HspB5 by MTT assay and Hoechst-PI staining. Furthermore, increase in the expression of the anti-apoptotic protein, procaspase-3 was monitored using western blotting. RESULTS The recombinant HspB5 was purified to its homogeneity and was characterized using various biophysical techniques. The externally added FITC-labeled HspB5 was found to be localized within the cytoplasm of mNSPCs. Our Immunocytochemistry results showed that the externally added FITC-labeled HspB5 not only entered the cells but also conferred cytoprotection against paraquat-induced toxicity. The protective events were monitored by a decrease in the PI-positive cells and an increase in the procaspase-3 expression through Immunocytochemistry and Western blotting respectively. CONCLUSION Our results clearly demonstrate that exogenously added recombinant human HspB5 enters the mNSPCs and confers protection against paraquat toxicity.
Collapse
Affiliation(s)
| | - Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology HyderabadKandi-502285, Sangareddy, Telangana, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Yash Parekh
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Kiran Kumar Bokara
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| |
Collapse
|
14
|
Hampton DW, Amor S, Story D, Torvell M, Bsibsi M, van Noort JM, Chandran S. HspB5 Activates a Neuroprotective Glial Cell Response in Experimental Tauopathy. Front Neurosci 2020; 14:574. [PMID: 32595446 PMCID: PMC7300208 DOI: 10.3389/fnins.2020.00574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Progressive neuronal death during tauopathies is associated with aggregation of modified, truncated or mutant forms of tau protein. Such aggregates are neurotoxic, promote spreading of tau aggregation, and trigger release of pro-inflammatory factors by glial cells. Counteracting such pathogenic effects of tau by simultaneously inhibiting protein aggregation as well as pro-inflammatory glial cell responses would be of significant therapeutic interest. Here, we examined the use of the small heat-shock protein HspB5 for this purpose. As a molecular chaperone, HspB5 counteracts aggregation of a wide range of abnormal proteins. As a TLR2 agonist, it selectively activates protective responses by CD14-expressing myeloid cells including microglia. We show that intracerebral infusion of HspB5 in transgenic mice with selective neuronal expression of mutant human P301S tau has significant neuroprotective effects in the superficial, frontal cortical layers. Underlying these effects at least in part, HspB5 induces several potent neuroprotective mediators in both astrocytes and microglia including neurotrophic factors and increased potential for removal of glutamate. Together, these findings highlight the potentially broad therapeutic potential of HspB5 in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- David W Hampton
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sandra Amor
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands
| | - David Story
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Megan Torvell
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | | | - Siddarthan Chandran
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, Edinburgh University, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Mesentier-Louro LA, Shariati MA, Dalal R, Camargo A, Kumar V, Shamskhou EA, de Jesus Perez V, Liao YJ. Systemic hypoxia led to little retinal neuronal loss and dramatic optic nerve glial response. Exp Eye Res 2020; 193:107957. [PMID: 32032627 PMCID: PMC7673281 DOI: 10.1016/j.exer.2020.107957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
Vision loss is a devastating consequence of systemic hypoxia, but the cellular mechanisms are unclear. We investigated the impact of acute hypoxia in the retina and optic nerve. We induced systemic hypoxia (10% O2) in 6-8w mice for 48 h and performed in vivo imaging using optical coherence tomography (OCT) at baseline and after 48 h to analyze structural changes in the retina and optic nerve. We analyzed glial cellular and molecular changes by histology and immunofluorescence and the impact of pretreatment with 4-phenylbutyric acid (4-PBA) in oligodendroglia survival. After 48 h hypoxia, we found no change in ganglion cell complex thickness and no loss of retinal ganglion cells. Despite this, there was significantly increased expression of CCAAT-enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum stress, in the retina and optic nerve. In addition, hypoxia induced obvious increase of GFAP expression in the anterior optic nerve, where it co-localized with CHOP, and significant loss of Olig2+ oligodendrocytes. Pretreatment with 4-PBA, which has been shown to reduce endoplasmic reticulum stress, rescued total Olig2+ oligodendrocytes and increased the pool of mature (CC-1+) but not of immature (PDGFRa+) oligodendrocytes. Consistent with a selective vulnerability of the retina and optic nerve in hypoxia, the most striking changes in the 48 h murine model of hypoxia were in glial cells in the optic nerve, including increased CHOP expression in the astrocytes and loss of oligodendrocytes. Our data support a model where glial dysfunction is among the earliest events in systemic hypoxia - suggesting that glia may be a novel target in treatment of hypoxia.
Collapse
Affiliation(s)
| | - Mohammed Ali Shariati
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Alexandra Camargo
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Varun Kumar
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Elya Ali Shamskhou
- Department of Pulmonary Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Vinicio de Jesus Perez
- Department of Pulmonary Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA; Department of Neurology, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Kumar V, Mesentier-Louro LA, Oh AJ, Heng K, Shariati MA, Huang H, Hu Y, Liao YJ. Increased ER Stress After Experimental Ischemic Optic Neuropathy and Improved RGC and Oligodendrocyte Survival After Treatment With Chemical Chaperon. Invest Ophthalmol Vis Sci 2019; 60:1953-1966. [PMID: 31060051 PMCID: PMC6735778 DOI: 10.1167/iovs.18-24890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Increased endoplasmic reticulum (ER) stress is one of the earliest subcellular changes in neuro-ophthalmic diseases. In this study, we investigated the expression of key molecules in the ER stress pathways following nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in adults over 50, and assessed the impact of chemical chaperon 4-phenylbutyric acid (4-PBA) in vivo. Methods We induced AION using photochemical thrombosis in adult mice and performed histologic analyses of key molecules in the ER stress pathway in the retina and optic nerve. We also assessed the effects of daily intraperitoneal injections of 4-PBA after AION. Results In the retina at baseline, there was low proapoptotic transcriptional regulator C/EBP homologous protein (CHOP) and high prosurvival chaperon glucose-regulated protein 78 (GRP78) expression in retinal ganglion cells (RGCs). One day after AION, there was significantly increased CHOP and reduced GRP78 expressions in the ganglion cell layer. In the optic nerve at baseline, there was little CHOP and high GRP78 expression. One day after AION, there was significantly increased CHOP and no change in GRP78 expression. Treatment immediately after AION using daily intraperitoneal injection of chemical chaperone 4-PBA for 19 days significantly rescued Brn3A+ RGCs and Olig2+ optic nerve oligodendrocytes. Conclusions We showed for the first time that acute AION resulted in increased ER stress and differential expression of ER stress markers CHOP and GRP78 in the retina and optic nerve. Rescue of RGCs and oligodendrocytes with 4-PBA provides support for ER stress reduction as possible treatment for AION.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | | | - Angela Jinsook Oh
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Kathleen Heng
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Mohammad Ali Shariati
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Yang Hu
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States.,Department of Neurology, Stanford University, School of Medicine, Stanford, California, United States
| |
Collapse
|
17
|
Stankowska DL, Nam MH, Nahomi RB, Chaphalkar RM, Nandi SK, Fudala R, Krishnamoorthy RR, Nagaraj RH. Systemically administered peptain-1 inhibits retinal ganglion cell death in animal models: implications for neuroprotection in glaucoma. Cell Death Discov 2019; 5:112. [PMID: 31285855 PMCID: PMC6609721 DOI: 10.1038/s41420-019-0194-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal degeneration and death of retinal ganglion cells (RGCs) are the primary causes of vision loss in glaucoma. In this study, we evaluated the efficacy of a peptide (peptain-1) that exhibits robust chaperone and anti-apoptotic activities against RGC loss in two rodent models and in cultured RGCs. In cultures of rat primary RGCs and in rat retinal explants peptain-1 significantly decreased hypoxia-induced RGC loss when compared to a scrambled peptide. Intraperitoneally (i.p.) injected peptain-1 (conjugated to a Cy7 fluorophore) was detected in the retina indicative of its ability to cross the blood-retinal barrier. Peptain-1 treatment inhibited RGC loss in the retina of mice subjected to ischemia/reperfusion (I/R) injury. A reduction in anterograde axonal transport was also ameliorated by peptain-1 treatment in the retina of I/R injured mice. Furthermore, i.p. injections of peptain-1 significantly reduced RGC death and axonal loss and partially restored retinal mitochondrial cytochrome c oxidase subunit 6b2 (COX 6b2) levels in rats subjected to five weeks of elevated intraocular pressure. We conclude that i.p. injected peptain-1 gains access to the retina and protects both RGC somas and axons against the injury caused by I/R and ocular hypertension. Based on these findings, peptain-1 has the potential to be developed as an efficacious neuroprotective agent for the treatment of glaucoma.
