1
|
Wu PC, Lee YQ, Möller M, Storry JR, Olsson ML. Elucidation of the low-expressing erythroid CR1 phenotype by bioinformatic mining of the GATA1-driven blood-group regulome. Nat Commun 2023; 14:5001. [PMID: 37591894 PMCID: PMC10435571 DOI: 10.1038/s41467-023-40708-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
Genetic determinants underlying most human blood groups are now clarified but variation in expression levels remains largely unexplored. By developing a bioinformatics pipeline analyzing GATA1/Chromatin immunoprecipitation followed by sequencing (ChIP-seq) datasets, we identify 193 potential regulatory sites in 33 blood-group genes. As proof-of-concept, we aimed to delineate the low-expressing complement receptor 1 (CR1) Helgeson phenotype on erythrocytes, which is correlated with several diseases and protects against severe malaria. We demonstrate that two candidate CR1 enhancer motifs in intron 4 bind GATA1 and drive transcription. Both are functionally abolished by naturally-occurring SNVs. Erythrocyte CR1-mRNA and CR1 levels correlate dose-dependently with genotype of one SNV (rs11117991) in two healthy donor cohorts. Haplotype analysis of rs11117991 with previously proposed markers for Helgeson shows high linkage disequilibrium in Europeans but explains the poor prediction reported for Africans. These data resolve the longstanding debate on the genetic basis of inherited low CR1 and form a systematic starting point to investigate the blood group regulome.
Collapse
Affiliation(s)
- Ping Chun Wu
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Yan Quan Lee
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mattias Möller
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics and Pathology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Jill R Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Martin L Olsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
2
|
Cao H, Antonopoulos A, Henderson S, Wassall H, Brewin J, Masson A, Shepherd J, Konieczny G, Patel B, Williams ML, Davie A, Forrester MA, Hall L, Minter B, Tampakis D, Moss M, Lennon C, Pickford W, Erwig L, Robertson B, Dell A, Brown GD, Wilson HM, Rees DC, Haslam SM, Alexandra Rowe J, Barker RN, Vickers MA. Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat Commun 2021; 12:1792. [PMID: 33741926 PMCID: PMC7979802 DOI: 10.1038/s41467-021-21814-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
In both sickle cell disease and malaria, red blood cells (RBCs) are phagocytosed in the spleen, but receptor-ligand pairs mediating uptake have not been identified. Here, we report that patches of high mannose N-glycans (Man5-9GlcNAc2), expressed on diseased or oxidized RBC surfaces, bind the mannose receptor (CD206) on phagocytes to mediate clearance. We find that extravascular hemolysis in sickle cell disease correlates with high mannose glycan levels on RBCs. Furthermore, Plasmodium falciparum-infected RBCs expose surface mannose N-glycans, which occur at significantly higher levels on infected RBCs from sickle cell trait subjects compared to those lacking hemoglobin S. The glycans are associated with high molecular weight complexes and protease-resistant, lower molecular weight fragments containing spectrin. Recognition of surface N-linked high mannose glycans as a response to cellular stress is a molecular mechanism common to both the pathogenesis of sickle cell disease and resistance to severe malaria in sickle cell trait.
