1
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
2
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
3
|
Drakopoulou E, Anagnou NP, Pappa KI. Gene Therapy for Malignant and Benign Gynaecological Disorders: A Systematic Review of an Emerging Success Story. Cancers (Basel) 2022; 14:cancers14133238. [PMID: 35805007 PMCID: PMC9265289 DOI: 10.3390/cancers14133238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review discusses all the major advances in gene therapy of gynaecological disorders, highlighting the novel and potentially therapeutic perspectives associated with such an approach. It specifically focuses on the gene therapy strategies against major gynaecological malignant disorders, such as ovarian, cervical, and endometrial cancer, as well as benign disorders, such as uterine leiomyomas, endometriosis, placental, and embryo implantation disorders. The above therapeutic strategies, which employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation approaches, have yielded promising results over the last decade, setting the grounds for successful clinical trials. Abstract Despite the major advances in screening and therapeutic approaches, gynaecological malignancies still present as a leading cause of death among women of reproductive age. Cervical cancer, although largely preventable through vaccination and regular screening, remains the fourth most common and most lethal cancer type in women, while the available treatment schemes still pose a fertility threat. Ovarian cancer is associated with high morbidity rates, primarily due to lack of symptoms and high relapse rates following treatment, whereas endometrial cancer, although usually curable by surgery, it still represents a therapeutic problem. On the other hand, benign abnormalities, such as fibroids, endometriosis, placental, and embryo implantation disorders, although not life-threatening, significantly affect women’s life and fertility and have high socio-economic impacts. In the last decade, targeted gene therapy approaches toward both malignant and benign gynaecological abnormalities have led to promising results, setting the ground for successful clinical trials. The above therapeutic strategies employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation. This review discusses all the major advances in gene therapy of gynaecological disorders and highlights the novel and potentially therapeutic perspectives associated with such an approach.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- Correspondence:
| | - Kalliopi I. Pappa
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
4
|
Arakelian T, Oosterhuis K, Tondini E, Los M, Vree J, van Geldorp M, Camps M, Teunisse B, Zoutendijk I, Arens R, Zondag G, Ossendorp F, van Bergen J. Pyroptosis-inducing active caspase-1 as a genetic adjuvant in anti-cancer DNA vaccination. Vaccine 2022; 40:2087-2098. [PMID: 35177300 DOI: 10.1016/j.vaccine.2022.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 12/28/2022]
Abstract
Pyroptosis is a recently discovered form of inflammatory programmed necrosis characterized by caspase-1-mediated and gasdermin D-dependent cell death leading to the release of pro-inflammatory cytokines such as Interleukin-1 beta (IL-1β). Here, we evaluated whether pyroptosis could be exploited in DNA vaccination by incorporating a constitutively active variant of caspase-1 to the antigen-expressing DNA. In vitro, transfection with constitutively active caspase-1 DNA induced pro-IL-1β maturation and IL-1β release as well as gasdermin D-dependent cell death. To test active caspase-1 as a genetic adjuvant for the induction of antigen-specific T cell responses, mice were vaccinated intradermally with a DNA vaccine consisting of the active caspase-1 plasmid together with a plasmid encoding an ovalbumin-derived CD8 T cell epitope. Active caspase-1 accelerated and amplified antigen-specific CD8 T cell responses when administered simultaneously with the DNA vaccine at an equimolar dose. Moreover, upon challenge with melanoma cells expressing ovalbumin, mice vaccinated with the antigen vaccine adjuvanted with active caspase-1 showed significantly better survival compared to the non-adjuvanted group. In conclusion, we have developed a novel genetic adjuvant that for the first time employs the pyroptosis pathway to improve DNA vaccination against cancer.