Collapse
Affiliation(s)
- Dorota L Stankowska
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Mi-Hyun Nam
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Rooban B Nahomi
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Renuka M Chaphalkar
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Sandip K Nandi
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Rafal Fudala
- 3Department of Microbiology, Immunology and Genetics, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Raghu R Krishnamoorthy
- 1Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX 76107 USA
| | - Ram H Nagaraj
- 2Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 USA.,4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045 USA
| |
Collapse
|
18
|
Rothbard JB, Kurnellas MP, Ousman SS, Brownell S, Rothbard JJ, Steinman L. Small Heat Shock Proteins, Amyloid Fibrils, and Nicotine Stimulate a Common Immune Suppressive Pathway with Implications for Future Therapies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034223. [PMID: 30249602 DOI: 10.1101/cshperspect.a034223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) is central to the anti-inflammatory function of the vagus nerve in a physiological mechanism termed the inflammatory reflex. Studies on the inflammatory reflex have been instrumental for the current development of the field of bioelectronic medicine. An independent investigation of the biological role of αB-crystallin (HspB5), the most abundant gene transcript present in active multiple sclerosis lesions in human brains, also led to α7nAChR. Induction of experimental autoimmune encephalomyelitis (EAE) in HspB5-/- mice results in greater paralytic signs, increased levels of proinflammatory cytokines, and T-lymphocyte activation relative to wild-type animals. Administration of HspB5 was therapeutic in animal models of multiple sclerosis, retinal and cardiac ischemia, and stroke. Structure-activity studies established that residues 73-92 were as potent as the parent protein, but only when it formed amyloid fibrils. Amyloid fibrils and small heat shock proteins (sHsps) selectively bound α7nAChR on peritoneal macrophages (MΦs) and B lymphocytes, converting the MΦs to an immune suppressive phenotype and mobilizing the migration of both cell types from the peritoneum to secondary lymph organs. Here, we review multiple aspects of this work, which may be of interest for developing future therapeutic approaches for multiple sclerosis and other disorders.
Collapse
Affiliation(s)
- Jonathan B Rothbard
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| | | | - Shalina S Ousman
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Sara Brownell
- School of Life Sciences, Arizona State University, Tempe, Arizona 85281
| | - Jesse J Rothbard
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| | - Lawrence Steinman
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5316
| |
Collapse
|
19
|
Optic Nerve Regeneration: Considerations on Treatment of Acute Optic Neuropathy and End-Stage Disease. CURRENT OPHTHALMOLOGY REPORTS 2019. [DOI: 10.1007/s40135-019-00194-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Wang R, Chen ZH, Wang Y, Huang HB, Fan SJ, Chen LL. Recombination and identification of human alpha B-crystallin. Int J Ophthalmol 2018; 11:1916-1921. [PMID: 30588422 DOI: 10.18240/ijo.2018.12.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To recombine the human alpha B-crystallin (αB-crystallin) using gene cloning technology and prokaryotic expression vector and confirm the biological activity of recombinant human αB-crystallin. METHODS Cloning the human αB-crystallin cDNA according to the nucleotide sequence of the human αB-crystallin, constructing the pET-28/CRYAB prokaryotic expression plasmid by restriction enzyme digestion method, and stably expressing transformed into the Escherichia coli (E. coli) DH5 alpha. The recombinant human αB-crystallin was purified by Q sepharose. By enzyme digestion analysis, Western blotting and sequencing, the recombinant human αB-crystallin was identified and the activity of its molecular protein was detected. RESULTS Compared with the gene bank (GeneBank), the cloned human sequence of human αB-crystallin cDNA has the same open reading frame. Identification and sequencing of the cloned human αB-crystallin cDNA in prokaryotic expression vector confirmed the full length sequence, and the vector was constructed successfully. The E. coli containing plasmid pET-28/CRYAB induced by isopropyl-β-D-thiogalactoside successfully expressed the human αB-crystallin. Insulin confirmed that the recombinant human αB-crystallin has a molecular chaperone activity. CONCLUSION The prokaryotic expression vector pET-28/CRYAB of recombinant human αB-crystallin is successfully constructed, and the recombinant human αB-crystallin with molecular chaperone activity is obtained, which lay a foundation for the research and application of the recombinant human αB-crystallin and its chaperone activity.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ophthalmology, Hainan Branch of PLA General Hospital, Sanya 572000, Hainan Province, China
| | - Ze-Hua Chen
- Department of Ophthalmology, Hainan Branch of PLA General Hospital, Sanya 572000, Hainan Province, China
| | - Yi Wang
- Chongqing Aier General Hospital, Aier School of Ophthalmology, Central South University, Chongqing 400020, China
| | - Hou-Bin Huang
- Department of Ophthalmology, Hainan Branch of PLA General Hospital, Sanya 572000, Hainan Province, China
| | - Si-Jun Fan
- PLA Rocket Force General Hospital, Beijing 100088, China
| | - Lan-Lan Chen
- Department of Ophthalmology, Hainan Branch of PLA General Hospital, Sanya 572000, Hainan Province, China
| |
Collapse
|
21
|