Collapse
Affiliation(s)
- Huan Cao
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sadie Henderson
- grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Heather Wassall
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - John Brewin
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Alanna Masson
- grid.417581.e0000 0000 8678 4766Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Jenna Shepherd
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gabriela Konieczny
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bhinal Patel
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Maria-Louise Williams
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Adam Davie
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Megan A. Forrester
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Lindsay Hall
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Beverley Minter
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Dimitris Tampakis
- grid.13097.3c0000 0001 2322 6764Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University and Division of Cancer Studies, King’s College London, London, UK
| | - Michael Moss
- grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK
| | - Charlotte Lennon
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Wendy Pickford
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Lars Erwig
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Beverley Robertson
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Gordon D. Brown
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK ,grid.8391.30000 0004 1936 8024Medical Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Heather M. Wilson
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David C. Rees
- grid.46699.340000 0004 0391 9020Department of Haematology, King’s College Hospital, London, UK
| | - Stuart M. Haslam
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - J. Alexandra Rowe
- grid.4305.20000 0004 1936 7988Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Robert N. Barker
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Mark A. Vickers
- grid.7107.10000 0004 1936 7291School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK ,grid.476695.f0000 0004 0495 4557Scottish National Blood Transfusion Service, Aberdeen, UK ,grid.417581.e0000 0000 8678 4766Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
3
|
Complement Receptor 1 availability on red blood cell surface modulates Plasmodium vivax invasion of human reticulocytes. Sci Rep 2019; 9:8943. [PMID: 31221984 PMCID: PMC6586822 DOI: 10.1038/s41598-019-45228-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
Plasmodium vivax parasites preferentially invade reticulocyte cells in a multistep process that is still poorly understood. In this study, we used ex vivo invasion assays and population genetic analyses to investigate the involvement of complement receptor 1 (CR1) in P. vivax invasion. First, we observed that P. vivax invasion of reticulocytes was consistently reduced when CR1 surface expression was reduced through enzymatic cleavage, in the presence of naturally low-CR1-expressing cells compared with high-CR1-expressing cells, and with the addition of soluble CR1, a known inhibitor of P. falciparum invasion. Immuno-precipitation experiments with P. vivax Reticulocyte Binding Proteins showed no evidence of complex formation. In addition, analysis of CR1 genetic data for worldwide human populations with different exposure to malaria parasites show significantly higher frequency of CR1 alleles associated with low receptor expression on the surface of RBCs and higher linkage disequilibrium in human populations exposed to P. vivax malaria compared with unexposed populations. These results are consistent with a positive selection of low-CR1-expressing alleles in vivax-endemic areas. Collectively, our findings demonstrate that CR1 availability on the surface of RBCs modulates P. vivax invasion. The identification of new molecular interactions is crucial to guiding the rational development of new therapeutic interventions against vivax malaria.
Collapse
|
4
|
Plasmodium falciparum MSP3 Exists in a Complex on the Merozoite Surface and Generates Antibody Response during Natural Infection. Infect Immun 2018; 86:IAI.00067-18. [PMID: 29760216 DOI: 10.1128/iai.00067-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum merozoite surface protein 3 (MSP3) is an abundantly expressed secreted merozoite surface protein and a leading malaria vaccine candidate antigen. However, it is unclear how MSP3 is retained on the surface of merozoites without a glycosylphosphatidylinositol (GPI) anchor or a transmembrane domain. In the present study, we identified an MSP3-associated network on the Plasmodium merozoite surface by immunoprecipitation of Plasmodium merozoite lysate using antibody to the N terminus of MSP3 (anti-MSP3N) followed by mass spectrometry analysis. The results suggested the association of MSP3 with other merozoite surface proteins: MSP1, MSP6, MSP7, RAP2, and SERA5. Protein-protein interaction studies by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) analysis showed that MSP3 complex consists of MSP1, MSP6, and MSP7 proteins. Immunological characterization of MSP3 revealed that MSP3N is strongly recognized by hyperimmune serum from African and Asian populations. Furthermore, we demonstrate that human antibodies, affinity purified against recombinant MSP3N (rMSP3N), promote opsonic phagocytosis of merozoites in cooperation with monocytes. At nonphysiological concentrations, anti-MSP3N antibodies inhibited the growth of P. falciparum in vitro Together, the data suggest that MSP3 and especially its N-terminal region containing known B/T cell epitopes are targets of naturally acquired immunity against malaria and also comprise an important candidate for a multisubunit malaria vaccine.
Collapse
|
5
|
Opi DH, Swann O, Macharia A, Uyoga S, Band G, Ndila CM, Harrison EM, Thera MA, Kone AK, Diallo DA, Doumbo OK, Lyke KE, Plowe CV, Moulds JM, Shebbe M, Mturi N, Peshu N, Maitland K, Raza A, Kwiatkowski DP, Rockett KA, Williams TN, Rowe JA. Two complement receptor one alleles have opposing associations with cerebral malaria and interact with α +thalassaemia. eLife 2018; 7:e31579. [PMID: 29690995 PMCID: PMC5953541 DOI: 10.7554/elife.31579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/01/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One (CR1) gene, named Sl2 and McCb, occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we estimate the relationship between Sl2 and McCb and malaria phenotypes, and find they have opposing associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McCb polymorphism is associated with increased odds of cerebral malaria. We also identify an apparent interaction between Sl2 and α+thalassaemia, with the protective association of Sl2 greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, highlighting the importance of considering genetic interactions in disease-association studies.