Collapse
Affiliation(s)
- Tsolere Arakelian
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Koen Oosterhuis
- Immunetune BV, Leiden, the Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elena Tondini
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mandy Los
- Immunetune BV, Leiden, the Netherlands
| | - Jana Vree
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariska van Geldorp
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcel Camps
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerben Zondag
- Immunetune BV, Leiden, the Netherlands; Synvolux Therapeutics BV, Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Jeroen van Bergen
- Immunetune BV, Leiden, the Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Current Updates on Cancer-Causing Types of Human Papillomaviruses (HPVs) in East, Southeast, and South Asia. Cancers (Basel) 2021; 13:cancers13112691. [PMID: 34070706 PMCID: PMC8198295 DOI: 10.3390/cancers13112691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Among the over 200 human papillomavirus (HPV) genotypes identified, approximately 15 of them can cause human cancers. In this review, we provided an updated overview of the distribution of cancer-causing HPV genotypes by countries in East, Southeast and South Asia. Besides the standard screening and treatment methods employed in these regions, we unravel HPV detection methods and therapeutics utilised in certain countries that differ from other part of the world. The discrepancies may be partly due to health infrastructure, socio-economy and cultural diversities. Additionally, we highlighted the area lack of study, particularly on the oncogenicity of HPV genotype variants of high prevalence in these regions. Abstract Human papillomavirus (HPV) infection remains one of the most prominent cancer-causing DNA viruses, contributing to approximately 5% of human cancers. While association between HPV and cervical cancers has been well-established, evidence on the attribution of head and neck cancers (HNC) to HPV have been increasing in recent years. Among the cancer-causing HPV genotypes, HPV16 and 18 remain the major contributors to cancers across the globe. Nonetheless, the distribution of HPV genotypes in ethnically, geographically, and socio-economically diverse East, Southeast, and South Asia may differ from other parts of the world. In this review, we garner and provide updated insight into various aspects of HPV reported in recent years (2015–2021) in these regions. We included: (i) the HPV genotypes detected in normal cancers of the uterine cervix and head and neck, as well as the distribution of the HPV genotypes by geography and age groups; (ii) the laboratory diagnostic methods and treatment regimens used within these regions; and (iii) the oncogenic properties of HPV prototypes and their variants contributing to carcinogenesis. More importantly, we also unveil the similarities and discrepancies between these aspects, the areas lacking study, and the challenges faced in HPV studies.
Collapse
|
6
|
Áyen Á, Jiménez Martínez Y, Boulaiz H. Targeted Gene Delivery Therapies for Cervical Cancer. Cancers (Basel) 2020; 12:cancers12051301. [PMID: 32455616 PMCID: PMC7281413 DOI: 10.3390/cancers12051301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Despite being largely preventable through early vaccination and screening strategies, cervical cancer is the most common type of gynecological malignancy worldwide and constitutes one of the leading causes of cancer deaths in women. Patients with advanced or recurrent disease have a very poor prognosis; hence, novel therapeutic modalities to improve clinical outcomes in cervical malignancy are needed. In this regard, targeted gene delivery therapy is presented as a promising approach, which leads to the development of multiple strategies focused on different aspects. These range from altered gene restoration, immune system potentiation, and oncolytic virotherapy to the use of nanotechnology and the design of improved and enhanced gene delivery systems, among others. In the present manuscript, we review the current progress made in targeted gene delivery therapy for cervical cancer, the advantages and drawbacks and their clinical application. At present, multiple targeted gene delivery systems have been reported with encouraging preclinical results. However, the translation to humans has not yet shown a significant clinical benefit due principally to the lack of efficient vectors. Real efforts are being made to develop new gene delivery systems, to improve tumor targeting and to minimize toxicity in normal tissues.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Dermatology, San Cecilio Universitary Hospital, 18016 Granada, Spain;
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-271
| |
Collapse
|
7
|
Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today 2019; 24:2044-2057. [DOI: 10.1016/j.drudis.2019.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
|
8
|
Song C, Phuengkham H, Kim YS, Dinh VV, Lee I, Shin IW, Shin HS, Jin SM, Um SH, Lee H, Hong KS, Jin SM, Lee E, Kang TH, Park YM, Lim YT. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Nat Commun 2019; 10:3745. [PMID: 31431623 PMCID: PMC6702226 DOI: 10.1038/s41467-019-11730-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
The low response rate of current cancer immunotherapy suggests the presence of few antigen-specific T cells and a high number of immunosuppressive factors in tumor microenvironment (TME). Here, we develop a syringeable immunomodulatory multidomain nanogel (iGel) that overcomes the limitation by reprogramming of the pro-tumoral TME to antitumoral immune niches. Local and extended release of immunomodulatory drugs from iGel deplete immunosuppressive cells, while inducing immunogenic cell death and increased immunogenicity. When iGel is applied as a local postsurgical treatment, both systemic antitumor immunity and a memory T cell response are generated, and the recurrence and metastasis of tumors to lungs and other organs are significantly inhibited. Reshaping of the TME using iGel also reverts non-responding groups to checkpoint blockade therapies into responding groups. The iGel is expected as an immunotherapeutic platform that can reshape immunosuppressive TMEs and synergize cancer immunotherapy with checkpoint therapies, with minimized systemic toxicity. The limited efficacy of current immunotherapy suggests low antigen-specific T cells and immunosuppressive factors in tumor microenvironment (TME). Here, the authors develop a syringeable immunomodulatory multi-domain nanogel that can reprogram the TME and induce enhanced cancer immunotherapy.