Ali Shariati M, Kumar V, Yang T, Chakraborty C, Barres BA, Longo FM, Liao YJ. A Small Molecule TrkB Neurotrophin Receptor Partial Agonist as Possible Treatment for Experimental Nonarteritic Anterior Ischemic Optic Neuropathy. Curr Eye Res 2018; 43:1489-1499. [PMID: 30273053 PMCID: PMC10710940 DOI: 10.1080/02713683.2018.1508726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) and activation of its high affinity receptor tropomyosin kinase (Trk) B promote retinal ganglion cells (RGCs) survival following injury. In this study, we tested the effects of LM22A-4, a small molecule TrkB receptor-specific partial agonist, on RGC survival in vitro and in experimental nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years. METHODS We assessed drug effects on immunopanned, cultured RGCs and calculated RGC survival and assessed TrkB receptor activation by mitogen-activated protein (MAP) kinase translocation. To assess effects in vivo, we induced murine AION and treated the animals with one intravitreal injection and three-week systemic treatment. We measured drug effects using serial spectral-domain optical coherence tomography (OCT) and quantified retinal Brn3A+ RGC density three weeks after ischemia. RESULTS In vitro, LM22A-4 significantly increased the survival of cultured RGCs at day 2 (95% CI control: 8.4-13.6; LM22A-4: 23.7-30.3; BDNF: 24.3-29.9; P ≤ 0.0001), similar to the effect of the endogenous TrkB receptor ligand BDNF. There was also significant nuclear and cytoplasmic translocation of MAP kinase (95% CI control: 0.9-6.8; LM22A-4: 38.8-84.4; BDNF: 64.0-93.0; P = 0.0002), a known downstream event of TrkB receptor activation. Following AION, LM22A-4 treatment led to significant preservation of the ganglion cell complex (95% CI: AION-PBS: 66.8-70.7%; AION-LM22A-4: 70.0-73.1; P = 0.03) and total retinal thickness (95% CI: AION-PBS: 185-196%; AION-LM22A-4: 195-203; P = 0.002) as measured by OCT compared with non-treated eyes. There was also significant rescue of the Brn3A+ RGC density on morphometric analysis of whole mount retinae (95% CI control: 2360-2629; AION-PBS: 1647-2008 cells/mm2; AION-LM22A-4: 1958-2216 cells/mm2; P = 0.02). CONCLUSIONS TrkB receptor partial agonist LM22A-4 promoted survival of cultured RGCs in vitro by TrkB receptor activation, and treatment in vivo led to increased survival of RGCs after optic nerve ischemia, providing support that LM22A-4 may be effective therapy to treat ischemic optic neuropathy. ABBREVIATIONS AION: anterior ischemic optic neuropathy, BDNF: Brain-derived neurotrophic factor, GCC: ganglion cell complex, MAP: mitogen-activated protein, OCT: spectral-domain optical coherence tomography, OD: right eye, ON: optic nerve, ONH: optic nerve head, OS: left eye, RGC: retinal ganglion cell; Trk: tropomyosin kinase.
Collapse
Affiliation(s)
- Mohammad Ali Shariati
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
| | - Varun Kumar
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
| | - Tao Yang
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | | | - Ben Anthony Barres
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | - Frank Michael Longo
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | - Yaping Joyce Liao
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
22
|
Pereira LS, Ávila MP, Salustiano LX, Paula AC, Arnhold E, McCulley TJ. Intravitreal Triamcinolone Acetonide Injection in a Rodent Model of Anterior Ischemic Optic Neuropathy. J Neuroophthalmol 2018; 38:561-565. [PMID: 29521709 DOI: 10.1097/wno.0000000000000639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The management of nonarteritic anterior ischemic optic neuropathy centers around prevention of second eye involvement, without a uniformly accepted therapy for the involved eye. Several researchers have assessed the benefit of steroids with conflicting results. This experimental study was designed to evaluate the efficacy of a single intravitreal triamcinolone acetonide injection (IVTA) in preserving retinal ganglion cells (RGCs) in a rodent model of anterior ischemic optic neuropathy (rAION). METHODS The rAION was induced in female Wistar rats. Animals were randomized into 3 groups: 1) untreated, 2) treated with 56 μg IVTA, and 3) intravitreal saline (placebo). Procedures were performed in the left eye, with the right eye serving as control. After 30 days, animals were sacrificed and eyes were assessed histologically for RGC number. RESULTS The average number of RGC was significantly lower in rAION subgroups when compared with the control group (P < 0.001). No significant difference was seen between rAION eyes treated with IVTA, placebo, and untreated eyes (P > 0.05%). CONCLUSIONS In this rodent model for AION, no therapeutic benefit of intravitreal steroid injection was identified.
Collapse
Affiliation(s)
- Luciano S Pereira
- Departments of Ophthalmology (LSP, MPA, ACP), Pathology (LXS), and Statistics (EA), Universidade Federal de Goiás, Goiânia, Brazil; and The Wilmer Eye Institute (TJM), Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
23
|
Mahapatra S, Ying L, Ho PPK, Kurnellas M, Rothbard J, Steinman L, Cornfield DN. An amyloidogenic hexapeptide derived from amylin attenuates inflammation and acute lung injury in murine sepsis. PLoS One 2018; 13:e0199206. [PMID: 29990318 PMCID: PMC6039005 DOI: 10.1371/journal.pone.0199206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/04/2018] [Indexed: 12/03/2022] Open
Abstract
Although the accumulation of amyloidogenic proteins in neuroinflammatory conditions is generally considered pathologic, in a murine model of multiple sclerosis, amyloid-forming fibrils, comprised of hexapeptides, are anti-inflammatory. Whether these molecules modulate systemic inflammatory conditions remains unknown. We hypothesized that an amylin hexapeptide that forms fibrils can attenuate the systemic inflammatory response in a murine model of sepsis. To test this hypothesis, mice were pre-treated with either vehicle or amylin hexapeptide (20 μg) at 12 hours and 6 hours prior to intraperitoneal (i.p.) lipopolysaccharide (LPS, 20 mg/kg) administration. Illness severity and survival were monitored every 6 hours for 3 days. Levels of pro- (IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-10) cytokines were measured via ELISA at 1, 3, 6, 12, and 24 hours after LPS (i.p.). As a metric of lung injury, pulmonary artery endothelial cell (PAEC) barrier function was tested 24 hours after LPS administration by comparing lung wet-to-dry ratios, Evan’s blue dye (EBD) extravasation, lung histology and caspase-3 activity. Compared to controls, pretreatment with amylin hexapeptide significantly reduced mortality (p<0.05 at 72 h), illness severity (p<0.05), and pro-inflammatory cytokine levels, while IL-10 levels were elevated (p<0.05). Amylin pretreatment attenuated LPS-induced lung injury, as demonstrated by decreased lung water and caspase-3 activity (p<0.05, versus PBS). Hence, in a murine model of systemic inflammation, pretreatment with amylin hexapeptide reduced mortality, disease severity, and preserved lung barrier function. Amylin hexapeptide may represent a novel therapeutic tool to mitigate sepsis severity and lung injury.
