1
|
Hao L, Ling S, Ding S, Qiu W, Zhang H, Zhang K, Chen T, Gu X, Liang L, Han L. Long-term follow-up of Chinese patients with methylmalonic acidemia of the cblC and mut subtypes. Pediatr Res 2025; 97:2010-2019. [PMID: 39306609 PMCID: PMC12122358 DOI: 10.1038/s41390-024-03581-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 06/02/2025]
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is the most common organic acidemia in China, with cblC (cblC-MMA) and mut (mut-MMA) being the predominant subtypes. The present study aimed to investigate the prognostic manifestations and their possible influence in patients with these two subtypes. METHODS A national multicenter retrospective study of patients with cblC-MMA and mut-MMA between 2004 and 2022 was performed. We compared the clinical features between patients with two subtypes or diagnosed with or without newborn screening (NBS) and further explored the potentially influential factors on the prognosis. RESULTS The 1617 enrolled MMA patients included 81.6% cblC-MMA patients and 18.4% mut-MMA patients, with an overall poor prognosis rate of 71.9%. These two subtypes of patients showed great differences in poor prognostic manifestations. The role of NBS in better outcomes was more pronounced in cblC-MMA patients. Predictors of outcomes are "pre-treatment onset", "NBS", variants of c.80A > G and c.482G > A and baseline levels of propionylcarnitine and homocysteine for cblC-MMA; "pre-treatment onset", "responsive to vitB12", variants of c.914T > C and baseline propionylcarnitine and propionylcarnitine/acetylcarnitine ratio for mut-MMA. Besides, prognostic biochemical indicators have diagnostic value for poor outcomes in mut-MMA. CONCLUSIONS The study provided potential predictors of the long-term outcome of patients with cblC-MMA and mut-MMA. IMPACT Predictors of outcomes are "pre-treatment onset", "NBS", MMACHC variants of c.80A > G and c.482G > A and baseline propionylcarnitine and homocysteine for cblC-MMA, "pre-treatment onset", "responsive to vitB12", MMUT variants of c.914T > C and baseline propionylcarnitine and propionylcarnitine/acetylcarnitine ratio for mut-MMA. This study with larger sample sizes effectively validated the prediction power and emphasized the importance of NBS in improving the outcomes of both MMA subtypes. The study enhances understanding of the phenotypic and prognostic variations of MMA disease and the predictors will help in the improvement of diagnosis and treatment strategies to achieve a better prognosis for MMA.
Collapse
Affiliation(s)
- Lili Hao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shiying Ling
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Si Ding
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaichuang Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Bao D, Yang H, Yin Y, Wang S, Li Y, Zhang X, Su T, Xu R, Li C, Zhou F. Late-onset renal TMA and tubular injury in cobalamin C disease: a report of three cases and literature review. BMC Nephrol 2024; 25:340. [PMID: 39390411 PMCID: PMC11465495 DOI: 10.1186/s12882-024-03774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Mutation of MMACHC gene causes cobalamin C disease (cblC), an inherited metabolic disorder, which presents as combined methylmalonic aciduria (MMA-uria) and hyperhomocysteinaemia in clinical. Renal complications may also be present in patients with this inborn deficiency. The most common histological change is thrombotic microangiopathy (TMA). However, to our acknowledge, renal tubular injury in the late-onset presentation of cblC is rarely been reported. This study provides a detailed description of the characteristics of kidney disease in cblC deficiency, aiming to improve the early recognition of this treatable disease for clinical nephrologists. CASE PRESENTATION Here we described three teenage patients who presented with hematuria, proteinuria, and hypertension in clinical presentation. They were diagnosed with renal involvement due to cblC deficiency after laboratory tests revealing elevated serum and urine homocysteine, renal biopsy showing TMA and tubular injury, along with genetic testing showing heterogeneous compound mutations in MMACHC. Hydroxocobalamin, betaine, and L-carnitine were administered to these patients. All of them got improved, with decreased homocysteine, controlled blood pressure, and kidney outcomes recovered. CONCLUSIONS The clinical diagnosis of cblC disease associated with kidney injury should be considered in patients with unclear TMA accompanied by a high concentration of serum homocysteine, even in teenagers or adults. Early diagnosis and timely intervention are vital to improving the prognosis of cobalamin C disease. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Daorina Bao
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Hongyu Yang
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanqi Yin
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Yang Li
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Su
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Rong Xu
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyue Li
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China
| | - Fude Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, No. 8 Xishiku St., Xicheng District, Beijing, 100034, China.
- Institute of Nephrology, Peking University, Beijing, China.
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China.