Collapse
|
9
|
Immunization of mice by the co-administration of codon-optimized HPV16 E7 and lL12 genes against HPV16-associated cervical cancer. Microb Pathog 2019; 132:20-25. [PMID: 31004722 DOI: 10.1016/j.micpath.2019.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Various promising procedures have been used to improve the potency of DNA vaccines for the treatment of human papillomavirus type 16 (HPV16) infections. Interleukin-12 (IL12) is a powerful adjuvant that can contribute to T cell-mediated protection against many pathogens, specifically viruses. Considering the important role of T cell-mediated immunity in tumor clearance, the induction of these responses can help control the progression of tumors in animal models. We have demonstrated that the co-administration of codon-optimized E7 (uE7) gene of HPV16 with interleukin-12 is effective in the development of antitumor responses. OBJECTIVES The present study examined the co-administration of codon-optimized HPV16 E7 gene with murine interleukin-12 gene (mIL-12) as a vaccine adjuvant in tumor mice model. MATERIALS AND METHODS C57BL/6 mice were studied for tumor progression after injection of recombinant DNA vaccines. Lactate dehydrogenase (LDH) and IFN-γ were measured to evaluate the activity of cytotoxic T lymphocytes (CTLs). Measurements of tumor volume and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay were used for assessment of therapeutic antitumor effects of the vaccines. RESULTS Results showed that DNA vaccines, specifically codon-optimized E7/murine interleukin-12 (mIL-12), elicited significant differences in levels of IFN-γ and cytotoxic T lymphocyte (CTLs) responses compared to control groups. Furthermore, higher antitumor response and lower tumor size in the vaccine group was significantly evident compared to control group. CONCLUSION The co-administration of codon-optimized HPV16 E7 gene with IL12 significantly enhances the DNA vaccine potency against HPV16-associated cervical cancer.
Collapse
|
10
|
Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. J Control Release 2018; 292:256-276. [PMID: 30312721 PMCID: PMC6355332 DOI: 10.1016/j.jconrel.2018.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
The development of therapeutic cancer vaccines as a means to generate immune reactivity against tumors has been explored since the early discovery of tumor-specific antigens by Georg Klein in the 1960s. However, challenges including weak immunogenicity, systemic toxicity, and off-target effects of cancer vaccines remain as barriers to their broad clinical translation. Advances in the design and implementation of biomaterials are now enabling enhanced efficacy and reduced toxicity of cancer vaccines by controlling the presentation and release of vaccine components to immune cells and their microenvironment. Here, we discuss the rational design and clinical status of several classes of cancer vaccines (including DNA, mRNA, peptide/protein, and cell-based vaccines) along with novel biomaterial-based delivery technologies that improve their safety and efficacy. Further, strategies for designing new platforms for personalized cancer vaccines are also considered.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
11
|
Kim AR, Park J, Kim JH, Kwak JE, Cho Y, Lee H, Jeong M, Park SH, Shin EC. Herpes Zoster DNA Vaccines with IL-7 and IL-33 Molecular Adjuvants Elicit Protective T Cell Immunity. Immune Netw 2018; 18:e38. [PMID: 30402333 PMCID: PMC6215899 DOI: 10.4110/in.2018.18.e38] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Herpes zoster (HZ), or shingles, is caused by the reactivation of latent varicella-zoster virus (VZV) from the sensory ganglia when VZV-specific T-cell immunity is decreased because of aging or immunosuppression. In the present study, we developed HZ DNA vaccine candidates encoding VZV proteins and cytokine adjuvants, such as IL-7 and IL-33. We immunized C57BL/6 mice with DNA plasmids encoding VZV glycoprotein E (gE), immediate early (IE) 63, or IE62 proteins and found that robust VZV protein-specific T-cell responses were elicited by HZ DNA vaccination. Co-administration of DNA plasmids encoding IL-7 or IL-33 in HZ DNA vaccination significantly enhanced the magnitude of VZV protein-specific T-cell responses. Protective immunity elicited by HZ DNA vaccination was proven by challenge experiments with a surrogate virus, vaccinia virus expressing gE (VV-gE). A single dose of HZ DNA vaccine strongly boosted gE-specific T-cell responses in mice with a history of previous infection by VV-gE. Thus, HZ DNA vaccines with IL-7 and IL-33 adjuvants strongly elicit protective immunity.