Collapse
Affiliation(s)
- Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| | - Lihua Ying
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peggy Pui-Kay Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Jonathan Rothbard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - David N. Cornfield
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
24
|
Identification of a common immune regulatory pathway induced by small heat shock proteins, amyloid fibrils, and nicotine. Proc Natl Acad Sci U S A 2018; 115:7081-7086. [PMID: 29915045 DOI: 10.1073/pnas.1804599115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although certain dogma portrays amyloid fibrils as drivers of neurodegenerative disease and neuroinflammation, we have found, paradoxically, that amyloid fibrils and small heat shock proteins (sHsps) are therapeutic in experimental autoimmune encephalomyelitis (EAE). They reduce clinical paralysis and induce immunosuppressive pathways, diminishing inflammation. A key question was the identification of the target for these molecules. When sHsps and amyloid fibrils were chemically cross-linked to immune cells, a limited number of proteins were precipitated, including the α7 nicotinic acetylcholine receptor (α7 NAChR). The α7 NAChR is noteworthy among the over 20 known receptors for amyloid fibrils, because it plays a central role in a well-defined immune-suppressive pathway. Competitive binding between amyloid fibrils and α-bungarotoxin to peritoneal macrophages (MΦs) confirmed the involvement of α7 NAChR. The mechanism of immune suppression was explored, and, similar to nicotine, amyloid fibrils inhibited LPS induction of a common set of inflammatory cytokines while inducing Stat3 signaling and autophagy. Consistent with this, previous studies have established that nicotine, sHsps, and amyloid fibrils all were effective therapeutics in EAE. Interestingly, B lymphocytes were needed for the therapeutic effect. These results suggest that agonists of α7 NAChR might have therapeutic benefit for a variety of inflammatory diseases.
Collapse
|
25
|
Sreekumar PG, Li Z, Wang W, Spee C, Hinton DR, Kannan R, MacKay JA. Intra-vitreal αB crystallin fused to elastin-like polypeptide provides neuroprotection in a mouse model of age-related macular degeneration. J Control Release 2018; 283:94-104. [PMID: 29778783 DOI: 10.1016/j.jconrel.2018.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe and irreversible central vision loss, and the primary site of AMD pathology is the retinal pigment epithelium (RPE). Geographic atrophy (GA) is an advanced form of AMD characterized by extensive RPE cell loss, subsequent degeneration of photoreceptors, and thinning of retina. This report describes the protective potential of a peptide derived from the αB crystallin protein using a sodium iodate (NaIO3) induced mouse model of GA. Systemic NaIO3 challenge causes degeneration of the RPE and neighboring photoreceptors, which have similarities to retinas of GA patients. αB crystallin is an abundant ocular protein that maintains ocular clarity and retinal homeostasis, and a small peptide from this protein (mini cry) displays neuroprotective properties. To retain this peptide for longer in the vitreous, mini cry was fused to an elastin-like polypeptide (ELP). A single intra-vitreal treatment by this crySI fusion significantly inhibits retinal degeneration in comparison to free mini cry. While mini cry is cleared from the eye with a mean residence time of 0.4 days, crySI is retained with a mean residence time of 3.0 days; furthermore, fundus photography reveals evidence of retention at two weeks. Unlike the free mini cry, crySI protects the RPE against NaIO3 challenge for at least two weeks after administration. CrySI also inhibits RPE apoptosis and caspase-3 activation and protects the retina from cell death up to 1-month post NaIO3 challenge. These results show that intra-ocular ELP-linked peptides such as crySI hold promise as protective agents to prevent RPE atrophy and progressive retinal degeneration in AMD.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Zhe Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| | - Wan Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| | - Christine Spee
- Department Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - David R Hinton
- Department Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA; Department Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
26
|
Ruebsam A, Dulle JE, Myers AM, Sakrikar D, Green KM, Khan NW, Schey K, Fort PE. A specific phosphorylation regulates the protective role of αA-crystallin in diabetes. JCI Insight 2018; 3:97919. [PMID: 29467334 DOI: 10.1172/jci.insight.97919] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration is a central aspect of the early stages of diabetic retinopathy, the primary ocular complication associated with diabetes. While progress has been made to improve the vascular perturbations associated with diabetic retinopathy, there are still no treatment options to counteract the neuroretinal degeneration associated with diabetes. Our previous work suggested that the molecular chaperones α-crystallins could be involved in the pathophysiology of diabetic retinopathy; however, the role and regulation of α-crystallins remained unknown. In the present study, we demonstrated the neuroprotective role of αA-crystallin during diabetes and its regulation by its phosphorylation on residue 148. We further characterized the dual role of αA-crystallin in neurons and glia, its essential role for neuronal survival, and its direct dependence on phosphorylation on this residue. These findings support further evaluation of αA-crystallin as a treatment option to promote neuron survival in diabetic retinopathy and neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Anne Ruebsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer E Dulle
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Angela M Myers
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Katelyn M Green
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin Schey
- Department of Biochemistry and Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
28
|
Holtman IR, Bsibsi M, Gerritsen WH, Boddeke HWGM, Eggen BJL, van der Valk P, Kipp M, van Noort JM, Amor S. Identification of highly connected hub genes in the protective response program of human macrophages and microglia activated by alpha B-crystallin. Glia 2017; 65:460-473. [DOI: 10.1002/glia.23104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Inge R. Holtman
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | | | - Wouter H. Gerritsen
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Hendrikus W. G. M. Boddeke
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | - Bart J. L. Eggen
- Department of Medical Physiology; University of Groningen, University Medical Center Groningen; Groningen AV the Netherlands
| | - Paul van der Valk
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Markus Kipp
- Department of Neuroanatomy; University of Munich; Munich Germany
| | - Johannes M. van Noort
- Delta Crystallon BV; Beverwijk ED the Netherlands
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
| | - Sandra Amor
- Department of Pathology; VU University Medical Center; Amsterdam HV the Netherlands
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry; Queen Mary University of London; London United Kingdom
| |
Collapse
|
29
|
Sayed KM, Mahmoud AA. Heat shock protein-70 and hypoxia inducible factor-1α in type 2 diabetes mellitus patients complicated with retinopathy. Acta Ophthalmol 2016; 94:e361-6. [PMID: 26725915 DOI: 10.1111/aos.12919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/27/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE To elucidate the role of heat shock protein-70 (HSP70) and hypoxia inducible factor-1α (HIF-1α) in diabetic retinopathy (DR) patients. DESIGN AND METHODS A comparative study was done on the serum level of both HSP70 and HIF-1α in 50 patients with type 2 diabetes mellitus (T2DM) without DR, 50 patients with T2DM and DR and 70 healthy control subjects. RESULTS HSP70 and HIF-1α were significantly increased in T2DM patients compared to controls and increased in patients with T2DM & DR compared to T2DM patients without DR (p < 0.0001). HSP70 did not differ among the patients with different stages of DR, while HIF-1α increased significantly in grades 3 and 4 DR patients compared to grades 1 and 2 DR patients. A strong correlation was found between HIF-1α and the development of DR (r = 0.835, p = 0.00) but not with HSP70. HIF-1α can be used as a predictor for development of DR but not HSP70. CONCLUSIONS Our study was the first that investigated both HSP70 and HIF-1α in humans and was the first that measured their levels in serum of patients with DR. The study suggested that HSP70 might have a protective function in T2DM patients rather than a therapeutic function. HIF-1α had an upper hand in the development and progression of DR. Induction of HSP70 and blockage of HIF-1α could lead to the development of novel prophylactic and therapeutic strategies for DR and potentially other diabetic complications.