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Ahmed S, Cai L, Akbar F, Siddiqui A, DeBerardinis RJ, Ni M, Vu H, Afroze B. Evaluation of the clinical, biochemical, and molecular spectrum of Cobalamin C (CblC) defect in 33 patients from Pakistan. Scand J Clin Lab Invest 2024; 84:391-397. [PMID: 39225018 DOI: 10.1080/00365513.2024.2394983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cobalamin C is the most common inborn error of intracellular cobalamin metabolism caused by biallelic pathogenic variants in the MMACHC gene, leading to impaired conversion of dietary vitamin B12 into its two metabolically active forms, methylcobalamin and adenosylcobalamin. Biochemical hallmarks are elevated plasma total homocysteine (HCYs) and low methionine accompanied by methylmalonic aciduria. This study aimed to evaluate the clinical, biochemical, and molecular analysis of Pakistani patients with CblC defect. METHODS Medical charts, urine organic acid (UOA) chromatograms, plasma amino acid levels, plasma tHcy and MMACHC gene results of patients presenting at the Biochemical Genetics Clinic, AKUH from 2013-2021 were reviewed. Details were collected on a pre-structured questionnaire. SPSS 22 was used for data analysis. RESULTS CblC was found in 33 cases (Male:Female 19:14). The median age of symptoms onset and diagnosis were 300 (IQR:135-1800) and 1380 (IQR: 240-2730) days. The most common clinical features were cognitive impairment (n = 29), seizures (n = 23), motor developmental delay (n = 20), hypotonia (n = 17), and sparse/hypopigmented scalp hair (n = 16). The MMACHC gene sequencing revealed homozygous pathogenic variant c.394C > T, (p.Arg132*) in 32 patients, whereas c.609G > A, (p.TRP203*) in one patient whose ancestors had settled in Pakistan from China decades ago. The median age of treatment initiation was 1530 (IQR: 240-2790). The median pre-treatment HCYs levels were 134 (IQR:87.2-155.5) compared to post-treatment levels of 33.3 (IQR: 27.3-44.95) umol/L. CONCLUSIONS Thirty-three cases of CblC defect from a single center underscores a significant number of the disorder within Pakistan. Late diagnosis emphasizes the need for increased clinical awareness and adequate diagnostic facilities.
Collapse
Affiliation(s)
- Sibtain Ahmed
- Section of Chemical Pathology, Department of Pathology and Laboratory Medicine, Aga Khan University
| | - Ling Cai
- Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, UT Southwestern, TX, USA
| | - Fizza Akbar
- Department of Paediatrics & Child Health, Aga Khan University Hospital, Karachi
| | - Ayra Siddiqui
- Medical College, Aga Khan University Hospital, Karachi
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute at UT Southwestern, Texas, USA
- Howard Hughes Medical Institute, UT Southwestern, Texas, USA
| | - Min Ni
- Children's Medical Center Research Institute at UT Southwestern, Texas, USA
| | - Hieu Vu
- Children's Medical Center Research Institute at UT Southwestern, Texas, USA
| | - Bushra Afroze
- Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, UT Southwestern, TX, USA
| |
Collapse
|
4
|
Scalais E, Geron C, Pierron C, Cardillo S, Schlesser V, Mataigne F, Borde P, Regal L. Would, early, versus late hydroxocobalamin dose intensification treatment, prevent cognitive decline, macular degeneration and ocular disease, in 5 patients with early-onset cblC deficiency? Mol Genet Metab 2023; 140:107681. [PMID: 37604084 DOI: 10.1016/j.ymgme.2023.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
In early-onset (EO) cblC deficiency (MMACHC), hydroxocobalamin dose-intensification (OHCBL-DI) improved biochemical and clinical outcome. In mammals, Cobalamin is reduced, in a reaction mediated by MMACHC. Pathogenic variants in MMACHC disrupt the synthesis pathway of methyl-cobalamin (MetCbl) and 5'-deoxy-adenosyl-cobalamin (AdoCbl), cofactors for both methionine synthase (MS) and methyl-malonyl-CoA mutase (MCM) enzymes. In 5 patients (pts.), with EO cblC deficiency, biochemical and clinical responses were studied following OHCbl-DI (mean ± SD 6,5 ± 3,3 mg/kg/day), given early, before age 5 months (pts. 1, 2, 3 and 4) or lately, at age 5 years (pt. 5). In all pts., total homocysteine (tHcy), methyl-malonic acid (MMA) and Cob(III)alamin levels were measured. Follow-up was performed during 74/12 years (pts. 1, 2, 3), 33/12 years (pt. 4) and 34/12 years (pt. 5). OHCbl was delivered intravenously or subcutaneously. Mean ± SD serum Cob(III)alamin levels were 42,2 × 106 ± 28, 0 × 106 pg/ml (normal: 200-900 pg/ml). In all pts., biomarkers were well controlled. All pts., except pt. 5, who had poor vision, had central vision, mild to moderate nystagmus, and with peri-foveolar irregularity in pts. 1, 2 and 4, yet none had the classic bulls' eye maculopathy and retinal degeneration characteristic of pts. with EO cblC deficiency. Only pt. 5, had severe cognitive deficiency. Both visual and cognitive functions were better preserved with early than with late OHCBL-DI. OHCBL-DI is suggested to bypass MMACHC, subsequently to be rescued by methionine synthase reductase (MSR) and adenosyl-transferase (ATR) to obtain Cob(I)alamin resulting in improved cognitive and retinal function in pts. with EO cblC deficiency.