Collapse
Affiliation(s)
- D Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Olivia Swann
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Alexander Macharia
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Sophie Uyoga
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Gavin Band
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Carolyne M Ndila
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Ewen M Harrison
- Centre for Medical InfomaticsUsher Insitute of Population Health Sciences and Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Mahamadou A Thera
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Abdoulaye K Kone
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Dapa A Diallo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Kirsten E Lyke
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | - Christopher V Plowe
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | | | - Mohammed Shebbe
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Neema Mturi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Norbert Peshu
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - Ahmed Raza
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Kirk A Rockett
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Swann OV, Harrison EM, Opi DH, Nyatichi E, Macharia A, Uyoga S, Williams TN, Rowe JA. No Evidence that Knops Blood Group Polymorphisms Affect Complement Receptor 1 Clustering on Erythrocytes. Sci Rep 2017; 7:17825. [PMID: 29259218 PMCID: PMC5736761 DOI: 10.1038/s41598-017-17664-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023] Open
Abstract
Clustering of Complement Receptor 1 (CR1) in the erythrocyte membrane is important for immune-complex transfer and clearance. CR1 contains the Knops blood group antigens, including the antithetical pairs Swain-Langley 1 and 2 (Sl1 and Sl2) and McCoy a and b (McCa and McCb), whose functional effects are unknown. We tested the hypothesis that the Sl and McC polymorphisms might influence CR1 clustering on erythrocyte membranes. Blood samples from 125 healthy Kenyan children were analysed by immunofluorescence and confocal microscopy to determine CR1 cluster number and volume. In agreement with previous reports, CR1 cluster number and volume were positively associated with CR1 copy number (mean number of CR1 molecules per erythrocyte). Individuals with the McCb/McCb genotype had more clusters per cell than McCa/McCa individuals. However, this association was lost when the strong effect of CR1 copy number was included in the model. No association was observed between Sl genotype, sickle cell genotype, α+thalassaemia genotype, gender or age and CR1 cluster number or volume. Therefore, after correction for CR1 copy number, the Sl and McCoy polymorphisms did not influence erythrocyte CR1 clustering, and the effects of the Knops polymorphisms on CR1 function remains unknown.
Collapse
Affiliation(s)
- O V Swann
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - E M Harrison
- Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - D H Opi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya.,Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - E Nyatichi
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - A Macharia
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - S Uyoga
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - T N Williams
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya.,Department of Medicine, Imperial College, London, UK
| | - J A Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Expression of CD55, CD59, and CD35 on red blood cells of β-thalassaemia patients. Cent Eur J Immunol 2017; 42:78-84. [PMID: 28680334 PMCID: PMC5470617 DOI: 10.5114/ceji.2017.67321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023] Open
Abstract
AIM OF THE STUDY β-thalassaemia (β-Thal) is considered a severe, progressive haemolytic anaemia, which needs regular blood transfusions for life expectancy. Complement-mediated erythrocyte destruction can cause both intravascular and extravascular haemolysis. Complement regulatory proteins protect cells from such effects of the complement system. We aimed to perform quantitative analysis of membrane-bound complement regulators, CD55 (decay accelerating factor - DAF), CD35 (complement receptor type 1 - CR1), and CD59 (membrane attack complex inhibitory factor - MACIF) on peripheral red blood cells by flow cytometry. MATERIAL AND METHODS The present study was carried out on 47 β-thalassemia major (β-TM) patients, 20 β-thalassaemia intermedia (β-TI) patients, and 17 healthy volunteers as control subjects. RESULTS CD55 levels of β-TM patients (58.64 ±17.06%) were significantly decreased compared to β-TI patients (83.34 ±13.82%) and healthy controls (88.57 ±11.69%) (p < 0.01). CD59 levels of β-TM patients were not significantly different than β-TI patients and controls, but CD35 levels were significantly lower in the β-TM patients (3.56 ±4.87%) and β-TI patients (12.48 ±9.19%) than in the control group (39.98 ±15.01%) (p < 0.01). CONCLUSIONS Low levels of CD55 and CD35 in thalassaemia major patients indicates a role for them in the aetiopathogenesis of haemolysis in this disease, and also this defect in a complement system may be responsible for the chronic complications seen in these patients.
Collapse
|