Collapse
Affiliation(s)
- Khulood M. Sayed
- The Department of Ophthalmology; Faculty of Medicine; Sohag University; Sohag Egypt
| | - Aida A. Mahmoud
- The Department of Biochemistry; Faculty of Medicine; Sohag University; Sohag Egypt
| |
Collapse
|
30
|
Shao WY, Liu X, Gu XL, Ying X, Wu N, Xu HW, Wang Y. Promotion of axon regeneration and inhibition of astrocyte activation by alpha A-crystallin on crushed optic nerve. Int J Ophthalmol 2016; 9:955-66. [PMID: 27500100 DOI: 10.18240/ijo.2016.07.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the effects of αA-crystallin in astrocyte gliosis after optic nerve crush (ONC) and the mechanism of α-crystallin in neuroprotection and axon regeneration. METHODS ONC was established on the Sprague-Dawley rat model and αA-crystallin (10(-4) g/L, 4 µL) was intravitreously injected into the rat model. Flash-visual evoked potential (F-VEP) was examined 14d after ONC, and the glial fibrillary acidic protein (GFAP) levels in the retina and crush site were analyzed 1, 3, 5, 7 and 14d after ONC by immunohistochemistry (IHC) and Western blot respectively. The levels of beta Tubulin (TUJ1), growth-associated membrane phosphoprotein-43 (GAP-43), chondroitin sulfate proteoglycans (CSPGs) and neurocan were also determined by IHC 14d after ONC. RESULTS GFAP level in the retina and the optic nerve significantly increased 1d after ONC, and reached the peak level 7d post-ONC. Injection of αA-crystallin significantly decreased GFAP level in both the retina and the crush site 3d after ONC, and induced astrocytes architecture remodeling at the crush site. Quantification of retinal ganglion cell (RGC) axons indicated αA-crystallin markedly promoted axon regeneration in ONC rats and enhanced the regenerated axons penetrated into the glial scar. CSPGs and neurocan expression also decreased 14d after αA-crystallin injection. The amplitude (N1-P1) and latency (P1) of F-VEP were also restored. CONCLUSION Our results suggest α-crystallin promotes the axon regeneration of RGCs and suppresses the activation of astrocytes.
Collapse
Affiliation(s)
- Wei-Yang Shao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xian-Liang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xi Ying
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Nan Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yi Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
31
|
Steinman L. A Journey in Science: The Privilege of Exploring the Brain and the Immune System. Mol Med 2016; 22:molmed.2015.00263. [PMID: 27652378 PMCID: PMC5004718 DOI: 10.2119/molmed.2015.00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the Cerami Award Monograph is by Lawrence Steinman, MD, of Stanford University in California. A visionary in the field of neurology, this is the story of Dr. Steinman's scientific journey.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
32
|
Ummenthum K, Peferoen LAN, Finardi A, Baker D, Pryce G, Mantovani A, Bsibsi M, Bottazzi B, Peferoen-Baert R, van der Valk P, Garlanda C, Kipp M, Furlan R, van Noort JM, Amor S. Pentraxin-3 is upregulated in the central nervous system during MS and EAE, but does not modulate experimental neurological disease. Eur J Immunol 2015; 46:701-11. [PMID: 26576501 DOI: 10.1002/eji.201545950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 12/30/2022]
Abstract
Pentraxin-3 (PTX3), an acute-phase protein released during inflammation, aids phagocytic clearance of pathogens and apoptotic cells, and plays diverse immunoregulatory roles in tissue injury. In neuroinflammatory diseases, like MS, resident microglia could become activated by endogenous agonists for Toll like receptors (TLRs). Previously we showed a strong TLR2-mediated induction of PTX3 in cultured human microglia and macrophages by HspB5, which accumulates in glia during MS. Given the anti-inflammatory effects of HspB5, we examined the contribution of PTX3 to these effects in MS and its animal model EAE. Our data indicate that TLR engagement effectively induces PTX3 expression in human microglia, and that such expression is readily detectable in MS lesions. Enhanced PTX3 expression is prominently expressed in microglia in preactive MS lesions, and in microglia/macrophages engaged in myelin phagocytosis in actively demyelinating lesions. Yet, we did not detect PTX3 in cerebrospinal fluid of MS patients. PTX3 expression is also elevated in spinal cords during chronic relapsing EAE in Biozzi ABH mice, but the EAE severity and time course in PTX3-deficient mice did not differ from WT mice. Moreover, systemic PTX3 administration did not alter the disease onset or severity. Our findings reveal local functions of PTX3 during neuroinflammation in facilitating myelin phagocytosis, but do not point to a role for PTX3 in controlling the development of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Kimberley Ummenthum
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Laura A N Peferoen
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Dept. of Neuroscience, San Raffaele Hospital, Milan, Italy
| | - David Baker
- Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry
| | - Gareth Pryce
- Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry
| | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | | | - Barbara Bottazzi
- IRCCS Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | | | - Paul van der Valk
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Dept. of Neuroscience, San Raffaele Hospital, Milan, Italy
| | | | - Sandra Amor
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands.,Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry
| |
Collapse
|
33
|
van Noort JM, Bsibsi M, Nacken PJ, Verbeek R, Venneker EH. Therapeutic Intervention in Multiple Sclerosis with Alpha B-Crystallin: A Randomized Controlled Phase IIa Trial. PLoS One 2015; 10:e0143366. [PMID: 26599332 PMCID: PMC4657879 DOI: 10.1371/journal.pone.0143366] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
As a molecular chaperone and activator of Toll-like receptor 2-mediated protective responses by microglia and macrophages, the small heat shock protein alpha B-crystallin (HspB5) exerts therapeutic effects in different animal models for neuroinflammation, including the model for multiple sclerosis (MS). Yet, HspB5 can also stimulate human antigen-specific memory T cells to release IFN-γ, a cytokine with well-documented detrimental effects during MS. In this study, we explored in a Phase IIa randomized clinical trial the therapeutic application of HspB5 in relapsing-remitting MS (RR-MS), using intravenous doses sufficient to support its protective effects, but too low to trigger pathogenic memory T-cell responses. These sub-immunogenic doses were selected based on in vitro analysis of the dose-response profile of human T cells and macrophages to HspB5, and on the immunological effects of HspB5 in healthy humans as established in a preparatory Phase I study. In a 48-week randomized, placebo-controlled, double-blind Phase IIa trial, three bimonthly intravenous injections of 7.5, 12.5 or 17.5 mg HspB5 were found to be safe and well tolerated in RR-MS patients. While predefined clinical endpoints did not differ significantly between the relatively small groups of MS patients treated with either HspB5 or placebo, repeated administration especially of the lower doses of HspB5 led to a progressive decline in MS lesion activity as monitored by magnetic resonance imaging (MRI), which was not seen in the placebo group. Exploratory linear regression analysis revealed this decline to be significant in the combined group receiving either of the two lower doses, and to result in a 76% reduction in both number and total volumes of active MRI lesions at 9 months into the study. These data provide the first indication for clinical benefit resulting from intervention in RR-MS with HspB5. Trial Registration: ClinicalTrials.gov Phase I: NCT02442557; Phase IIa: NCT02442570