Collapse
Affiliation(s)
- Emmanuel Scalais
- Department of Pediatrics, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg.
| | - Christine Geron
- Department of Pediatrics, Neonatal Center, Pediatric Intensive Care, Centre Hospitalier de Luxembourg, Luxembourg
| | - Charlotte Pierron
- Department of Pediatrics, Neonatal Center, Pediatric Intensive Care, Centre Hospitalier de Luxembourg, Luxembourg
| | - Sandra Cardillo
- Service d'Ophtalmologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Vincent Schlesser
- Laboratoire de Chimie et Hématologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Frédéric Mataigne
- Service de Neuroradiologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Patricia Borde
- Service de Biochimie, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Luc Regal
- Pediatric Neurology and Metabolism, UZ, VUB, Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|
5
|
Chen Z, Dong H, Liu Y, He R, Song J, Jin Y, Li M, Liu Y, Liu X, Yan H, Qi J, Wang F, Xiao H, Zheng H, Kang L, Li D, Zhang Y, Yang Y. Late-onset cblC deficiency around puberty: a retrospective study of the clinical characteristics, diagnosis, and treatment. Orphanet J Rare Dis 2022; 17:330. [PMID: 36056359 PMCID: PMC9438293 DOI: 10.1186/s13023-022-02471-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background cblC deficiency is the most common type of methylmalonic aciduria in China. Late-onset patients present with various non-specific symptoms and are usually misdiagnosed. The purpose of this study is to investigate the clinical features of patients with late-onset cblC deficiency and explore diagnosis and management strategies around puberty. Results This study included 56 patients (35 males and 21 females) with late-onset cblC deficiency who were admitted to our clinic between 2002 and September 2021. The diagnosis was confirmed by metabolic and genetic tests. The clinical and biochemical features, disease triggers, outcome, and associated genetic variants were examined. The onset age ranged from 10 to 20 years (median age, 12 years). Fifteen patients (26.8%) presented with symptoms after infection or sports training. Further, 46 patients (82.1%) had neuropsychiatric diseases; 11 patients (19.6%), cardiovascular diseases; and 6 patients (10.7%), pulmonary hypertension. Renal damage was observed in 6 cases (10.7%). Genetic analysis revealed 21 variants of the MMACHC gene in the 56 patients. The top five common variants detected in 112 alleles were c.482G > A (36.6%), c.609G > A (16.1%), c.658_660delAAG (9.8%), c.80A > G (8.0%), and c.567dupT (6.3%). Thirty-nine patients carried the c.482G > A variant. Among 13 patients who exhibited spastic paraplegia as the main manifestation, 11 patients carried c.482G > A variants. Six patients who presented with psychotic disorders and spastic paraplegia had compound heterozygotic c.482G > A and other variants. All the patients showed improvement after metabolic treatment with cobalamin, l-carnitine, and betaine, and 30 school-aged patients returned to school. Two female patients got married and had healthy babies. Conclusions Patients with late-onset cblC deficiency present with a wide variety of neuropsychiatric symptoms and other presentations, including multiple organ damage. As a result, cb1C deficiency can easily be misdiagnosed as other conditions. Metabolic and genetic studies are important for accurate diagnosis, and metabolic treatment with cobalamin, l-carnitine, and betaine appears to be beneficial. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02471-x.
Collapse
Affiliation(s)
- Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yupeng Liu
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100034, China
| | - Ruxuan He
- Department of Respiratory Medicine II, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, 100045, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xueqin Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jianguang Qi
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hong Zheng
- Department of Pediatrics, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Lulu Kang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongxiao Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450053, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
6
|
Esser AJ, Mukherjee S, Dereven‘kov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Versatile Enzymology and Heterogeneous Phenotypes in Cobalamin Complementation Type C Disease. iScience 2022; 25:104981. [PMID: 36105582 PMCID: PMC9464900 DOI: 10.1016/j.isci.2022.104981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure–function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.
Collapse
|
7
|
Ling S, Wu S, Shuai R, Yu Y, Qiu W, Wei H, Yang C, Xu P, Zou H, Feng J, Niu T, Hu H, Zhang H, Liang L, Lu D, Gong Z, Zhan X, Ji W, Gu X, Han L. The Follow-Up of Chinese Patients in cblC Type Methylmalonic Acidemia Identified Through Expanded Newborn Screening. Front Genet 2022; 13:805599. [PMID: 35242167 PMCID: PMC8886223 DOI: 10.3389/fgene.2022.805599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: The cblC type of combined methylmalonic acidemia and homocystinuria, an inherited disorder with variable phenotypes, is included in newborn screening (NBS) programs at multiple newborn screening centers in China. The present study aimed to investigate the long-term clinical benefits of screening individual. Methods: A national, retrospective multi-center study of infants with confirmed cblC defect identified by NBS between 2004 and 2020 was conducted. We collected a large cohort of 538 patients and investigated their clinical data in detail, including disease onset, biochemical metabolites, and gene variation, and explored different factors on the prognosis. Results: The long-term outcomes of all patients were evaluated, representing 44.6% for poor outcomes. In our comparison of patients with already occurring clinical signs before treatment to asymptomatic ones, the incidence of intellectual impairment, movement disorders, ocular complications, hydrocephalus, and death were significantly different (p < 0.01). The presence of disease onset [Odd ratio (OR) 12.39, 95% CI 5.15–29.81; p = 0.000], variants of c.609G>A (OR 2.55, 95% CI 1.49–4.35; p = 0.001), and c.567dupT (OR 2.28, 95% CI 1.03–5.05; p = 0.042) were independently associated with poor outcomes, especially for neurodevelopmental deterioration. Conclusion: NBS, avoiding major disease-related events and allowing an earlier treatment initiation, appeared to have protective effects on the prognosis of infants with cblC defect.
