1
|
Ma X, Guo S, Liu F, Li C, Shi X, Liu W, Qi L, Yuan Y, Xie X, Wang P, Borish L, Feng X. Unveiling the prevalence and impact of silent rhinovirus infection in chronic rhinosinusitis with nasal polyps. Ann Allergy Asthma Immunol 2025; 134:420-430.e1. [PMID: 39892505 PMCID: PMC11972899 DOI: 10.1016/j.anai.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNPs) involves persistent sinus inflammation, with emerging evidence suggesting a potential role of rhinovirus (RV) in its pathophysiology. However, whether RV exists in nasal tissues and affects the nasal mucosa after the resolution of infection symptoms remains unknown. OBJECTIVE To investigate the prevalence and impact of silent RV infection in nasal tissues. METHODS RV loads were detected in the nasal tissues of 47 controls and 101 patients with CRSwNP without respiratory infection. Participants were categorized into RV-positive (+), RV-negative (-), and the "gray zone" groups. Quantitative polymerase chain reaction, Western blotting, and immunofluorescence assays were used to analyze the impact of silent RV infection on the immune status of nasal tissues. RESULTS Silent RV infection was prevalent in both control (34%) and CRSwNP (30.7%) tissues, with higher viral loads observed in the nasal polyps. In controls, it was associated with high expression of types 1 and 2 interferon (IFN), type 2 inflammation, interleukin (IL)-17A, and IL-10. In patients with CRSwNP, silent RV infection was associated with lower levels of type 1 IFN, IL-17A, type 2 inflammation, and IL-10 but higher levels of type 2 IFN compared with those without RV infection. Meanwhile, RV (+) nasal polyps exhibited fewer tissue eosinophils and neutrophils than RV (-) nasal polyps. CONCLUSION Silent RV infection was prevalent in the nasal tissues, with a higher viral load detected in the nasal polyps. This silent RV infection is associated with distinct immune responses in healthy controls and patients with CRSwNP, involving differential modulation of IFNs, TH2 cytokines, IL-17A, IL-10, and eosinophil and neutrophil levels.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Shu Guo
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Fangying Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Changqing Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xueyun Shi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Weiyuan Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lijie Qi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ye Yuan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xinyu Xie
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Larry Borish
- Departments of Medicine and Microbiology, University of Virginia Health System, Charlottesville, Virginia
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
2
|
Lin JR, Huang SH, Wu CH, Chen YW, Hong ZJ, Cheng CP, Sytwu HK, Lin GJ. Valproic Acid Suppresses Autoimmune Recurrence and Allograft Rejection in Islet Transplantation through Induction of the Differentiation of Regulatory T Cells and Can Be Used in Cell Therapy for Type 1 Diabetes. Pharmaceuticals (Basel) 2021; 14:ph14050475. [PMID: 34067829 PMCID: PMC8157191 DOI: 10.3390/ph14050475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) results from the destruction of insulin-producing β cells in the islet of the pancreas by lymphocytes. Non-obese diabetic (NOD) mouse is an animal model frequently used for this disease. It has been considered that T1D is a T cell-mediated autoimmune disease. Both CD4+ and CD8+ T cells are highly responsible for the destruction of β cells within the pancreatic islets of Langerhans. Previous studies have revealed that regulatory T (Treg) cells play a critical role in the homeostasis of the immune system as well as immune tolerance to autoantigens, thereby preventing autoimmunity. Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Previous reports have demonstrated that VPA treatment decreases the incidence and severity of collagen-induced arthritis and experimental autoimmune neuritis by increasing the population of Treg cells in these mouse disease models. Given the effect of VPA in the induction of Treg cells’ population, we evaluated the therapeutic potential and the protective mechanism of VPA treatment in the suppression of graft autoimmune rejection and immune recurrence in syngeneic or allogenic islet transplantation mouse models. In our study, we found that the treatment of VPA increased the expression of forkhead box P3 (FOXP3), which is a critical transcription factor that controls Treg cells’ development and function. Our data revealed that 400 mg/kg VPA treatment in recipients effectively prolonged the survival of syngeneic and allogenic islet grafts. The percentage of Treg cells in splenocytes increased in VPA-treated recipients. We also proved that adoptive transfer of VPA-induced Tregs to the transplanted recipients effectively prolonged the survival of islet grafts. The results of this study provide evidence of the therapeutic potential and the underlying mechanism of VPA treatment in syngeneic islet transplantation for T1D. It also provides experimental evidence for cell therapy by adoptive transferring of in vitro VPA-induced Tregs for the suppression of autoimmune recurrence.
Collapse
Affiliation(s)
- Jeng-Rong Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
- Department of General Surgery, En Chu Kong Hospital, New Taipei 23741, Taiwan;
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei 23741, Taiwan;
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Zhi-Jie Hong
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chia-Pi Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gu-Jiun Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
- Correspondence: ; Tel.: +886-287-923-100 (ext. 18709)
| |
Collapse
|
3
|
Regulatory T cells are a double-edged sword in pulmonary fibrosis. Int Immunopharmacol 2020; 84:106443. [PMID: 32334385 DOI: 10.1016/j.intimp.2020.106443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease. The pathogenesis of PF has not been clearly elucidated, and there is no obvious effective treatment to arrest the progression of PF to date. A long-term chronic inflammatory response and inappropriate repair process after lung injury are important causes and pathological processes of PF. As an influential type of the body's immune cells, regulatory T cells (Tregs) play an irreplaceable role in inhibiting the inflammatory response and promoting the repair of lung tissue. However, the exact roles of Tregs in the process of PF have not been clearly established, and the available literature concerning the roles of Tregs in PF are contradictory. First, Tregs can advance the progression of pulmonary fibrosis by secreting platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β) and other related factors, promoting epithelial-mesenchymal transition (EMT) and affecting the Th1 and Th2 balance, etc. Second, Tregs can inhibit PF by promoting the repair of epithelial cell damage, inhibiting the accumulation of fibroblasts, and strongly inhibiting the production and function of other related pro-inflammatory factors and pro-inflammatory cells. Accordingly, in this review, we focus on the multiple roles of Tregs in different models and different pulmonary fibrosis phases, thereby providing theoretical support for a better understanding of the multiple roles of these cells in PF and a theoretical basis for identifying targets for PF therapy.