Collapse
|
34
|
Crystallins and neuroinflammation: The glial side of the story. Biochim Biophys Acta Gen Subj 2015; 1860:278-86. [PMID: 26049079 DOI: 10.1016/j.bbagen.2015.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is an abundance of evidence to support the association of damaging neuroinflammation and neurodegeneration across a multitude of diseases. One of the links between these pathological phenomena is the role of chaperone proteins as both neuroprotective and immune-regulatory agents. SCOPE OF REVIEW Chaperone proteins are highly expressed at sites of neuroinflammation both in glial cells and in the injured neurons that initiate the immune response. For this reason, the use of chaperones as treatment for various diseases associated with neuroinflammation is a highly active area of investigation. This review explores the various ways that the small heat shock protein chaperones, α-crystallins, can affect glial cell function with a specific focus on their implication in the inflammatory response associated with neurodegenerative disorders, and their potential as therapeutic treatment. MAJOR CONCLUSIONS Although the mechanisms are still under investigation, a clear link has now been established between alpha-crystallins and neuroinflammation, especially through their roles in microglial and macroglial cells. Interestingly, similar to inflammation in itself, crystallins can have a beneficial or detrimental impact on the CNS based on the context and duration of the condition. GENERAL SIGNIFICANCE Overall this review points out the novel roles that chaperones such as alpha-crystallins can play outside of the classical protein folding pathways, and their potential in the development of new therapies for the treatment of neuroinflammatory/neurodegenerative diseases. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
|
35
|
Alpha crystallins in the retinal pigment epithelium and implications for the pathogenesis and treatment of age-related macular degeneration. Biochim Biophys Acta Gen Subj 2015; 1860:258-68. [PMID: 26026469 DOI: 10.1016/j.bbagen.2015.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αA- and αB crystallins are principal members of the small heat shock protein family and elicit both a cell protective function and a chaperone function. α-Crystallins have been found to be prominent proteins in normal and pathological retina emphasizing the importance for in-depth understanding of their function and significance. SCOPE OF REVIEW Retinal pigment epithelial cells (RPE) play a vital role in the pathogenesis of age-related macular degeneration (AMD). This review addresses a number of cellular functions mediated by α-crystallins in the retina. Prominent expression of αB crystallin in mitochondria may serve to protect cells from oxidative injury. αB crystallin as secretory protein via exosomes can offer neuroprotection to adjacent RPE cells and photoreceptors. The availability of chaperone-containing minipeptides of αB crystallin could prove to be a valuable new tool for therapeutic treatment of retinal disorders. MAJOR CONCLUSIONS α-Crystallins are expressed in cytosol and mitochondria of RPE cells and are regulated during oxygen-induced retinopathy and during development. α-Crystallins protect RPE from oxidative-and ER stress-induced injury and autophagy. αB-Crystallin is a modulator of angiogenesis and vascular endothelial growth factor. αB Crystallin is secreted via exosomal pathway. Minichaperone peptides derived from αB Crystallin prevent oxidant induced cell death and have therapeutic potential. GENERAL SIGNIFICANCE Overall, this review summarizes several novel properties of α-crystallins and their relevance to maintaining normal retinal function. In particular, the use of α-crystallin derived peptides is a promising therapeutic strategy to combat retinal diseases such as AMD. This article is part of a Special Issue entitled Crystallin biochemistry in health and disease.
Collapse
|
36
|
Reddy VS, Reddy GB. Role of crystallins in diabetic complications. Biochim Biophys Acta Gen Subj 2015; 1860:269-77. [PMID: 25988654 DOI: 10.1016/j.bbagen.2015.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Crystallins are the major structural proteins of vertebrate eye lens responsible for maintaining the refractive index of the lens. However, recent studies suggest that they also have a functional significance in non-lenticular tissues. Prolonged uncontrolled diabetes results in the development of macro and microvascular complications that are the leading causes of morbidity and mortality in diabetic patients all over the world. SCOPE OF REVIEW Recent studies have shown that crystallins play an instrumental role in diabetes and its complications. Therefore, this review highlights the current data on the impact of chronic hyperglycemia on expression, distribution, glycation, phosphorylation, chaperone-like function and, anti-apoptotic activity of crystallins. Furthermore, we discussed the insights for developing therapeutic strategies for diabetic complications including natural agents, peptides, and pharmacological chaperones that modulate or mimic chaperone activity of α-crystallins. MAJOR CONCLUSIONS Upregulation of crystallins appears to be a common feature of chronic diabetes. Further, chronic hyperglycemia induces the glycation and phosphorylation of crystallins, mainly α-crystallins and thereby alters their properties. The disturbed interaction of αB-crystallin with various apoptotic mediators including Bax and caspases is also an important factor for increased cell death in diabetes. Numerous dietary agents, peptides, and chemical chaperones prevent apoptosis and the loss of chaperone activity in diabetes. GENERAL SIGNIFICANCE Understanding the role of crystallins will aid in developing therapeutic strategies for alleviating pathophysiological conditions such as protein aggregation, inflammation, oxidative stress and apoptosis associated with chronic complications of diabetes including cataract, retinopathy, and cardiomyopathy. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Vadde Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500 007, India.
| |
Collapse
|
37
|
Abstract
The brain under immunological attack does not surrender quietly. Investigation of brain lesions in multiple sclerosis (MS) reveals a coordinated molecular response involving various proteins and small molecules ranging from heat shock proteins to small lipids, neurotransmitters, and even gases, which provide protection and foster repair. Reduction of inflammation serves as a necessary prerequisite for effective recovery and regeneration. Remarkably, many lesion-resident molecules activate pathways leading to both suppression of inflammation and promotion of repair mechanisms. These guardian molecules and their corresponding physiologic pathways could potentially be exploited to silence inflammation and repair the injured and degenerating brain and spinal cord in both relapsing-remitting and progressive forms of MS and may be beneficial in other neurologic and psychiatric conditions.