Collapse
Affiliation(s)
- Shiying Ling
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Ruixue Shuai
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Yu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Deyun Lu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Lianshu Han,
| |
Collapse
|
8
|
Kalantari S, Brezzi B, Bracciamà V, Barreca A, Nozza P, Vaisitti T, Amoroso A, Deaglio S, Manganaro M, Porta F, Spada M. Adult-onset CblC deficiency: a challenging diagnosis involving different adult clinical specialists. Orphanet J Rare Dis 2022; 17:33. [PMID: 35109910 PMCID: PMC8812048 DOI: 10.1186/s13023-022-02179-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Methylmalonic aciduria and homocystinuria, CblC type (OMIM #277400) is the most common disorder of cobalamin intracellular metabolism, an autosomal recessive disease, whose biochemical hallmarks are hyperhomocysteinemia, methylmalonic aciduria and low plasma methionine. Despite being a well-recognized disease for pediatricians, there is scarce awareness of its adult presentation. A thorough analysis and discussion of cobalamin C defect presentation in adult patients has never been extensively performed. This article reviews the published data and adds a new case of the latest onset of symptoms ever described for the disease.
Results We present the emblematic case of a 45-year-old male, describing the diagnostic odyssey he ventured through to get to the appropriate treatment and molecular diagnosis. Furthermore, available clinical, biochemical and molecular data from 22 reports on cases and case series were collected, resulting in 45 adult-onset CblC cases, including our own. We describe the onset of the disease in adulthood, encompassing neurological, psychiatric, renal, ophthalmic and thromboembolic symptoms. In all cases treatment with intramuscular hydroxycobalamin was effective in reversing symptoms. From a molecular point of view adult patients are usually compound heterozygous carriers of a truncating and a non-truncating variant in the MMACHC gene. Conclusion Adult onset CblC disease is a rare disorder whose diagnosis can be delayed due to poor awareness regarding its presenting insidious symptoms and biochemical hallmarks. To avoid misdiagnosis, we suggest that adult onset CblC deficiency is acknowledged as a separate entity from pediatric late onset cases, and that the disease is considered in the differential diagnosis in adult patients with atypical hemolytic uremic syndromes and/or slow unexplained decline in renal function and/or idiopathic neuropathies, spinal cord degenerations, ataxias and/or recurrent thrombosis and/or visual field defects, maculopathy and optic disc atrophy. Plasma homocysteine measurement should be the first line for differential diagnosis when the disease is suspected. To further aid diagnosis, it is important that genes belonging to the intracellular cobalamin pathway are included within gene panels routinely tested for atypical hemolytic uremic syndrome and chronic kidney disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02179-y.
Collapse
Affiliation(s)
- Silvia Kalantari
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Brigida Brezzi
- Nephrology and Dialysis Unit, Azienda Ospedaliera "SS. Antonio e Biagio e Cesare Arrigo", Alessandria, Italy
| | | | - Antonella Barreca
- Anatomia e Istologia Patologica, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Paolo Nozza
- S.C. Anatomia e Istologia Patologica, Azienda Ospedaliera "SS. Antonio e Biagio e Cesare Arrigo", Alessandria, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Marco Manganaro
- Nephrology and Dialysis Unit, Azienda Ospedaliera "SS. Antonio e Biagio e Cesare Arrigo", Alessandria, Italy
| | - Francesco Porta
- Department of Pediatrics, Città della Salute e della Scienza University Hospital, University of Torino, Piazza Polonia 94, 10126, Turin, Italy.
| | - Marco Spada
- Department of Pediatrics, Città della Salute e della Scienza University Hospital, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| |
Collapse
|
9
|
Cavicchi C, Oussalah A, Falliano S, Ferri L, Gozzini A, Gasperini S, Motta S, Rigoldi M, Parenti G, Tummolo A, Meli C, Menni F, Furlan F, Daniotti M, Malvagia S, la Marca G, Chery C, Morange PE, Tregouet D, Donati MA, Guerrini R, Guéant JL, Morrone A. PRDX1 gene-related epi-cblC disease is a common type of inborn error of cobalamin metabolism with mono- or bi-allelic MMACHC epimutations. Clin Epigenetics 2021; 13:137. [PMID: 34215320 PMCID: PMC8254308 DOI: 10.1186/s13148-021-01117-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background The role of epigenetics in inborn errors of metabolism (IEMs) is poorly investigated. Epigenetic changes can contribute to clinical heterogeneity of affected patients but could also be underestimated determining factors in the occurrence of IEMs. An epigenetic cause of IEMs has been recently described for the autosomal recessive methylmalonic aciduria and homocystinuria, cblC type (cblC disease), and it has been named epi-cblC. Epi-cblC has been reported in association with compound heterozygosity for a genetic variant and an epimutation at the MMACHC locus, which is secondary to a splicing variant (c.515-1G > T or c.515-2A > T) at the adjacent PRDX1 gene. Both these variants cause aberrant antisense transcription and cis-hypermethylation of the MMACHC gene promotor with subsequent silencing. Until now, only nine epi-cblC patients have been reported. Methods We report clinical/biochemical assessment, MMACHC/PRDX1 gene sequencing and genome-wide DNA methylation profiling in 11 cblC patients who had an inconclusive MMACHC gene testing. We also compare clinical phenotype of epi-cblC patients with that of canonical cblC patients. Results All patients turned out to have the epi-cblC disease. One patient had a bi-allelic MMACHC epimutation due to the homozygous PRDX1:c.515-1G > T variant transmitted by both parents. We found that the bi-allelic epimutation produces the complete silencing of MMACHC in the patient’s fibroblasts. The remaining ten patients had a mono-allelic MMACHC epimutation, due to the heterozygous PRDX1:c.515-1G > T, in association with a mono-allelic MMACHC genetic variant. Epi-cblC disease has accounted for about 13% of cblC cases diagnosed by newborn screening in the Tuscany and Umbria regions since November 2001. Comparative analysis showed that clinical phenotype of epi-cblC patients is similar to that of canonical cblC patients. Conclusions We provide evidence that epi-cblC is an underestimated cause of inborn errors of cobalamin metabolism and describe the first instance of epi-cblC due to a bi-allelic MMACHC epimutation. MMACHC epimutation/PRDX1 mutation analyses should be part of routine genetic testing for all patients presenting with a metabolic phenotype that combines methylmalonic aciduria and homocystinuria. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01117-2.