Collapse
|
4
|
Huang J, Wang S, Jia Y, Zhang Y, Dai X, Li B. Targeting FOXP3 complex ensemble in drug discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:143-168. [PMID: 32312420 DOI: 10.1016/bs.apcsb.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Forkhead Box P3 (FOXP3) is a key transcriptional regulator of regulatory T cells (Tregs), especially for its function of immune suppression. The special immune suppression function of Tregs plays an important role in maintaining immune homeostasis, and is related to several diseases including cancer, and autoimmune diseases. At the same time, FOXP3 takes a place in a large transcriptional complex, whose stability and functions can be controlled by various post-translational modification. More and more researches have suggested that targeting FOXP3 or its partners might be a feasible solution to immunotherapy. In this review, we focus on the transcription factor FOXP3 in Tregs, Treg functions in diseases and the FOXP3 targets.
Collapse
Affiliation(s)
- Jingyao Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuoyang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxin Jia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujia Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. J Immunol Res 2019; 2019:9678098. [PMID: 31001564 PMCID: PMC6437734 DOI: 10.1155/2019/9678098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.
Collapse
|
6
|
Bodas M, Mazur S, Min T, Vij N. Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses. Respir Res 2018; 19:2. [PMID: 29301535 PMCID: PMC5755330 DOI: 10.1186/s12931-017-0705-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Background Chronic lung disease resulting from dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and NFκB-mediated neutrophilic-inflammation forms the basis of CF-related mortality. Here we aimed to evaluate if HDAC inhibition controls Pseudomonas-aeruginosa-lipopolysaccharide (Pa-LPS) induced airway inflammation and CF-lung disease. Methods For in vitro experiments, HEK293-cells were transfected with IL-8 or NFκB-firefly luciferase, and SV40-renilla- luciferase reporter constructs or ΔF508-CFTR-pCEP, followed by treatment with suberoylanilide hydroxamic acid (SAHA), Trichostatin-A (TSA) and/or TNFα. For murine studies, Cftr+/+ or Cftr−/− mice (n = 3) were injected/instilled with Pa-LPS and/or treated with SAHA or vehicle control. The progression of lung disease was monitored by quantifying changes in inflammatory markers (NFκB), cytokines (IL-6/IL-10), neutrophil activity (MPO, myeloperoxidase and/or NIMP-R14) and T-reg numbers. Results SAHA treatment significantly (p < 0.05) suppresses TNFα-induced NFκB and IL-8 reporter activities in HEK293-cells. Moreover, SAHA, Tubacin (selective HDAC6-inhibitor) or HDAC6-shRNAs controls CSE-induced ER-stress activities (p < 0.05). In addition, SAHA restores trafficking of misfolded-ΔF508-CFTR, by inducing protein levels of both B and C forms of CFTR. Murine studies using Cftr+/+ or Cftr−/− mice verified that SAHA controls Pa-LPS induced IL-6 levels, and neutrophil (MPO levels and/or NIMP-R14), NFκB-(inflammation) and Nrf2 (oxidative-stress marker) activities, while promoting FoxP3+ T-reg activity. Conclusion In summary, SAHA-mediated HDAC inhibition modulates innate and adaptive immune responses involved in pathogenesis and progression of inflammatory CF-lung disease. Electronic supplementary material The online version of this article (10.1186/s12931-017-0705-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), Mt Pleasant, MI, USA.,Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven Mazur
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Integrated Research Facility at Fort Detrick, Fort Detrick, Frederick, MD, USA
| | - Taehong Min
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Genentech, 1 DNA Way, San Francisco, CA, USA
| | - Neeraj Vij
- College of Medicine, Central Michigan University, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), Mt Pleasant, MI, USA. .,Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,VIJ Biotech LLC, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
Khan S, Ahirwar K, Jena G. Anti-fibrotic effects of valproic acid: role of HDAC inhibition and associated mechanisms. Epigenomics 2016; 8:1087-101. [PMID: 27411759 DOI: 10.2217/epi-2016-0034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue injuries and pathological insults produce oxidative stress, genetic and epigenetic alterations, which lead to an imbalance between pro- and anti-fibrotic molecules, and subsequent accumulation of extracellular matrix, thereby fibrosis. Various molecular pathways play a critical role in fibroblasts activation, which promotes the extracellular matrix production and accumulation. Recent reports highlighted that histone deacetylases (HDACs) are upregulated in various fibrotic disorders and play a central role in fibrosis, while HDAC inhibitors exert antifibrotic effects. Valproic acid is a first-line anti-epileptic drug and a proven HDAC inhibitor. This review provides the current research and novel insights on antifibrotic effects of valproic acid in various fibrotic conditions with an emphasis on the possible strategies for treatment of fibrosis.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Kailash Ahirwar
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|