Collapse
|
38
|
Nagaraj RH, Nahomi RB, Mueller NH, Raghavan CT, Ammar DA, Petrash JM. Therapeutic potential of α-crystallin. Biochim Biophys Acta Gen Subj 2015; 1860:252-7. [PMID: 25840354 DOI: 10.1016/j.bbagen.2015.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/26/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The findings that α-crystallins are multi-functional proteins with diverse biological functions have generated considerable interest in understanding their role in health and disease. Recent studies have shown that chaperone peptides of α-crystallin could be delivered into cultured cells and in experimental animals with beneficial effects against protein aggregation, oxidation, inflammation and apoptosis. SCOPE OF REVIEW In this review, we will summarize the latest developments on the therapeutic potential of α-crystallins and their functional peptides. MAJOR CONCLUSIONS α-Crystallins and their functional peptides have shown significant favorable effects against several diseases. Their targeted delivery to tissues would be of great therapeutic benefit. However, α-crystallins can also function as disease-causing proteins. These seemingly contradictory functions must be carefully considered prior to their therapeutic use. GENERAL SIGNIFICANCE αA and αB-Crystallin are members of the small heat shock protein family. These proteins exhibit molecular chaperone and anti-apoptotic activities. The core crystallin domain within these proteins is largely responsible for these prosperities. Recent studies have identified peptides within the crystallin domain of both α- and αB-crystallins with remarkable chaperone and anti-apoptotic activities. Administration of α-crystallin or their functional peptides has shown substantial inhibition of pathologies in several diseases. However, α-crystallins have been shown to promote disease-causing pathways. These two sides of the proteins are discussed in this review. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Ram H Nagaraj
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Rooban B Nahomi
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Niklaus H Mueller
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cibin T Raghavan
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David A Ammar
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Ischemic optic neuropathies and their models: disease comparisons, model strengths and weaknesses. Jpn J Ophthalmol 2015; 59:135-47. [PMID: 25690987 DOI: 10.1007/s10384-015-0373-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/30/2014] [Indexed: 12/26/2022]
Abstract
Ischemic optic neuropathies (IONs) describe a group of diseases that specifically target the optic nerve and result in sudden vision loss. These include nonarteritic and arteritic anterior ischemic optic neuropathy (NAION and AAION) and posterior ischemic optic neuropathy (NPION, APION). Until recently, little was known of the mechanisms involved in ION damage, due to a lack of information about the mechanisms associated with these diseases. This review discusses the new models that closely mimic these diseases (rodent NAION, primate NAION, rodent PION). These models have enabled closer dissection of the mechanisms involved with the pathophysiology of these disorders and enable identification of relevant mechanisms and potential pathways for effective therapeutic intervention. Descriptions of the different models are included, and comparisons between the models, their relative similarities with the clinical disease, as well as differences are discussed.
Collapse
|
40
|
Miller NR, Arnold AC. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy. Eye (Lond) 2015; 29:65-79. [PMID: 24993324 PMCID: PMC4289822 DOI: 10.1038/eye.2014.144] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/12/2023] Open
Abstract
Nonarteritic anterior ischaemic optic neuropathy (NAION) is the most common acute optic neuropathy in patients over the age of 50 and is the second most common cause of permanent optic nerve-related visual loss in adults after glaucoma. Patients typically present with acute, painless, unilateral loss of vision associated with a variable visual field defect, a relative afferent pupillary defect, a swollen, hyperaemic optic disc, and one or more flame-shaped peripapillary retinal haemorrhages. The pathogenesis of this condition is unknown, but it occurs primarily in patients with structurally small optic discs that have little or no cup and a variety of underlying vascular disorders that may or may not be known at the time of visual loss. There is no consistently beneficial medical or surgical treatment for the condition, but there are now animal models that allow testing of various potential therapies. About 40% of patients experience spontaneous improvement in visual acuity. Patients in whom NAION occurs in one eye have a 15-19% risk of developing a similar event in the opposite eye over the subsequent 5 years.
Collapse
Affiliation(s)
- N R Miller
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - A C Arnold
- UCLA Department of Ophthalmology, The Jules Stein Eye Institute, Los Angeles, CA, USA
| |
Collapse
|
41
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
42
|
Subretinal fluid is common in experimental non-arteritic anterior ischemic optic neuropathy. Eye (Lond) 2014; 28:1494-501. [PMID: 25257770 DOI: 10.1038/eye.2014.220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/07/2014] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Anterior ischemic optic neuropathy (AION) is an important cause of acute vision loss for which several animal models exist. It has been associated with subretinal fluid in a previous study on patients but not yet so in animal models. PATIENTS AND METHODS A patient presented with acute non-arteritic AION (NAION) and underwent ophthalmic evaluation and testing including fluorescein angiography and spectral-domain optical coherence tomography (SD-OCT). On the basis of the patient's findings, we used SD-OCT circular and volume scans to analyze retinal changes in a murine model of NAION. RESULTS One week after left eye vision loss, the patient had clinical and imaging findings consistent with NAION. On SD-OCT, there was prominent peripapillary retinal thickening consistent with intra-retinal edema and sub-foveolar fluid. Inspired by the findings in human AION, we looked for similar changes in murine NAION using SD-OCT. The circular scan did not adequately detect the presence of subretinal fluid. Using the 25-line scan, which covered a larger part of the posterior pole, we found that 100% of murine AION resulted in subretinal fluid at day 1. The subretinal fluid resolved by week 1. CONCLUSION This study detailed a case of clinical NAION associated with intra-retinal and subretinal fluid. We also found that subretinal fluid was common in murine photochemical thrombosis model of AION and could be found far away from the optic disc.
Collapse
|
43
|
Steinman L. Why are prions and amyloid structures immune suppressive and other intriguing questions facing neuroimmunologists in the future. Rev Neurol (Paris) 2014; 170:602-7. [PMID: 25193013 DOI: 10.1016/j.neurol.2014.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/25/2014] [Indexed: 11/25/2022]
Abstract
The immune system plays a major role in certain diseases of the brain like multiple sclerosis and neuromyelitis optica, while the brain may play a major role in modulating certain immunologic diseases of the periphery like inflammatory bowel disease. The most significant developments in neuroimmunology will involve explorations of the roles for the immune system in neurodegenerative conditions often associated with the presence of amyloid deposits. Here I present my personal perspectives on four of the most intriguing challenges that we face in the future of neuroimmunology: (1) Why are the traditional hallmarks of innate and adaptive inflammation conspicuously absent from brains of individuals with prion disease and amyloid pathology? (2) What is the role of adaptive and innate immunity in progressive forms of multiple sclerosis? (3) Is molecular mimicry an adequate explanation for the initiation of neuroinflammatory disease and for exacerbations in conditions like multiple sclerosis, narcolepsy, and neuromyelitis optica? (4) Do neural pathways regulate inflammatory diseases outside the nervous system?