Collapse
Affiliation(s)
- Catia Cavicchi
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Abderrahim Oussalah
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | - Silvia Falliano
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Lorenzo Ferri
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Alessia Gozzini
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy
| | - Serena Gasperini
- Rare Metabolic Disease Unit, Department of Paediatrics, Fondazione MBBM, Monza, Italy
| | - Serena Motta
- Rare Metabolic Disease Unit, Department of Paediatrics, Fondazione MBBM, Monza, Italy
| | - Miriam Rigoldi
- Mario Negri Institute for Pharmacological Research IRCCS, Bergamo, Italy
| | | | - Albina Tummolo
- Metabolic Disease Unit, Giovanni XXIII Hospital, Bari, Italy
| | - Concetta Meli
- Metabolic Disease Unit, G. Rodolico Hospital, Catania, Italy
| | - Francesca Menni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Milan, Italy
| | - Francesca Furlan
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Milan, Italy
| | - Marta Daniotti
- Metabolic and Muscular Unit, Meyer Children's Hospital, Florence, Italy
| | - Sabrina Malvagia
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Meyer Children's Hospital, Florence, Italy
| | - Giancarlo la Marca
- Newborn Screening, Biochemistry and Pharmacology Laboratory, Meyer Children's Hospital, Florence, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Céline Chery
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | | | - David Tregouet
- INSERM, UMR_S937, ICAN Institute, Université Pierre et Marie Curie, Paris, France
| | | | - Renzo Guerrini
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Jean-Louis Guéant
- INSERM, UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine and University Hospital Centre of Nancy (CHRU Nancy), Nancy, France
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory of Neurometabolic Diseases, Paediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Viale Pieraccini 24, 50139, Florence, Italy. .,Department of NEUROFARBA, University of Florence, Florence, Italy.
| |
Collapse
|
10
|
Kiessling E, Nötzli S, Todorova V, Forny M, Baumgartner MR, Samardzija M, Krijt J, Kožich V, Grimm C, Froese DS. Absence of MMACHC in peripheral retinal cells does not lead to an ocular phenotype in mice. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166201. [PMID: 34147638 DOI: 10.1016/j.bbadis.2021.166201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 01/10/2023]
Abstract
Combined methylmalonic aciduria with homocystinuria (cblC type) is a rare disease caused by mutations in the MMACHC gene. MMACHC encodes an enzyme crucial for intracellular vitamin B12 metabolism, leading to the accumulation of toxic metabolites e.g. methylmalonic acid (MMA) and homocysteine (Hcy), and secondary disturbances in folate and one-carbon metabolism when not fully functional. Patients with cblC deficiency often present in the neonatal or early childhood period with a severe multisystem pathology, which comprises a broad spectrum of treatment-resistant ophthalmological phenotypes, including retinal degeneration, impaired vision, and vascular changes. To examine the potential function of MMACHC in the retina and how its loss may impact disease, we performed gene expression studies in human and mouse, which showed that local expression of MMACHC in the retina and retinal pigment epithelium is relatively stable over time. To study whether functional MMACHC is required for retinal function and tissue integrity, we generated a transgenic mouse lacking Mmachc expression in cells of the peripheral retina. Characterization of this mouse revealed accumulation of cblC disease related metabolites, including MMA and the folate-dependent purine synthesis intermediates AICA-riboside and SAICA-riboside in the retina. Nevertheless, fundus appearance, morphology, vasculature, and cellular composition of the retina, as well as ocular function, remained normal in mice up to 6 or 12 months of age. Our data indicates that peripheral retinal neurons do not require intrinsic expression of Mmachc for survival and function and questions whether a local MMACHC deficiency is responsible for the retinal phenotypes in patients.
Collapse
Affiliation(s)
- Eva Kiessling
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland
| | - Sarah Nötzli
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland
| | - Vyara Todorova
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland
| | - Merima Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland
| | - Jakub Krijt
- Dept. of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Viktor Kožich
- Dept. of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Christian Grimm
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University Hospital Zurich, University of Zürich, Switzerland.