Collapse
Affiliation(s)
- A Reum Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Junsik Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jong Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| | - Jeong-Eun Kwak
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Youngran Cho
- Research Center, GeneOne Life Science, Inc., Seoul 06060, Korea
| | - Hyojin Lee
- Research Center, GeneOne Life Science, Inc., Seoul 06060, Korea
| | - Moonsup Jeong
- Research Center, GeneOne Life Science, Inc., Seoul 06060, Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
12
|
Qiu J, Peng S, Yang A, Ma Y, Han L, Cheng MA, Farmer E, Hung CF, Wu TC. Intramuscular vaccination targeting mucosal tumor draining lymph node enhances integrins-mediated CD8+ T cell infiltration to control mucosal tumor growth. Oncoimmunology 2018; 7:e1463946. [PMID: 30221059 PMCID: PMC6136882 DOI: 10.1080/2162402x.2018.1463946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 10/16/2022] Open
Abstract
Purpose: Mucosal immunization is suggested to be crucial for controlling tumors in the mucosal region; however, therapeutic DNA vaccination with electroporation in various mucosal sites has yet to become clinically adaptable. Since tumor-draining lymph nodes (tdLNs) have been suggested as immune-educated sites that can be utilized to mount a potent antitumor immune response, we examined whether intramuscular DNA vaccination with electroporation at sites that target the mucosal tdLNs could elicit mucosal immune response to restrict tumor growth. Experimental Design: The efficacy and mechanism of intramuscular administration of a therapeutic DNA vaccine with electroporation at different sites was examined by lymphocyte analysis, tumor growth, mouse survival, as well as integrin expression, in mice bearing orthotopic HPV16 E6/E7+ syngeneic TC-1 tumors in various mucosal areas. Results: While provoking comparable systemic CD8+ T cell responses, intramuscular hind leg vaccination generated stronger responses in cervicovaginal-draining LNs to control cervicovaginal tumors, whereas intramuscular front leg vaccination generated stronger responses in oral-draining LNs to control buccal tumors. Surgical removal of tdLNs abolished the antitumor effects of therapeutic vaccination. Mucosal-tdLN-targeted intramuscular vaccination induced the expression of mucosal-homing integrins LPAM-1 and CD49a by tumor-specific CD8+ T cells in the tdLNs. Inhibition of these integrins abolished the therapeutic effects of vaccination and the infiltration of tumor-specific CD8+ T cells into mucosal tumors. Conclusions: Our findings demonstrate that tumor draining lymph nodes targeted intramuscular immunization can effectively control mucosal tumors, which represents a readily adaptable strategy for treating mucosal cancers in humans.
Collapse
Affiliation(s)
- Jin Qiu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Ying Ma
- Department of Gynecology and Obstetrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong province, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Liping Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Max A. Cheng
- Department of Pathology; Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Emily Farmer
- Department of Pathology; Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Chien-Fu Hung
- Department of Pathology and Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - T.-C. Wu
- Departments of Pathology, Department of Obstetrics and Gynecology, Department of Molecular Microbiology and Immunology, and Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, UnitedStates
| |
Collapse
|
13
|
Spolski R, Gromer D, Leonard WJ. The γ c family of cytokines: fine-tuning signals from IL-2 and IL-21 in the regulation of the immune response. F1000Res 2017; 6:1872. [PMID: 29123649 PMCID: PMC5657018 DOI: 10.12688/f1000research.12202.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 01/08/2023] Open
Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on the sharing of a receptor component, the common cytokine receptor γ chain, γ
c, which is encoded by the gene mutated in humans with X-linked severe combined immunodeficiency (XSCID). Together, these cytokines play critical roles in lymphoid development, differentiation, growth, and survival as well as mediating effector function. Here, we provide an overview of the main actions of members of this cytokine family but then primarily focus on IL-2 and IL-21, discussing their dynamic interplay and contributions to a fine-tuned immune response. Moreover, we discuss the therapeutic utility of modulating their actions, particularly for autoimmunity and cancer.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Gromer
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|