Collapse
Affiliation(s)
- L Steinman
- 279 Campus, Dr. Beckman Center for Molecular Medicine B002, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Thanos S, Böhm MR, Meyer zu Hörste M, Prokosch-Willing V, Hennig M, Bauer D, Heiligenhaus A. Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res 2014; 42:145-61. [DOI: 10.1016/j.preteyeres.2014.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
45
|
Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, van Horssen J, Eggen BJL, van der Valk P, Amor S, van Noort JM. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 2014; 128:215-29. [PMID: 24997049 DOI: 10.1007/s00401-014-1317-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/08/2023]
Abstract
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.
Collapse
Affiliation(s)
- Malika Bsibsi
- Delta Crystallon, Zernikedreef 9, 2333, CK Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Steinman L, Rothbard JB, Kurnellas MP. Janus faces of amyloid proteins in neuroinflammation. J Clin Immunol 2014; 34 Suppl 1:S61-3. [PMID: 24711007 DOI: 10.1007/s10875-014-0034-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Amyloid forming molecules are generally considered harmful. In Alzheimer's Disease two amyloid molecules Aβ A4 and tau vie for consideration as the main pathogenic culprit. But molecules obey the laws of chemistry and defy the way we categorize them as humans with our well-known proclivities to bias in our reasoning. We have been exploring the brains of multiple sclerosis patients to identify molecules that are associated with protection from inflammation and degeneration. In 2001 we noted that aB crystallin (cryab) was the most abundant transcript found in MS lesions, but not in healthy brains. Cryab can reverse paralysis and attenuate inflammation in several models of inflammation including experimental autoimmune encephalomyelitis (EAE), and various models of ischemia. Cryab is an amyloid forming molecule. We have identified a core structure common to many amyloids including amyloid protein Aβ A4, tau, amylin, prion protein, serum amyloid protein P, and cryab. The core hexapeptide structure is highly immune suppressive and can reverse paralysis in EAE when administered systemically. Administration of this amyloid forming hexapeptide quickly lowers inflammatory cytokines in plasma like IL-6 and IL-2. The hexapeptide bind a set of proinflammatory mediators in plasma, including acute phase reactants and complement components. The beneficial properties of amyloid forming hexapeptides provide a potential new therapeutic direction. These experiments indicate that amyloid forming molecules have Janus faces, providing unexpected benefit for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA,
| | | | | |
Collapse
|
47
|
Liao YJ, Hwang JJ. Treatment of anterior ischemic optic neuropathy: Clues from the bench. Taiwan J Ophthalmol 2014. [DOI: 10.1016/j.tjo.2013.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
48
|
Boelens WC. Cell biological roles of αB-crystallin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:3-10. [PMID: 24576798 DOI: 10.1016/j.pbiomolbio.2014.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
αB-crystallin, also called HspB5, is a molecular chaperone able to interact with unfolding proteins. By interacting, it inhibits further unfolding, thereby preventing protein aggregation and allowing ATP-dependent chaperones to refold the proteins. αB-crystallin belongs to the family of small heat-shock proteins (sHsps), which in humans consists of 10 different members. The protein forms large oligomeric complexes, containing up to 40 or more subunits, which in vivo consist of heterooligomeric complexes formed by a mixture of αB-crystallin and other sHsps. αB-crystallin is highly expressed in the lens and to a lesser extent in several other tissues, among which heart, skeletal muscle and brain. αB-crystallin plays a role in several cellular processes, such as signal transduction, protein degradation, stabilization of cytoskeletal structures and apoptosis. Mutations in the αB-crystallin gene can have detrimental effects, leading to pathologies such as cataract and cardiomyopathy. This review describes the biological roles of αB-crystallin, with a special focus on its function in the eye lens, heart muscle and brain. In addition its therapeutic potential is discussed.
Collapse
Affiliation(s)
- Wilbert C Boelens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
49
|
Slater BJ, Vilson FL, Guo Y, Weinreich D, Hwang S, Bernstein SL. Optic nerve inflammation and demyelination in a rodent model of nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2013; 54:7952-61. [PMID: 24065807 DOI: 10.1167/iovs.13-12064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Optic nerve (ON) ischemia associated with nonarteric anterior ischemic optic neuropathy (NAION) results in axon and myelin damage. Myelin damage activates the intraneural Ras homolog A (RhoA), contributing to axonal regeneration failure. We hypothesized that increasing extrinsic macrophage activity after ON infarct would scavenge degenerate myelin and improve postischemic ON recovery. We used the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) to upregulate ON macrophage activity, and evaluated GM-CSF's effects after ON ischemia in the NAION rodent model (rAION). METHODS Following rAION induction, GM-CSF was administered via intraventricular injection. Retinal ganglion cell (RGC) stereologic analysis was performed 1 month postinduction. The retinae and optic nerve laminae of vehicle- and GM-CSF-treated animals were examined immunohistochemically and ultrastructurally using transmission electron microscopy (TEM). RhoA activity was analyzed using a rhotekin affinity immunoanalysis and densitometry. Isolated ONs were analyzed functionally ex vivo by compound action potential (CAP) analysis. RESULTS Rodent NAION produces ON postinfarct demyelination and myelin damage, functionally demonstrable by CAP analysis and ultrastructurally by TEM. Granulocyte-macrophage colony-stimulating factor increased intraneural inflammation, activating and recruiting endogenous microglia, with only a moderate amount of exogenous macrophage recruitment. Treatment with GM-CSF reduced postinfarct intraneural RhoA activity, but did not neuroprotect RGCs after rAION. CONCLUSIONS Sudden ON ischemia results in previously unrecognized axonal demyelination, which may have a clinically important role in NAION-related functional defects and recovery. Granulocyte-macrophage colony-stimulating factor is not neuroprotective when administered directly to the optic nerve following ON ischemia, and does not improve axonal regeneration. It dramatically increases ON-microglial activation and recruitment.
Collapse
Affiliation(s)
- Bernard J Slater
- Department of Ophthalmology and Visual Sciences, University of Maryland-Baltimore, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
50
|
Alpha-B-Crystallin Induces an Immune-Regulatory and Antiviral Microglial Response in Preactive Multiple Sclerosis Lesions. J Neuropathol Exp Neurol 2013; 72:970-9. [DOI: 10.1097/nen.0b013e3182a776bf] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|