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Switzerland.
| |
Collapse
|
11
|
Pillai NR, Miller D, Pierpont EI, Berry SA, Aggarwal A. Cobalamin J disease detected on newborn screening: Novel variant and normal neurodevelopmental course. Am J Med Genet A 2021; 185:1870-1874. [PMID: 33729671 DOI: 10.1002/ajmg.a.62170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Cobalamin J disease (CblJ) is an ultra-rare autosomal recessive disorder of intracellular cobalamin metabolism associated with combined methylmalonic acidemia and homocystinuria. It is caused by pathogenic variants in ABCD4, which encodes an ATP-binding cassette (ABC) transporter that affects the lysosomal release of cobalamin (Cbl) into the cytoplasm. Only six cases of CblJ have been reported in the literature. Described clinical features include feeding difficulties, failure to thrive, hypotonia, seizures, developmental delay, and hematological abnormalities. Information on clinical outcomes is extremely limited, and no cases of presymptomatic diagnosis have been reported. We describe a now 17-month-old male with CblJ detected by newborn screening and confirmed by biochemical, molecular, and complementation studies. With early detection and initiation of treatment, this patient has remained asymptomatic with normal growth parameters and neurodevelopmental function. To the best of our knowledge, this report represents the first asymptomatic and neurotypical patient with CblJ.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dana Miller
- M Health Fairview, Minneapolis, Minnesota, USA
| | - Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Susan A Berry
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anjali Aggarwal
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Bourque DK, Mellin‐Sanchez LE, Bullivant G, Cruz V, Feigenbaum A, Hewson S, Raiman J, Schulze A, Siriwardena K, Mercimek‐Andrews S. Outcomes of patients with cobalamin C deficiency: A single center experience. JIMD Rep 2021; 57:102-114. [PMID: 33473346 PMCID: PMC7802631 DOI: 10.1002/jmd2.12179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
Biallelic variants in MMACHC results in the combined methylmalonic aciduria and homocystinuria, called cobalamin (cbl) C (cblC) deficiency. We report 26 patients with cblC deficiency with their phenotypes, genotypes, biochemical parameters, and treatment outcomes, who were diagnosed and treated at our center. We divided all cblC patients into two groups: group 1: SX group: identified after manifestations of symptoms (n = 11) and group 2: NB group: identified during the asymptomatic period via newborn screening (NBS) or positive family history of cblC deficiency (n = 15). All patients in the SX group had global developmental delay and/or cognitive dysfunction at the time of the diagnosis and at the last assessment. Seizure, stroke, retinopathy, anemia, cerebral atrophy, and thin corpus callosum in brain magnetic resonance imaging (MRI) were common in patients in the SX group. Global developmental delay and cognitive dysfunction was present in nine patients in the NB group at the last assessment. Retinopathy, anemia, and cerebral atrophy and thin corpus callosum in brain MRI were less frequent. We report favorable outcomes in patients identified in the neonatal period and treated pre-symptomatically. Identification of cblC deficiency by NBS is crucial to improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Danielle K. Bourque
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Lizbeth E. Mellin‐Sanchez
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Garrett Bullivant
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Vivian Cruz
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Anette Feigenbaum
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Stacy Hewson
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Julian Raiman
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Andreas Schulze
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - Komudi Siriwardena
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Saadet Mercimek‐Andrews
- Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
13
|
Galosi S, Nardecchia F, Leuzzi V. Treatable Inherited Movement Disorders in Children: Spotlight on Clinical and Biochemical Features. Mov Disord Clin Pract 2020; 7:154-166. [PMID: 32071932 DOI: 10.1002/mdc3.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 12/26/2022] Open
Abstract
Background About 80% of monogenic metabolic diseases causing movement disorders (MDs) emerges during the first 2 decades of life, and a number of these conditions offers the opportunity of a disease-modifying treatment. The implementation of enlarged neonatal screening programs and the impressive rapid increase of the identification of new conditions are enhancing our potential to recognize and treat several diseases causing MDs, changing their outcome and phenotypic spectrum. Methods and Findings A literature review of monogenic disorders causing MDs amenable to treatment was conducted focusing on early clinical signs and diagnostic biomarkers. A classification in 3 broad categories based on the therapeutic approach has been proposed. Some disorders result in irreversible neurotoxic lesions that can only be prevented if treated in a presymptomatic stage, and others present with a progressive neurological impairment that a timely diagnosis and treatment may reverse or improve. Some MDs are the result of the failure of intracellular energy supply or altered glucose transport. The treatment in these conditions includes vitamins or a metabolic shift from a carbohydrate to a fatty acid catabolism, respectively. Finally, a group of highly treatable MDs are the result of defects of neurotransmitter metabolism. In these disorders, the supplementation of precursors or mimetics of neurotransmitters can deeply change the disease natural history. Conclusions To prevent serious and irreversible neurological impairment, the diagnostic work-up of MDs in children should consider a number of clinical red flags and biomarkers denoting specifically treatable diseases.
Collapse
Affiliation(s)
- Serena Galosi
- Department of Human Neuroscience Sapienza University Rome Italy
| | | | - Vincenzo Leuzzi
- Department of Human Neuroscience Sapienza University Rome Italy
| |
Collapse
|
14
|
Huemer M, Diodato D, Martinelli D, Olivieri G, Blom H, Gleich F, Kölker S, Kožich V, Morris AA, Seifert B, Froese DS, Baumgartner MR, Dionisi-Vici C, Martin CA, Baethmann M, Ballhausen D, Blasco-Alonso J, Boy N, Bueno M, Burgos Peláez R, Cerone R, Chabrol B, Chapman KA, Couce ML, Crushell E, Dalmau Serra J, Diogo L, Ficicioglu C, García Jimenez MC, García Silva MT, Gaspar AM, Gautschi M, González-Lamuño D, Gouveia S, Grünewald S, Hendriksz C, Janssen MCH, Jesina P, Koch J, Konstantopoulou V, Lavigne C, Lund AM, Martins EG, Meavilla Olivas S, Mention K, Mochel F, Mundy H, Murphy E, Paquay S, Pedrón-Giner C, Ruiz Gómez MA, Santra S, Schiff M, Schwartz IV, Scholl-Bürgi S, Servais A, Skouma A, Tran C, Vives Piñera I, Walter J, Weisfeld-Adams J. Phenotype, treatment practice and outcome in the cobalamin-dependent remethylation disorders and MTHFR deficiency: Data from the E-HOD registry. J Inherit Metab Dis 2019; 42:333-352. [PMID: 30773687 DOI: 10.1002/jimd.12041] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM To explore the clinical presentation, course, treatment and impact of early treatment in patients with remethylation disorders from the European Network and Registry for Homocystinurias and Methylation Defects (E-HOD) international web-based registry. RESULTS This review comprises 238 patients (cobalamin C defect n = 161; methylenetetrahydrofolate reductase deficiency n = 50; cobalamin G defect n = 11; cobalamin E defect n = 10; cobalamin D defect n = 5; and cobalamin J defect n = 1) from 47 centres for whom the E-HOD registry includes, as a minimum, data on medical history and enrolment visit. The duration of observation was 127 patient years. In 181 clinically diagnosed patients, the median age at presentation was 30 days (range 1 day to 42 years) and the median age at diagnosis was 3.7 months (range 3 days to 56 years). Seventy-five percent of pre-clinically diagnosed patients with cobalamin C disease became symptomatic within the first 15 days of life. Total homocysteine (tHcy), amino acids and urinary methylmalonic acid (MMA) were the most frequently assessed disease markers; confirmatory diagnostics were mainly molecular genetic studies. Remethylation disorders are multisystem diseases dominated by neurological and eye disease and failure to thrive. In this cohort, mortality, thromboembolic, psychiatric and renal disease were rarer than reported elsewhere. Early treatment correlates with lower overall morbidity but is less effective in preventing eye disease and cognitive impairment. The wide variation in treatment hampers the evaluation of particular therapeutic modalities. CONCLUSION Treatment improves the clinical course of remethylation disorders and reduces morbidity, especially if started early, but neurocognitive and eye symptoms are less responsive. Current treatment is highly variable. This study has the inevitable limitations of a retrospective, registry-based design.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, University Zürich, Zürich, Switzerland
- Department of Pediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Daria Diodato
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Henk Blom
- Department of Internal Medicine, VU Medical Center, Amsterdam, The Netherlands
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Heidelberg, Germany
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Andrew A Morris
- Willink Metabolic Unit, Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Burkhardt Seifert
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University Zürich, Zürich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, University Zürich, Zürich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, University Zürich, Zürich, Switzerland
| | | | | | - Martina Baethmann
- Department of Pediatrics, Sozialpädiatrisches Zentrum, Klinikum Dritter Orden München-Nymphenburg, Munich, Germany
| | - Diana Ballhausen
- Center for Molecular Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | - Javier Blasco-Alonso
- Sección de Gastroenterología y Nutrición Pediátrica, Hospital Regional de Málaga, Málaga, Spain
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Heidelberg, Germany
| | - Maria Bueno
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Rosa Burgos Peláez
- Nutritional Support Unit, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Roberto Cerone
- University Department of Pediatrics, Giannina Gaslini Institute, Genoa, Italy
| | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, CHU La Timone Enfants, Marseille, France
| | - Kimberly A Chapman
- Children's National Rare Disease Institute, Genetics and Metabolism, Washington, DC, USA
| | - Maria Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Service of Neonatology, Department of PediatricsHospital Clínico Universitario de Santiago, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Temple Street Children's University Hospital, Dublin, Ireland
| | - Jaime Dalmau Serra
- Unidad de Nutrición y Metabolopatías, Hospital Universitario La Fe, Valencia, Spain
| | - Luisa Diogo
- Centro de Referência de Doencas Hereditárias do Metabolismo. Centro de Desenvolvimento da Criança - Hospital Pediátrico - Centro Hospitalar e Universitário De Coimbra, Coimbra, Portugal
| | - Can Ficicioglu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - Matthias Gautschi
- Interdisciplinary Metabolic Team, Paediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital and University Institute of Clinical Chemistry Inselspital, Berne, Switzerland
| | - Domingo González-Lamuño
- Department of Pediatrics, University Hospital Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - Sofia Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Service of Neonatology, Department of PediatricsHospital Clínico Universitario de Santiago, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Stephanie Grünewald
- Institute for Child HealthGreat Ormond Street Hospital, University College London, London, UK
| | | | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pavel Jesina
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Johannes Koch
- Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | | | - Christian Lavigne
- Médecine Interne et Maladies Vasculaires, Centre Hospitalier Universitaire Angers, Angers, France
| | - Allan M Lund
- Centre Inherited Metabolic Diseases, Departments of Clinical Genetics and Paediatrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Esmeralda G Martins
- Reference Center for Inherited Metabolic Diseases, Centro Hospitalar do Porto, Porto, Portugal
| | - Silvia Meavilla Olivas
- Division of Gastroenterology, Hepatology and Nutrition, Sant Joan de Déu Hospital, Barcelona, Spain
| | | | - Fanny Mochel
- Reference Center for Adult Neurometabolic Diseases, University Pierre and Marie Curie, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Helen Mundy
- Evelina London Children's Hospital, London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephanie Paquay
- Pediatric Neurology and Metabolic diseases department, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Consuelo Pedrón-Giner
- Division of Gastroenterology and Nutrition, University Children's Hospital Niño Jesús, Madrid, Spain
| | | | - Saikat Santra
- Clinical Inherited Metabolic Disorders, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Manuel Schiff
- Reference Center for Inherited Metabolic Diseases, AP-HP, Robert Debré Hospital, University Paris Diderot-Sorbonne Paris Cité and INSERM U1141, Paris, France
| | - Ida Vanessa Schwartz
- Hospital de Clínicas de Porto Alegre and Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders Medical University of Innsbruck, Innsbruck, Austria
| | - Aude Servais
- Nephrology Department, Reference Center of Inherited Metabolic Diseases, Necker hospital, AP-HP, University Paris Descartes, Paris, France
| | - Anastasia Skouma
- Agia Sofia Children's Hospital 1st Department of Pediatrics, University of Athens Thivon & Levadias, Athens, Greece
| | - Christel Tran
- Center for Molecular Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | | | - John Walter
- Willink Metabolic Unit, Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Department of Paediatrics, Bradford Royal Infirmary, Bradford, UK
| | - James Weisfeld-Adams
- Inherited Metabolic Diseases Clinic, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
15
|
Myles JG, Manoli I, Venditti CP. Effects of medical food leucine content in the management of methylmalonic and propionic acidemias. Curr Opin Clin Nutr Metab Care 2018; 21:42-48. [PMID: 29035969 PMCID: PMC5815322 DOI: 10.1097/mco.0000000000000428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The current review highlights the varied effects of medical foods high in leucine (Leu) and devoid of valine (Val) and isoleucine (Ile) in the management of methylmalonic acidemia (MMA) and propionic acidemia and cobalamin C (cblC) deficiency, aiming to advance dietary practices. RECENT FINDINGS Leu is a key metabolic regulator with a multitude of effects on different organ systems. Recent observational studies have demonstrated that these effects can have unintended consequences in patients with MMA as a result of liberal use of medical foods. The combination of protein restriction and medical food use in MMA and propionic acidemia results in an imbalanced branched-chain amino acid (BCAA) dietary content with a high Leu-to-Val and/or Ile ratio. This leads to decreased plasma levels of Val and Ile and predicts impaired brain uptake of multiple essential amino acids. Decreased transport of methionine (Met) across the blood-brain barrier due to high circulating Leu levels is of particular concern in cblC deficiency in which endogenous Met synthesis is impaired. SUMMARY Investigations into the optimal composition of medical foods for MMA and propionic acidemia, and potential scenarios in which Leu supplementation may be beneficial are needed. Until then, MMA/propionic acidemia medical foods should be used judiciously in the dietary management of these patients and avoided altogether in cblC deficiency.
Collapse
Affiliation(s)
| | - Irini Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Almannai M, Marom R, Divin K, Scaglia F, Sutton VR, Craigen WJ, Lee B, Burrage LC, Graham BH. Milder clinical and biochemical phenotypes associated with the c.482G>A (p.Arg161Gln) pathogenic variant in cobalamin C disease: Implications for management and screening. Mol Genet Metab 2017; 122:60-66. [PMID: 28693988 PMCID: PMC5612879 DOI: 10.1016/j.ymgme.2017.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/24/2017] [Accepted: 06/25/2017] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cobalamin C disease is a multisystemic disease with variable manifestations and age of onset. Genotype-phenotype correlations are well-recognized in this disorder. Here, we present a large cohort of individuals with cobalamin C disease, several of whom are heterozygous for the c.482G>A pathogenic variant (p.Arg161Gln). We compared clinical characteristics of individuals with this pathogenic variant to those who do not have this variant. To our knowledge, this study represents the largest single cohort of individuals with the c.482G>A (p.Arg161Gln) pathogenic variant. METHODS A retrospective chart review of 27 individuals from 21 families with cobalamin C disease who are followed at our facility was conducted. RESULTS 13 individuals (48%) are compound heterozygous with the c.482G>A (p.Arg161Gln) on one allele and a second pathogenic variant on the other allele. Individuals with the c.482G>A (p.Arg161Gln) pathogenic variant had later onset of symptoms and easier metabolic control. Moreover, they had milder biochemical abnormalities at presentation which likely contributed to the observation that 4 individuals (31%) in this group were missed by newborn screening. CONCLUSION The c.482G>A (p.Arg161Gln) pathogenic variant is associated with milder disease. These individuals may not receive a timely diagnosis as they may not be identified on newborn screening or because of unrecognized, late onset symptoms. Despite the milder presentation, significant complications can occur, especially if treatment is delayed.
Collapse
Affiliation(s)
- Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Kristian Divin
- Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA.
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|